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Effective engineering of a ketoreductase
for the biocatalytic synthesis of an
ipatasertib precursor
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Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting
from advances in molecular biology and bioinformatics, semi-rational approaches can effectively
accelerate enzymeengineering campaigns.Here,wepresent theoptimization of a ketoreductase from
Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase
B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we
created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved
robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of
algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function
data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size.
The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥

98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L−1 ketone after 30 h.
Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction
outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on
reduction activity towards the target ketone.

Optically pure alcohols are key chiral intermediates in the synthesis of active
pharmaceutical ingredients (APIs)1. The valuable building blocks are acces-
sible by a host of synthetic methods, including asymmetric hydrogenation,
transfer hydrogenation of ketones and (dynamic) kinetic resolution of the
alcohol racemates2–10. In an industrial context, synthetic strategies, such as the
asymmetric reduction of carbonyl compounds, are preferred as they can
valorize all starting material satisfying the principles of green chemistry. In
particular, the biocatalytic synthesis of optically pure alcohols by ketor-
eductases (KREDs) has gained considerable attention in the last decade:
Ketoreductases can regio- and stereoselectivity transfer a hydride from
NAD(P)H to a carbonyl group of the substrate molecule while operating
under mild reaction conditions and in the absence of possibly contaminating
metal-based catalysts. Notably, recycling of the cofactor on industrial scale

has been well established using isopropanol (iPrOH) as cheap hydride
donor11,12. In addition, the enzymes are produced from renewable resources
and are readily biodegradable enabling sustainable industrial processes.

Unlike other families of alcohol dehydrogenases or reductases, KREDs
are monomeric proteins that bind the cofactor without a Rossmann-fold
motif13. Harnessing their exquisite selectivity and high evolvability, KREDs
have been applied in the asymmetric reduction of a broad range of ketones
and aldehydes to relevant optically pure secondary alcohols11,14. In drug
development, they have enabled access to chiral synthons of APIs such as
cholesterol-lowering atorvastatin15,16, anti-asthmatic montelukast17, anti-
viral simeprevir18,19, and the anti-cancer ipatasertib20,21.

Ipatasertib (3) is a potent Akt (protein kinase B) inhibitor API
developed for the treatment of metastatic castration-resistant prostate
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cancer and triple-negative metastatic breast cancer22–24. The
complex molecule is built up in ten synthetic steps and contains three
stereocenters that are created by highly selective metal and enzyme
catalysis20,21. One of these chiral centers is currently introduced by a com-
mercial KRED which is capable of asymmetrically reducing the prochiral
ketone 1a to the desired (R,R)-trans alcohol intermediate 2a (Fig. 1 and
Supplementary Fig. 1). With the aim to illustrate the power of algorithm-
aided enzyme engineering in combination with automation for the efficient
development of high-performance enzymes, we focused on this crucial
reaction step.

As the identification of a robust enzyme starting scaffold is a key
prerequisite for the development of a biocatalyst to be used at industrial
scale25–27, we opted to explore a comprehensive KRED toolbox available in
our laboratories28. In this screen, we selected NADP+-dependent aldehyde
reductase II from the red yeast Sporidiobolus salmonicolor (UniProt ID:
Q9UUN9) for further engineering, herein referred to as Ssal-KRED, owing
to its absolute stereopreference for the desired alcohol product. Ssal-KRED
was first isolated and characterized as a selective β-ketoester reductase by
Shimizu et al.29,30 and posterior studies on Ssal-KRED and its variants have
providedmeaningful structural and function data using various alkyl or aryl
ketones31–35.

Building on the initial insights into Ssal-KRED’s structure-function
relationship for the literature-described but much less complex substrates,
we aimed to evolve Ssal-KRED for the industrial asymmetric reduction of 1a
in which we required the biocatalyst to efficiently perform at high substrate
loadings (100 g l−1) while operating with an iPrOH-based cofactor recycling
system using elevated iPrOH concentrations to drive the reaction equili-
brium toward the target product11. With these considerations in mind, we
embarked on an enzyme engineering campaign targeting increased activity
and robustness, understood as enhanced stability, preserved trans-diaster-
eoselectivity as well as iPrOH tolerance.

