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Non-linear dynamical systems describe numerous real-world phenomena, ranging from the weather,
to financial markets and disease progression. Individual systems may share substantial common
information, for example patients’ anatomy. Lately, deep-learning has emerged as a leading method
for data-driven modeling of non-linear dynamical systems. Yet, despite recent breakthroughs, prior
works largely ignored the existence of shared information between different systems. However, such
cases are quite common, for example, in medicine: we may wish to have a patient-specific model for
some disease, but the data collected from a single patient is usually too small to train a deep-learning
model. Hence, wemust properly utilize data gathered from other patients. Here, we explicitly consider
such cases by jointly modeling multiple systems. We show that the current single-system models
consistently fail when trying to learn simultaneously from multiple systems. We suggest a framework
for jointly approximating the Koopman operators of multiple systems, while intrinsically exploiting
common information. We demonstrate how we can adapt to a new system using order-of-magnitude
less new data and show the superiority of our model over competing methods, in terms of both
forecasting ability and statistical fidelity, across chaotic, cardiac, and climate systems.

Dynamical systems describe natural phenomena, such as atmospheric
convection1, physiological processes2, and financial markets3. For decades,
scientists have been developing tools for predicting, analyzing, and con-
trolling the future state of dynamical systems. With the advent of high
computing power and abundant data, machine-learning has become a
popular approach to discover models of dynamical systems directly from
data4–8, with deep-learning at the forefront9,10. Lately, Koopman spectral
theory11–13 has emerged as adominant approach fordata-drivenmodelingof
dynamical systems7,14, representing non-linear dynamics through the action
of a linear operator, known as the Koopman operator (KO), by lifting
measurements from the state-space to an observable-space. This linear
representation is amenable to treatment by provably optimal methods for
prediction, analysis, and control of dynamical systems, based on the com-
prehensive theory developed for linear operators7.

While machine learning has been successful in approximating system
dynamics, prior works mostly focused on single-system settings6–10,15,16.
However, in the case of multiple systems, learning a separate model per
system forfeits the chance to exploit shared information. Alternatively,
training a single model for all systems does not accommodate different
systems’ varying behaviors.

An important case is that of chaotic systems with themixing property,
such as theLorenz attractor.While such systemsarenot globally linearizable
in finite dimensions, there exists a semiconjugacy allowing to linearize the
system on a part of state space17. While no homeomorphic transformation
will linearly encapsulate the global dynamics of the Lorenz system, the
Koopman operator can provide a transformation that extends local
neighborhoods where a linear model is valid to the full basin around fixed
points of the system, as prior works have shown6–8,18. One can then ask
whether jointly learning multiple approximations from different state tra-
jectories might produce superior approximation globally.

Here, we consider this multi-system case, where all systems possess
similar or identical dynamics, with the intent of exploiting shared infor-
mation, while remaining system- (or neighborhood-) specific. For clarity, in
the context of multiple trajectories with identical dynamics multi-system
means multi-neighborhood. Hence, our goal is to jointly learn a set of
interrelated linear dynamics operators, one per system (or neighborhood of
a single system), with shared components. For this purpose, we define
linearly interrelated dynamics as follows:

Definition 1 Let fF 1; . . . ;FMg be a collection of discrete-time
dynamical systems with the state in Rn. We say that the systems have
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linearly interrelated dynamics if there exists an invertible coordinate
transformation φ : Rn ! Rk and a set of k × k matrices fK igMi¼1 such
that Fm ¼ φ�1

° Km° φ.
In other words, the systems can be globally linearized by the same

coordinate transformation, but will have individual linear dynamics in that
representation space. This definition is different from that of other notions
of coupled dynamics (e.g., coupled oscillators). Specifically, in our definition
different systems do not act on each other, but can simply be jointly linearly
decomposed (for details see “Multi-systems setting” subsection in the
“Methods”). Additionally, throughout this work, by saying that the above
holds approximately, wemean that φ andK is a reduced real representation
of F . Recent works somewhat similar to ours are19,20. However, in both
works the authors suggest deriving joint linear dynamics for the evolution of
measurements from multiple modalities (i.e., various states) of the same
system, and do not consider the case of multiple systems.

In contrast, we learn a single transformation to a joint coordinate
system, in which the dynamics of multiple systems are linearly interrelated.
We use auto-encoders (AE)21 to learn a single-state embedding for all sys-
tems. Then, in the representation space, we learn a k-dimensional
approximation of each system’s individual dynamics. Specifically, we
represent each system’s time propagation as:

xmtþ1 ¼ ψððKm° ϕÞðx
m
t ÞÞ ¼ ψððABmCÞ° ϕÞðx

m
t ÞÞ; ð1Þ

where xmt 2 Rn denotes the state of systemm at time t, and ϕ and ψ denote
the learned transformations, parameterized by deep neural networks
(DNN),mapping between the state space and the representation space. The
factorized form Km =ABmC for the linear propagator in the representation
space ismotivated by22 due to its implicit rank regularization. Thus, the only
system-specific component is Bm (see Fig. S1 for schematic view).

Previous works have employed time-delayed embeddings6,8,16, where
the time-delayedmeasurementswereused as the representation. Instead,we
learn the representation automatically through the encoder ϕ, and then
approximate a propagator that represents the dynamics of the temporal
differences of these representation:

xmtþ1 ¼ ψ ðKΔþ IÞϕðxmt Þ
� � ¼ ψ ϕðxmt Þ þ ðABmCÞΔϕðxmt Þ

� �
: ð2Þ

where (Δx)t≔ xt− xt−1 denotes the temporal difference operator and I is
the identity operator. We term this formulation as the residual mode.

In what follows, we refer to the proposed framework in both the direct
and the residual modes as to Model of Interrelated Dynamical Systems
(MIDST). We compare MIDST to competing methods and show its
superiority both in terms of forecasting accuracy and statisticalfidelity to the
future states.Wedemonstrate that single-systemmodels fail toutilize shared
information between interrelated systems. Specifically, in the case of the
Lorenz system, where dynamics approximations are only locally valid, we
show that, unsurprisingly, the forecasting ability of competing methods
degrades as the number of different trajectories increases, while MIDST’s
performance improves monotonically. We demonstrate how MIDST’s
formulation allows us to adapt our model to new systems (or neighbor-
hoods) using anorder-of-magnitude less new samples. Finally, we show that
MIDST significantly improves the prediction accuracy of chaotic and cli-
mate systems, while also being the only method to estimate with high
statistical fidelity the future states of the effect of side-effects of anti-
arrhythmogenic drugs in different patients.

Results
We report prediction errors via the Mean Absolute Scaled Error (MASE)
metric, defined as:

MASE ¼
1
T

PT�1
t¼0 k x̂t � xt k

1
T�1

PT�1
t¼1 k xt � xt�1 k

; ð3Þ

where x̂t ¼ ψðKϕðxt�1ÞÞ is the prediction made by the model, and xt is the
target value at time t. The numerator represents the average prediction error
of the model, and the denominator represents the average prediction error
of a naïve predictor (MASE = 1 indicates that the two perform similarly).

We compare MIDST in the direct (MIDST-D) and residual (MIDST-
R) formulations to five competing models: (1) Extended Dynamic Mode
Decomposition (EDMD)23; (2) Measure Preserving Extended Dynamic
Mode Decomposition (mpEDMD)8; (3) ResNet5024 in a temporal con-
volutional network configuration25; (4) a Universal Linear Embedding
(ULE)9; and (5)ConsistentKoopman (CK)10.We use an identical AEmodel
for ULE, CK and our MIDST model, with the only difference being the
representation of the linear propagator Km.

While the EDMD and mpEDMD methods can theoretically utilize
multiple trajectories from a single system, ULE and CK were not designed
for the multi-system settings. To extend these single-system methods to
multi-system settings, we conducted an ablation study on the degree of
dynamics sharing between different systems (Fig. S2, which can be found in
the Supplementary Results section, similarly to all other Figures and Tables
labeled with the prefix “S”). Specifically, we explored three levels of sharing:
(1) no dynamics sharing, i.e., a different model per system; (2) sharing the
entire model across systems, which is equivalent to the single-system case;
(3) sharing the AE, and the left (A) and right (C) components of each
propagator representation (only possible inMIDST). Based on the results of
the ablation study, we extended the ULE and CKmodels through sharing a
singleAE for all systems (i.e., learning a shared coordinates transformation),
while retaining separate per-systemKOs.We refer to these extendedmodels
as Joint ULE (J-ULE) and Joint CK (J-CK), respectively.