Results and discussion
Initial KRED screening
To identify a suitable KRED for reduction of 1a, we profited from our
previously reported in-house KRED collection consisting of 51 active and
soluble enzymes of plant, fungal or bacterial origin28. To further increase
diversity, this panelwas supplementedwith anadditional set of 12 (putative)
fungal and bacterial KRED genes, sourced, amongst others, from literature
and data mining of the NCBI database (Supplementary Table 1). Screening
of the supplemented enzyme collection toward conversion of 1a, while
utilizing a glucose/glucose dehydrogenase-system (Glc/GDH) for cofactor
recycling, led to the identification of a KRED from Sporidiobolus
salmonicolor36, subsequently named Ssal-KRED, as the best candidate. Ssal-
KRED exhibited promising conversion values (92%) and exquisite dia-
stereoselectivity (99% de (trans)) at 3 g l−1 substrate (Fig. 2 and Supple-
mentary Table 1). Intrigued by these biocatalysis results, we selected Ssal-
KREDas the startingpoint for further engineeringwith the goal of obtaining
an industrially viable catalyst to produce the valuable drug intermediate 2a.

Identification of “hot spots” through mutational scanning and
enzyme modeling
As a first step in the Ssal-KRED engineering campaign (Fig. 3), we set out
to obtain anoverviewof aminoacidpositionswhichwould act as “hot spots”
for the transformation of 1a. For this purpose, single-site saturation
mutagenesis (SSM) libraries on every second amino acid position (171
sites) were generated constituting a mutational scanning library (Library 1,
L1). Approximately 7700 transformants (76% library coverage) were
screened using a UV kinetic assay which followed depletion of 1a at
340 nm in the presence of KRED-containing E. coli lysate, NADP+ and
iPrOH (Supplementary Figs. 2 and 3). Calculated using initial rates, fold-
improvement over the parent (FIOP) or the wild type (FIOWT) were
used as performance indicators of variants. Sequencing of L1 variants
with improved performance revealed 27 positions in the substrate
environment, second sphere and protein surface as having a positive
impact on reductase performance (Supplementary Table 2) and mapped
out possible key positions for further engineering. To further guide hot
spot selection positions in the direct substrate environment, we modeled
1a in the available crystal structure of NADPH-bound Ssal-KRED
(PDB 1Y1P). Informed by the combination of the mutational scanning
and in silico docking data, we selected six positions within 4 Å from 1a
located either in the substrate entrance tunnel (F97, A238, L241) or in
the substrate cavity (L174, M242, Q245) (Fig. 4a, b) for full randomization
in individual SSM libraries (L2). Inclusion of positions M242 and Q245
was additionally supported by literature evidence32–34. Sequencing of
L2 verified the presence of all 114 possible variants confirming the
exhaustiveness of our subsequent activity analysis. The obtained sequence-
activity data highlighted that while position 97 exhibited little flexibility in
its substitution pattern with tryptophan being the only beneficial
mutation (FIOWT= 1.4), the other five sites could be replaced by 4 to 12

Fig. 1 | KRED-catalyzed reduction step in the chemo-enzymatic synthesis of
ipatasertib. The prochiral ketone 1a is stereoselectively reduced to the alcohol 2a,
which is in turn utilized as a precursor of ipatasertib (3).
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Fig. 2 | Screening of an in-house collection of 63KREDwild-type enzymes toward
1a reduction. Ketone 1a (c = 3 g l−1 equivalent to 10 mM) was reduced in the pre-
sence of a glucose/glucose dehydrogenase system for NAD(P)H regeneration.
KREDs are ordered based on their phylogenetic relationship (iTOL v5, EMBL)65.

Concentrations of target product 2a and its diastereomer 2b ((R,S)-cis alcohol) are
indicated. KRED 54 (Ssal-KRED) yielded the highest conversion and trans-dia-
stereoselectivity within the collection. EV empty vector (negative control). Source
data for this figure is available (Supplementary Data 2).

https://doi.org/10.1038/s42004-024-01130-5 Article

Communications Chemistry |            (2024) 7:46 2



different amino acids and still achieve wild-type or even improved
reductase performance (Supplementary Table 3). Overall, single-site var-
iantsM242FandQ245Tperformedbest in theUV-assay exhibitingFIOWT
of 2.6 and 3.6, respectively. However, variant Q245T lost absolute trans
preference (99.7% de) (Supplementary Fig. 4a), evidencing the role of this
position in diastereoselectivity, as previously described with other
substrates33,34.