Chaotic attractors
The Lorenz attractor1 is a simplified mathematical model for atmospheric
convection that is chaotic, meaning differently initialized systems generate
significantly different state trajectories. To evaluateMIDST,we generatedM
multiple trajectories with different initializations and identical dynamics.
Each trajectorywaspartitioned into three sets: train, validation, and test. The
initial 70% of each trajectory were used for training, the following 10%were
used as a validation set, and the last 20% comprised the test set. The state-
vector at each time t includes the (x, y, z) coordinates, and the goal is to
predict the nextH coordinates given T = 64 previous states (64 was chosen
arbitrarily). A gap of T = 64 temporal states was maintained between each
set to prevent information leakage. Except when specified otherwise, all
experiments were performed on systems with the original parameters used
by Lorenz1 (σ ¼ 10; ρ ¼ 28; β ¼ 8

3).
Anobvious implicit assumption is that, given enough samples different

state trajectories from the same system should yield similar dynamics
approximations. However, in many real-life cases, and also with mixing
chaotic systems, one cannot even hope to obtain the true dynamics repre-
sented by a finite-dimensional linear system. The Lorenz system, for
example, has no point spectrum, hence it is not globally linearizable17, and
while prior works obtained local linear approximations6,8,18, the effect of the
sampled trajectory on the system approximation was not discussed.

Here, we jointly learn multiple dynamics approximations using
MIDST on different trajectories from the same Lorenz system. After
obtaining the different approximations, we test their forecasting capability
on a newly generated trajectory. Figure 1a presents how by jointly learning
multiple approximations using MIDST, we achieve order-of-magnitude
improvement in terms of forecasting accuracy against all baseline methods.
Additionally, Fig. 1b shows an order-of-magnitude lower error scores for
MIDST compared to all other baselines, both on the originally learned
systems, and on the new one, where we ablate over the available number of
training samples, and whereMIDST still outperforms every othermodel, in
both the low- and high-data regimes.

Figure S2 ablates over the various sharing schemes. It shows that,
unsurprisingly, a separate model per trajectory (MIDST-Disjoint) results in
similar performance across all trajectories, while the prediction error of a
single model (MIDST-Single) monotonically increases with the number of
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trajectories. Importantly, the two shared MIDST variants (MIDST-D and
MIDST-R) show improvement as the number of trajectories increases, with
MIDST-R outperforming all other variants.

In turn, Fig. 2 exemplifies how despite all trajectories having identical
dynamics, each KO approximation performs noticeably differently on a
newly generated trajectory. Figure 2a shows that different KO approxima-
tions are indeed mostly valid in a basin around the system’s fixed points,
despite each local environment being slightly different for each approx-
imation. In contrast, Fig. 2b shows a considerable difference in the areas in
which each approximation breaks, i.e., despite all approximations being
jointly obtained using the same algorithm from trajectories following the
same dynamics, each different approximation breaks in different neigh-
borhoods of the system’s state space.

To validate that MIDST indeed exploit shared information, we eval-
uated a pre-trained MIDST-R model on a new trajectory. We compared
three approaches: (1) training only the new system component (i.e., a newB
matrix) while keeping the pre-trained AE maps ϕ, ψ and the matrices A,C
fixed; (2) training a completely newK =ABCwhile using afixed pre-trained
AE; and (3) training an entirely new model. Each model was trained on an
increasing number of samples to estimate the sample complexity for

learning the newdynamics approximation. Figure 3 showspredictions from
each model and highlights qualitative differences, while Fig. S3 reports the
overall mean MASE scores. The results demonstrate that without opti-
mizing shared components, the pre-trained AE and dynamics components
enabled MIDST to significantly outperform the other two variants. To
further examine the effects of MIDST on the learned dynamics approx-
imations, we computed the average effective rank of the linear time
propagator26 in each method (ResNet and J-ULE were excluded since
ResNet does not approximate a linear propagator, and J-ULE generates a
different approximation for each different sample). The effective rank of a
matrix A represents the average number of significant dimensions in the
range of A26, which in our context, can be considered as the “effective
dimension” of the representation space. Figure S4 shows that MIDST is the
only method in which the effective rank of K is affected by adding more
trajectories (or systems), leading to improved results, while all other
methods remain invariant to the addition of new trajectories.

In Fig. S5, we present the scaled average mean absolute error (sMAE)
for the prediction horizonH = 20 (such a long horizon was chosen in order
to reach the point of divergence for all models), where predictions for each
step h ≥ 1 were generated in an autoregressive manner. By using the pre-

Fig. 1 | Forecasting errors comparison between different models. aAverageMean
Absolute Scaled Error (MASE) scores ofMIDST and competingmodels. For the two
analytical models (EDMD and mpEDMD) we have used time-delay embeddings as
the observable-coordinates, as was done in refs. 6,8. b Average MASE scores of the
fine-tuned models on a new attractor instance on an increasing training-set size.

ResNet is trained entirely on the new dynamics; J-ULE and J-CK utilize pre-trained
auto-encoder, and newly trained dynamics; MIDST-R utilizes a pre-trained and
fixed auto-encoder and theA andCmatrices, while we only train theBm component.
In all figures, Naïve refers to the naïve predictor (always have a value of 1). Shaded
areas mark the 1σ confidence intervals.
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trained AE and the A,C dynamics components (Pre-trained AE+
Dynamics), themodel outperformed training an entirely newmodel (52.1%
lower sMAE) and training a new specific K approximation for the new
system neighborhood (71.7% lower sMAE). We also tested MIDST on
groups of Lorenz attractors with different parameters, i.e., similar systems
with different dynamics, and on groups of completely different and unre-
lated systems. In both cases, MIDST outperformed any other competing
method. Figures S6 and S7 respectively show the results for these experi-
ments. Note that we did not include the EDMD and mpEDMD methods
since these models are not suitable to handle trajectories from different
systems (and indeed utterly failed to generate meaningful predictions).
Figure S8 reports the effect of the representation dimension k, showing that
MIDST’s performance improves monotonically as k increases, up to a
performance limit. Finally, there is the question of stability of the learned
system.While indeed an important aspect, our reliance onDNNs renders a
proper analytical analysis impractical. However, to still obtain a measure of
how stable MIDST is, we estimated the largest Lyapunov exponent (LLE)
and compared it to that of the J-CKmodel. In Fig. S9, we show that not only
doesMIDST produce more stable dynamics approximations (Fig. S9a), but
also that it produces amodel with an LLE value that is closer to the true LLE
of the Lorenz system (Fig. S9b).

Arrhythmogenic treatments
When modeling stochastic dynamical systems, correctly predicting the sta-
tistical behavior of future states can be more important than exact point-wise
predictions. Thus, we aim to demonstrate MIDST’s superior fidelity to the
statistical behavior of future state trajectories. To this end, we modeled the
cardiac dynamics of different patients under the effect of different anti-
arrhythmogenic treatments. Long QT syndrome (LQTS) is a cardiac con-
dition that affects the repolarization of the heart, as represented in an elec-
trocardiogram (ECG) by the QT interval27. LQTS is diagnosed by ECGwhen
observing a corrected QT (QTc) interval≥ 460 [msec]28. LQTS increases the
risk of a ventricular arrhythmia known as Torsade de Pointes, which can
result in sudden cardiac death29. Drug-induced QT prolongation is a known
cause of increased mortality risk30, and currently, there are no widely
available clinical tools for predicting which individuals are at greatest risk31.

Here,wepredicted the lengthof futureQT intervals underfivedifferent
anti-arrhythmic treatments. We considered each treatment as a different
dynamical system. Each treatment was administered to each of 21 patients.
Short ECGrecordingswere taken 30minprior to treatment administration,
as well as at 15 fixed time points post-treatment. The state vector was
composedof 13 clinical andECG-derivedmeasurements (for details, see the

“Data availability” section). Given six initial measurements, for a given
patient and treatment,wepredicted thenext 10 futureQTandRR states (RR
represents the temporal interval between consecutive heartbeats), from
which we obtained the QTc values. We then estimated under which treat-
ment the patient is predicted to suffer from a drug-induced QTc-pro-
longation event, defined as having at least one futureQTc interval exceeding
460 milliseconds. Hence, and given our initial motivation for this section,
here we report, in addition to MASE scores, on goodness-of-fit statistical
tests between future ground-truth values and predictions and standard
statistics for binary classification tasks. Due to the small number of points in
each trajectory (six), we excluded the EDMD and mpEDMDmodels from
this section, as they could not be properly evaluated.

Figure 4a demonstrates the benefits of having partially shared
dynamics (MIDST-R) compared to a single model (MIDST-Single), with
MIDST-R achieving 60% improvement in F1-Score. Figure 4b compares
MIDST-R to competing models. MIDST-R achieved an F1-score
improvement of 292% and 208% compared to ResNet and J-CK, respec-
tively, and an improvement of 217% in specificity compared to J-ULE.