Machine learning-aided enzyme engineering
With the goal to explore large parts of sequence space in silico and equipped
with knowledge about the malleability of key residues in the active site, we
set out todesign combinatorial librarieswhichwouldallow to generate a rich
data set consisting of sequence and activity information for machine
learning (ML) predictions. Considering that tryptophan was the only
beneficial mutation at position F97, we used the single variant F97W as the
parental enzyme and strategically grouped the five selected residues into
four 3-site (L3–L6) and one 5-site (L7) combinatorial saturation muta-
genesis (CSM) libraries. Due to time- and resource restriction, we opted to
limit our efforts to four out of all possible 3-site combinatorial libraries. The
library designwas guided by geometrical considerations leading us to group
amino acid positions most likely to interact (Fig. 4b). To limit library
diversity to the theoretical number of variants (e.g., 205 in the 5-site com-
binatorial library), we opted for an “one codon encoding one amino acid”
gene library ordered from Twist Biosciences. The fragments were cloned
into the pET22b(+) vector and transformed into E. coli BL21 (DE3) cells in
house. Using Sanger sequencing, we confirmed 2133 and 762 unique on-
target variants for the 3-site libraries and the 5-site library, respectively,
corresponding to a library coverage ranging from 5.5–8.5% for libraries
L3–L6 and 0.024% for library L7. Within this design space, library L4
interrogating residues L241, M242 and Q245 yielded best-performing
variants (Supplementary Tables 4 and 5). The best L4 variant M1

(F97W_L241M_M242W_Q245S) exhibiteda FIOWTof 8while preserving
absolute trans-diastereoselectivity when assayed under optimized condi-
tions (Fig. 5; Supplementary Fig. 4b and Supplementary Table 6).

Going forward, we set out to explore the remaining protein landscape
in silico using Gaussian processes. In analogy to a previous successful
application of machine-learning for enzyme design in our laboratory37, we
employed a strategy in which we represented amino acids by their different
physicochemical and biochemical characteristics, derived from the AAin-
dex database38,39 (see “Methods” section). Each enzyme sequence was then
represented by a feature vector which was defined by joining the vector
representations of its individual amino acids at the selected library sites, e.g.,
in case of the 5-site combinatorial library at L174X, A238X, L241X,M242X
and Q245X.

It is important to note that within the budding field of algorithm-aided
enzyme engineering, only few examples exist which showcase the successful
application ofmachine learning to improve enzyme activity, the unarguably
most complex enzymatic function37,40–44. In addition, the extent of sampling
to obtain predictions for activity or other protein characteristics varies
strongly37. Yet, toeffectively reduce thephysical screeningburden in enzyme
engineering campaigns, it is essential to have guidelines that define the
degree to which a variant library needs to be experimentally screened. To
address this gap in knowledge—at least in part—wedecided to carry out our
machine-learning based predictions in two stages. First, we used the
sequence-function data of the best-performing library L4 (651 data points;
8% coverage) as the basis to make Gaussian process-based ML predictions.
Notably, quality control of L4 had shown that in this library all 20 amino
acids were present at each randomized position leading to a good dis-
tribution of screened variants over the entire protein landscape (Supple-
mentary Fig. 5). Evaluating the results of the ML-analysis, we constructed
library L9 consisting of the best 24ML-predicted variants in addition to six
randomly chosen variants with a lower ranking for exploratory purposes
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Fig. 3 | Engineering of Ssal-KRED for efficient reduction of 1a. aBindingmodel of
1a (blue) in the active pocket of NADPH-bound (yellow) Ssal-KRED (PDB ID:
1Y1P). Catalytic residues are indicated in purple. Targeted positions (23) are color-
coded in accordance with the library they were investigated in (for reference, see c).
Amino acid positions covered in L1 (mutational scanning library) are not depicted.
bOverview of the relative activity of the Ssal-KRED hit variantsM1–M6 compared
to the wild-type enzyme. The fold-improvement over the wild type (FIOWT) was

determined using an UV assay (Supplementary Fig. 3). c Libraries (L1–L13) on
protein surface, substrate entrance tunnel, substrate cavity and cofactor environ-
ment positions were built using single-site saturation mutagenesis (SSM), combi-
natorial saturation mutagenesis (CSM) or focused combinatorial (FC) mutagenesis,
integrating hit combinations and combinatorial libraries. L10 is a filtered ML-
library, which was designed by combining knowledge from previous rounds of
engineering with ML predictions.
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(Supplementary Table 7, https://github.com/ccbiozhaw/Ssal-KRED_
evolution). Disappointingly, the best variants of the ML-based library L9
displayed FIOWTvalues in the range of known variantM1 (Supplementary
Table 8) indicating that either our experimental screening had already
serendipitously identified the best-performing variant within the design
space, or, that the supplied data set had not been sufficient for our
ML-algorithm to identify more successful enzyme solutions.