Figures S10 and S11 showcase the stronger statistical fidelity of
MIDST-R predictions by comparing the histogram of predicted QTc
lengths to that of ground-truth values. We performed an Epps-Singleton
(ES) goodness-of-fit test32 between predictedQTc lengths and ground-truth
lengths. The null hypothesis claims that the two samples were generated by
the same underlying probability distribution, i.e., rejection of the null
indicates that predicted QTc values are not similarly distributed as ground-
truth values. Figure S10 clearly shows that MIDST is the only method that
properly captures the statistical behavior of QTc dynamics. MIDST’s pre-
dictions are the only ones for which the null could not be significantly
rejected (p = 0.43), while the null was significantly rejected for all other
methods (p ≤ 0.05). Figure S11 presents a similar comparison between
MIDST-R and MIDST-Single, showing that the null is also significantly
rejected for the singlemodel (p = 0.02). Surprisingly, Table S2 demonstrates
that almost all models have performed similarly in terms of average MASE
scores, highlighting that while the accuracy of point-wise predictions for
eachmodelwas similar, it does not necessarily translate to capturing the true
statistical behaviors of these stochastic systems.

Sea surface temperature
In this section, we focused on highly periodical systems that exhibit non-
stationary structures. The National Oceanic and Atmospheric Adminis-
tration (NOAA) has made a series of sea surface temperature (SST) mea-
surements available to the public in the Optimum Interpolation SST V2

Fig. 2 | Forecasting results ofMIDST-R on a newly
generated trajectory. a 1000 points with the lowest
forecasting error of each system. b 500 points with
the highest forecasting error of each system. The
number of points was chosen for clarity. The axes are
the XYZ coordinates (omitted for improved
visualization).
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dataset33. The state of each dynamical system is represented as a time series
of SST in fixed locations.

We trained a MIDST model to predict future SSTs at 50 different
locations across two oceans, corresponding to 50 interrelated systems (for
more details, see the “Data availability” section). At each time point t, the
model was provided with a trajectory of state vectors, consisting of the
average weekly temperatures of 16 adjacent locations from the previous
T = 16weeks, and then predicted the nextHweeks (the numbers of regions,
adjacent locations per state vector and previous state-vectors to consider
were all chosen arbitrarily).

Figure 5 demonstrates how the single-system model (MIDST-Single)
fails in the multi-system setting. Instead of making an accurate prediction
for each separate system, it consistently fails across all systems. It has a
significant phase shift when compared to individual systems and over-
estimate the lower and underestimate the higher SST values. In contrast,
MIDST-R generates high-fidelity predictions while maintaining the correct
phase and amplitude for each individual system. Figure S12 shows that
MIDST also outperform all other models, scoring a 25.3% average MASE
reduction over MIDST-Single, and an order-of-magnitude improvement
compared to EDMD and mpEDMD.

Fig. 3 | Different MIDST variants predictions on a previously unseen trajectory.
GT denotes ground-truth; Fresh-start denotes a newly trained MIDST model; Pre-
trained auto-encoder (AE) denotes a fixed pre-trained AE and a newly trained
propagatorK; Pre-trained AE+Dynamics denotes training only theBmatrix in the
propagator. a Predictions are for horizonH = 1 across the entire test set. b Zoom-in
on the right blue box. c Auto-regressive predictions for H = 20 (displaying first 15
points for clarity), zoom-in on the left blue-box. Colors correspond to Lyapunov

time (i.e., 1
λL
, where λL ≈ 0.905646 is the largest Lyapunov exponent of the Lorenz

system). Importantly, note that while a macro view shows no visible differences (a),
by utilizing previously learned dynamics (i.e., dynamics sharing), our model fore-
casts are bothmore accurate forH = 1 (b and Fig. S3), and better encapsulate the true
system dynamics when applied auto-regressively for longer time-horizons (c).
Specifically, c shows that the only model actually obeying the true system dynamics
for more than a single prediction step, is the one utilizing dynamics sharing.
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Discussion
Koopman operator theory and its application with deep learning have led
to considerable improvements in our ability to perform data-driven
modeling of non-linear dynamical systems. However, in many cases,
obtaining the true KO is not possible, and we are left with only finite-
dimensional approximations that may still be useful to describe the
dynamics at least in a neighborhood of the state space. Here we have
shown that these approximations highly depend on the specific state
trajectories based on which they are obtained, regardless of whether they
have originated from the same dynamical systems or not. Furthermore,
the question of how to use an approximation of one system to improve
that of another was also largely unaddressed. We presented a framework
named MIDST, which we have shown is capable of producing improved
data-driven dynamics approximations, whether by considering multiple
trajectories of the same systems, or those of different interrelated systems.
We showed that not only is MIDST superior to existing methods, but
that it is the only method that noticeably benefits from jointly learning
multiple dynamics approximations for either different neighborhoods of
the same systems, or for different systems altogether. Thus, we hope
MIDST can enable better modeling of important real-life, non-linear
dynamical systems.

Methods
The Koopman operator
Koopman theory has gained popularity as a theoretically sound and,
recently, also data-driven method for representing non-linear dynamics in
terms of a linear operator7,11–14,17. This theory posits that for any dynamical
system F there exists a (potentially infinitely-dimensional) linear operator
K, known as the Koopman operator (KO), which completely describesF 17.
More specifically, we consider a discrete-time dynamical system xtþ1 ¼
F ðxtÞ with a real-valued n-dimensional state initialized at x0 2 Rn. The
time propagator F : Rn ! Rn is often referred to as the system’s
“dynamics”. Let the state be observed through a real-valued scalar readout
y =G(xt) with G : Rn ! R. The observable trajectory can therefore be
expressed as yt ¼ GðF tðx0ÞÞ, where the family of flow maps F t : x !
ðF ° :::° F ÞðxÞ applies a t-times composition ofF to the initial state vector.

The idea of Koopman representation is to define a dual dynamical
system in which the roles of x0 and G are switched. The state of the dual
system is the space of observables, Gt : R

n ! Rk and the dynamics are
given by the family of flow maps Kt : G ! G° F

t , with G0 =G. The
generator of the flow, K ¼ K1 : G ! G° F is often referred to as the
Koopman operator. The dual dynamical system is observed through a
linear sampling operator Sx0

: G ! Gðx0Þ 2 R, yielding

yt ¼ GðF tðx0ÞÞ ¼ ðKtG0Þðx0Þ ¼ Gtðx0Þ ¼ Sx0
ðGtÞ. Note that even in

the case of a fully observable primal, the observability of the dual is
limited by the null-space of Sx0

that depends on the primal initial
conditions34.

The Koopman operator admits an eigendecomposition with the
eigenfunctions satisfying λΦ ¼ KΦ ¼ Φ° F . Any finite subset of eigen-
functionsΦ = (Φ1, ...,Φk) spans an invariant subspace in the sense that for
every G∈ sp(Φ), its time propagation KG stays in the subspace. Thus,
Φ : Rn ! Rk and the k × k diagonal matrix Λ = diag(λ1, ..., λk) constitute
a linear representation of the primal dynamical system in the sense that
ΦðF tðxÞÞ ¼ ðKtΦÞðxÞ ¼ ΛtΦðxÞ. Furthermore, for any regular linear
transformation, Ψ(x) =MΦ(x) defined by an invertible k × k matrix
M;ΨðF tðxÞÞ ¼ ðKtMΦÞðxÞ ¼ MΛtΦðxÞ ¼ MΛtM�1ΨðxÞ. If, further-
more, Ψ is injective, we can write xt =Ψ−1(MΛtM−1Ψ(x0)). Ψ can be thus
thought of as anon-linear coordinate transformationglobally linearizing the
primal system.

While for many systems (e.g., chaotic systems with the mixing prop-
erty) such an exact finite-dimensional transformation does not exist,
essentially all Koopman representation-based methods attempt to find an
approximation thereof in the form of a parametric state encoder z0 = ϕθ(x0)
mapping the initial state into some latent representation, a linear propagator
zt =Ktz0 in that representation, and a parametric decoder xt ¼
ψθðztÞ;ψθ ≈ϕ

�1
θ mapping the latent vector back into the original state

space, where, K serves as a reduced real representation of the KO. In such
cases, the approximate relation ψθ° K° ϕθ≈F still holds.

Multi-systems setting
Considermultiple dynamical systems fFmgMm¼1, where for each time t, each
mth system Fm is described through a fully-observable state vector
xmt 2 Rn. For example, let there be a group of M patients, let n be the
number of clinicalmeasurements obtained fromeach patient, at each time t,
such that the dynamical system Fm represent the evolution of the clinical
state of the mth patient. Because all patients share similar anatomy and
physiology, we can expect similar dynamics to determine the clinical
dynamics of each patient.

A straightforward condition for the existence of “shared”dynamics can
be defined as follows:

Definition2Let fF 1; :::;FMg be a collection of systems, all inRn, and
each with a respective Koopman representation fK1; :::;KMg. We say that
the systems have shared dynamics if they share an eigenbasis, that is, there
exists a mapping Φ : Rn ! Rk and a set of k × k diagonal matrices
fΛmgMm¼1 such that ΦðFmðxÞÞ ¼ ðKmΦÞðxÞ ¼ ΛmΦðxÞ for allm’s.