To explore a situation inwhich it would be highly unlikely that the best
sequence-function solution had already been measured experimentally, we
opted to explore the quality of predictions when the ML-algorithm was
supplied with a data set that covered the design space less exhaustively. For
this purpose, we used the sequence-activity data generated in the frame of
three 3-site combinatorial librarieswith anR2 score >0.6 (L3, L4 and L6), the
five-site library L7, as well as the data from library L9 to train the ML
algorithm again (2453 datapoints; 0.08% library coverage, https://github.
com/ccbiozhaw/Ssal-KRED_evolution) (Supplementary Fig. 6). As a par-
ental scaffold for the second ML library, we used variant M2
(F97W_L241M_M242W_Q245S_L316M_T342M), in which the best
activity-engineered variantM1had been combinedwith themost beneficial
surface residue mutations identified via the mutational scanning library L1
(Library L8, Supplementary Tables 9 and 10). Variant M2 exhibited a
FIOWT of 9 (Supplementary Table 11) as well as a thermal and organic
solvent stability comparable to that of the wild type (Supplementary
Table 12).We opted to follow a different approach than in our previousML
evolution round: Instead of ordering distinct enzyme sequences, we con-
structed a ML-filtered library L10 consisting of 75 variants, in which sub-
strate binding sites L174, A238 and L241 were modulated to a small set of
predicted amino acids while M242 and Q245 were fixed to tryptophan and
serine, respectively (Fig. 4d, Supplementary Table 13 and Supplementary
Fig. 7). For this “filtered” library, we opted to supplement the machine
learning predictions with knowledge from previous engineering rounds,
expanding or reducing the employed amino acid alphabet at each of the
modulated positions rationally (Supplementary Table 13). As anticipated,
the construction of this library allowed us to effectively reduce sequence
space. Compared to a library combining all beneficial mutations identified
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in L2 (theoretical library size of 29,400 variants; Fig. 4c) or a fully rando-
mized 5-site library (theoretical library size of 205 variants), we could
decrease the screening burden by a factor of at least 392 or even 4.2*104,
respectively. It should also be noted that improved variants stemming from
library L10 contained amino acid substitutions which had not been bene-
ficial in the context of the wild-type enzyme (Supplementary Table 3), for
example L174M, A238L, and L241S. As before, library completeness was
confirmed via Sanger sequencing before experimental analysis. Screening of
library L10 led to the identification of variant M3
(F97W_A238K_L241M_M242W_Q245S_L316M_T342M), which dis-
played a FIOWT of 22, corresponding to a 2.5-fold improvement over
parent M2, and preserved absolute trans-diastereoselectivity (Fig. 5). Con-
comitant substitutions A238G/R/L_L241M and A238K_L241Q/S also
proved beneficial as variants carrying these mutations showed a FIOWT of
12–17 (Supplementary Table 14).

Clearly, the effectiveness of the approach was influenced by the deci-
sion to construct an enzyme library, which was informed by machine
learning predictions and knowledge about previous successful variants,
instead of solely testing a ranked set of predicted sequences. In this context,
potential uncertainties of the model were compensated by maximizing the
probability via greedy exploitation of promising predicted mutations. An
alternative approach to address potential bias introduced by limited and
imbalanced training datasets would have been to follow an iterative
approach of balancing exploration and exploitation through Bayesian
learning techniques45.

Finally, to assess the quality of L10, we compared the ratio between
positive (FIOWT ≥ 1) and negative variants (FIOWT< 1).While library L2
to L7 predominantly displayed negative variants (ranging from 66% to
97%), thefilteredML libraryL10 enabled the enrichmentofpositive variants
(76%; Supplementary Fig. 8). As we provided all collected data (e.g.,
sequence-function data of positive and negative variants) to train the
Gaussian process and subsequently filtered with prior knowledge, it is
unclear if the increase in the fraction of hit enzymes was achieved by
learning to build on the positive combinations or by learning to avoid the
unfavorable combinations, or both. In this sense, we recommend that all

data points collected under comparable experimental conditions, including
data connected to negative variants, are provided to improve on the pre-
dictive ability of machine learning models.