This immediately leads to the following

Fig. 4 | Radar plots for the binary prediction task of a future QTc interval longer than 460 [msec]. a Comparison between MIDST-Single and MIDST-R. b Comparison
between ResNet, J-ULE, J-CK, and MIDST-R. For complete numerical results see Table S1.
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Proposition 1 fF 1; :::;FMg have shared dynamics if and only if they
commute, i.e., for every pair i; j;F i° F j ¼ F j° F i and, correspond-
ingly, KiKj ¼ KjKi.

The proof is trivial (see the MIDST section in the Supplementary
Methods). By allowing the shared non-linear embedding to be a linear
transformation of the eigenspace spanned by Φ, we further allow
the individual linear dynamics to be represented as Km =ABmC as in
Definition 1.

Furthermore, in many cases, we do not even have access to these
unknown underlying rules. Instead, we have state trajectories measured
from each system. However, even when the underlying dynamics are
identical, state trajectories may seem wildly different, due to the different
sampling operator Sx0

which depends on the initial state x0. Yet, in many
cases, we can still reasonably assume that trajectories fromdifferent systems
obey similar dynamical rules. For example, when studying physiological
changes in different patients, analyzing stocks in the samemarket sector, or
modeling similar climate systems in different geographical locations. As
such, we wish to model the specific dynamics of each system directly from

observed state trajectories, while also utilizing information from trajectories
of other similar systems. Our approach is similar in spirit to that of colla-
borative filtering35, which can be thought of as the process of filtering
information among multiple data sources, to enable maximal utilization of
the data contained in each source. And indeed, one can always test the
empirical validity of this assumption by attempting to learn a linear pro-
pagator for FMþ1 based on the observables space learned
for fF 1; . . . ;FMg.

MIDST
In prior works, a finite-dimensional linear representation of the dynamical
system was either derived analytically36,37, learned based on a given, pre-
determined, set of state-to-observable transformations5, optimized for under
specific structural constraints9, or learned directly via unconstrained
optimization10. We also opted for learning such a representation through
unconstrained optimization but in an indirectmanner.Wedecomposed the
linear propagator in the representation space as the product of three k × k
matrices, K =ABC, where we directly optimize A, B,C. This factorization

Fig. 5 | Comparison of forecasting errors by single- vs. multi-system MIDST
models. a Average Prediction error of every state (i.e., specific location for which
SST is monitored), positioned on its appropriate location on the globe. Colors
indicate the absolute error in degrees Celsius. b Predicted SST values vs. ground

truth (GT), plotted across time. For clarity, we only visualize one state trajectory
from each ocean. Predictions are for H = 1. MIDST-Single has a single AE and
linear propagator for all 50 systems, while MIDST-R shares the AE and the A and
C components.
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serves two purposes: firstly, it induces an implicit rank regularization which
enables learning richermodels, as opposed to when using an explicit norm-
based regularization, whenever A,B, and C are optimized through a sto-
chastic gradient descent (SGD) algorithm22. This leads to a model, referred
to asDeepMatrix Factorization (DMF),which cangeneralize better22; and, it
specifies K in a way that directly enables us to tie together the dynamics of
different systems. Note that Arora et al.22 proved convergence to a solution
with minimal nuclear norm under the assumptions that all sub-matrices
(i.e., A,B,C) commute, which we do not enforce, however, it was also
conjectured that it suffices to initialize the matrices to an arbitrary full-rank
matrix22,38 (which we do).

Additionally, even when the DMF model does not converge to the
minimal nuclear norm solution, it still induces rank regularization22. Thus,
even though we may not know a priori what the optimal dimensionality k
for the propagator approximation is, we can set k to be sufficiently large, and
by specifyingK in factorized form,wewill obtain a rank-regularizedsolution
for it. This can be directly observed in Fig. S8, inwhich the approximation of
the KO improves monotonically, as we increase k, up to a k ≈ 10, beyond
which the approximation neither improves nor deteriorates. Of course, in
many cases, including both conservative and dissipative cases, the KO is not
compact and the system does not admit a finite-dimensional linear
representation39. Regardless, practical uses still necessitate finite-
dimensional approximations, and we find that in practice our construc-
tion leads to better results compared to competing methods.