Iterative site mutagenesis
Besides high turnover rates, industrial biocatalysts must perform efficiently
also at increased substrate loads46. Cognizant of the fact that commercial
production of 2a was targeted to take place at a substrate load of 100 g l−1

and at a defined iPrOH concentration of 8% (v/v), we evaluated the effect of
time and temperature on conversion levels achieved by M1, M2 and M3
(Supplementary Fig. 9 and Supplementary Data 3). Using 0.2ml-biocata-
lytic reactions at 100 g l−1 substrate, we could show that variantM3was able
to reach apromising70%substrate conversion at 28 °Cafter 24 h.To further
increase M3’s catalytic prowess we decided to employ iterative site
mutagenesis47 on several residues in or close to the active site (Fig. 6).

As a first step to increase the enzyme’s reduction activity toward 1a
further,weprobedpositions243and246,flanking the critical S245 residue,by
constructing a 2-site combinatorial site mutagenesis library (L11). Screening
this library revealed variant M4 (F97W_A238K_L241M_M242W_Q245-
S_Y246G_L316M_T342M) as the most successful biocatalyst with an
apparent FIOWT of 24 (Fig. 5 and Supplementary Table 15). Importantly,
this variant reached 78% conversion to 2a after 24 h in reactions at 100 g l−1

substrate (Supplementary Fig. 10 and Supplementary Data 4), leading us to
continue our evolution campaign along this lineage.

Interrogation of an additional eight substrate- orNADP(H)-binding
residues (P206, N207, Y208, T209, S222, T223, S224,W226) in the frame
of SSM libraries (L12) using variant M4 as parent showed that this
sequence space did not harbor many improved enzyme solutions for
reduction of 1a (Supplementary Table 16). While position 207, 209, 222
and 223 revealed neutral changes at best, any amino acid substitution on
positions 206 and 208 exhibited a deleterious effect on reductase per-
formance as evidenced by high number of inactive or unimproved
(FIOP ≤ 1) variants. Only exploring residue S224 led to an improved
reductase, named M5 (F97W_S224A_A238K_L241M_M242W_Q245-
S_Y246G_L316M_T342M), which exhibited a FIOWT of 29 (Fig. 5).
This variant also displayed higher tolerance to heat treatment than any
previously activity-engineered variant (Supplementary Table 17).

To conclude the evolution campaign, we elected to interrogate hot
spots T134 and V135, adjacent to the key catalytic residue S133. Our
selection was guided by a previous study, in which simultaneous ran-
domization of these residues in enzyme Ssal-KRED had led to variant
with a 4.6-fold improved turnover rate compared to the wild type for the
reduction of a disubstituted cyclic diketone35. When screening the final
2-site CSM library (L13) in context of the M5 scaffold, we identified
variant M6 (F97W_T134V_S224A_A238K_L241M_M242W_Q245-
S_Y246G_L316M_T342M) displaying a FIOWT of 58 over the wild type
(Fig. 5 and Supplementary Table 18) allowing us to meet the activity-
improvement goal of the engineering study.

Preparative biocatalytic reactions
Conclusively, the performance of the hit variants was assessed in 1ml-scale
biocatalytic reactions at 100 g l−1 substrate (100mgof1a)with lyophilizedE.
coli cell lysates harboring the appropriate biocatalysts at 30 °C (Supple-
mentary Fig. 11 and SupplementaryData 5).Gratifyingly, we found that our
most active variantM6 performed well in the final formulation and under
the industrial conditions and allowed us to synthesize 2a with 96% con-
version and >99.5% de (trans) in 24 h without the need to remove acetone.
While all variants followed the activity trends obtained in the kinetic
measurements (vide infra), it should be noted thatM5 performed less well
than its parent enzymeM4 when formulated as a lyophilized cell lysate.