Furthermore, while there are works addressing (under certain
assumptions) the construction of potentially non-compact KO39, data-
driven DL-based methods9,10 perform better, while learning a rank-
regularized approximation of the linear propagator.

For predicting the future state of systemm with horizon h > 1, we can
write14:

xmtþh ¼ ψ Kh
mϕðxmt Þ

� �
: ð4Þ

Note that althoughKh for a linear propagator literallymeans powerh, unless
otherwise specified (such as in Fig. 3), we follow Lusch et al.9, and define h
different propagators, where each Kh

m ¼ AhBh
mC

h advances the observable
functions by h steps, with h denoting an index rather than power.

Residual dynamics. Denoting by zt = ϕ(xt) the state representation at
time t, the directmodeMIDST formulation propagates zt forward in time
by K (or Kh if a longer horizon is sought), and then maps zt+1 =Kzt back
to the state space by xt+1 = ψ(zt+1).

However, we can also write zt+1 =Δzt+1− zt, with Δzt+1 = zt+1− zt
being the one-step temporal difference, and apply the propagator to the
difference, Δzt+1 =KΔzt, leading to xtþ1 ¼ ψ ðKΔþ IÞϕðxtÞ

� �
. Applying

the same reasoning to bigger time delays yields:

xtþ1 ¼ ψ ðK tΔþ IÞϕðx0Þ
� �

: ð5Þ

By comparing Eq. (5) above to the direct mode equation xtþ1 ¼
ψ K tþ1ϕðx0Þ
� �

we can immediately observe the implicit meaning of our
alternative formulation: in the direct mode, a propagator with eigenvalues
bigger than1will quickly diverge,while if all the eigenvalues are smaller than
1, it will converge to a fixed point. In the residual mode, eigenvalues bigger
than 1 will still diverge, however, propagators with spectral radius bounded
by 1 will exhibit stable behavior dominated by the slowmodes ofK for long
time horizons.

One can also see a potential relation between our residual formulation
and prior works approximating the KO using time-delayed Hankel
matrices6,15. A Hankel matrix is a square matrix, in which each ascending
skew-diagonal from left to right is constant. Prior works approximated the
KO using a Hankel matrix of time-delayed states, as opposed to directly
from the states themselves. Similarly, by applying our learned propagator in
the residual mode, we learn a KO for the time-delayed observables.

Arrhythmogenic treatments. Data was obtained from the publicly
available PhysioNet database40,41. The database consists of 22 ECG
recordings from healthy subjects partaking in a randomized, double-
blind, 5-period crossover clinical trial. The purpose of the trial was to
compare the effects of four known QT prolonging drugs, versus placebo,
on both electrophysiological and clinical parameters (for details see the
“Data” subsection in the Supplementary Methods).

Sea surface temperature. SST measurements were obtained from the
publicly available National Oceanic and Atmospheric Administration
(NOAA) database33. The data used includes weekly mean temperature,
on a one-degree grid, of the sea surface as measured by satellites, from
31/12/1989 to 17/04/2022. Weeks are defined to be centered on Wed-
nesday (for details see the “Data” subsection in the Supplementary
Methods).

Statistical analysis
The ES goodness-of-fit test was computed using SciPy42. Evaluation of the
statistical metrics reported in the anti-arrhythmogenic treatment experi-
ments were computed using Scikit-Learn43. Evaluation of the MASE scores
was performed using custom Python implementation.

Data availability
Strange attractors: in order to generate trajectories for the Lorenz attractors
we used the equations originally discovered by Lorenz1. For the experiment
simulating learning of entirely different systems, we also generated trajec-
tories from the Sprott44, andWang-Sun45 chaotic systems (for details see the
“Data” subsection in the Supplementary Methods). Arrhythmogenic
treatments: the data for the arrhythmogenic treatments experiments was
taken from the following public database in Physionet: “ECG Effects of
Ranolazine, Dofetilide, Verapamil, and Quinidine”40,41, which is available at
the following link: https://physionet.org/content/ecgrdvq/1.0.0/ (for details
see the “Data” subsection in the Supplementary Methods). Sea surface
temperature: the data for the sst experiments was taken from the public
Optimum Interpolation SST V2 dataset from the National Oceanic and
Atmospheric Administration33, which is available at the following link:
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html (for details see
the “Data” subsection in the Supplementary Methods).

Code availability
Complete code implementation and partial datasets are publicly available at
the following github repository: https://github.com/YonatanElul/midst.git
(see additional implementation details in the “Model architecture, training
& implementation” subsection in the Supplementary Methods).
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