Based on the evaluation at 1ml scale, variant M6 was selected for
further performance analysis and upscaling to 100ml-scale, corresponding
to 100 g l−1 of 1a in the biocatalytic reactions. To our delight, the engineered
biocatalyst could convert 10 g of 1a with ≥98% conversion in 30 h, gen-
erating 2awith 99.7% de (R,R-trans) when applying the iPrOH system and
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N207
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S224
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Y208Q245S

Fig. 6 | Residues targeted in the iterative site mutagenesis approach. Homology
model of M3 (F97W_A238K_L241M_M242W_Q245S_L316M_T342M) with
bound 1a (blue) and cofactor (yellow). Catalytic residues are depicted in purple.
Mutated residues in the active site and tunnel entrance are displayed in red, surface
mutations L316M and T342M are not shown. Positions in the substrate or cofactor
environments targeted for the iterative site mutagenesis libraries are colored in
accordance with the libraries they are located in: 2-site CSM library L11 (orange),
SSM libraries L12 (marine blue) and 2-site CSM library L13 (green).
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in a substrate-to-enzyme (s/e) ratio of 5 (Table 1; Supplementary Figs. 12–15
and Supplementary Data 1).When using a Glc/GDH cofactor regeneration
system, it was additionally possible to reduce the amount of enzyme by 10-
fold (s/e 50)while obtaining similar results in terms of conversion and target
product purity (Table 1 and Supplementary Figs. 16 and 17). Overall, both
settings, e.g., the use of Glc/GDH or iPrOH for cofactor regeneration,
offered technical feasible and commercially viable applicability.

Enzyme kinetics
To gain further insights into the achieved activity improvements,
we opted to purify key enzyme variants along the evolution trajector-
y (Fig. 5 and Supplementary Fig. 18) and measure the apparent
Michaelis-Menten parameters when iPrOH was used as the sacrificial
cofactor. In a first step, we compared the UV-assay designed to record
the consumption of NADPH with a HPLC-method quantifying
product formation by measuring the wild-type enzyme with both
approaches (UV-assay: kcat = 0.49 ± 0.02min−1; KM = 11.9 ± 1.1 μM;
HPLC-assay kcat = 0.49 ± 0.02min−1; KM = 11.5 ± 0.5 μM; Supplementary
Fig. 19 and Supplementary Data 6). Based on the good agreement of the
obtained Michaelis-Menten parameters, we decided to use the UV
method for the analysis of further Ssal-KRED variants due to its intrinsic
ease-of-use.

For all enzymes, the Michaelis-Menten analyses showed that the kcat
values of the engineered reductases were steadily increasing along the
evolutionary trajectory and were directly in line with the FIOWT values
generated by applying clarified cell lysates in the UV assay (Table 2). This

trend evidenced that the specific enzyme activitywas improved through our
engineering campaign rather than enzyme expression. The most active
variant M6 to emerge after 13 individual libraries exhibited a 64-fold
improved apparent kcat when compared to the wild-type enzyme (M6
kcat = 31.5 ± 0.08min−1 vs. wild type kcat = 0.487 ± 0.018min−1) while the
apparentKMwas found to be ~12-fold higher than for thewild-type enzyme
(M6 KM= 143.5 ± 5.5 μM vs. wild type KM= 11.9 ± 1.1 μM).

Given the importance of high turnover numbers for industrial bioca-
talysis, where rapid conversion of substrate to product is required and the
substrate load is typically very high, this is a particularly desirable evolution
outcome. In this context it is noteworthy that for variant M4 substrate
saturation could not be reached in the kinetic experiments indicating an
elevated KM compared to all other Ssal-KRED variants (Supplementary
Fig. 19). However, we found that the estimated kcat was particularly high
(45.8 ± 2.4 min−1; 94-fold improvement over wild type). In line with these
results, variantM4was also found to performwell when tested in 1ml-scale
reactions at 100 g l−1 substrate (Supplementary Fig. 10).

Enzymemodeling
To map the observed improved protein characteristics to structure, we
modeled key hit variants M1, M3 and M6. In a first step, we investigated
mutations common to all three variants (F97W, L241M, M242W and
Q245S) and analyzed their structural effects compared to the wild-type
enzyme. Interestingly, mutations F97W and M242W seem to generate a
hydrophobic cleft around the ring of the N-Boc piperazine moiety of 1a.
Moreover, togetherwithW226 locatedat the topof the substrate cavity, they
appear to form a unique aromatic cage-like binding site (Fig. 7a). Although
substrate affinity decreased in these variants in comparison with the wild
type (Table 2), this cagemight enable amore favorable placement of 1awith
respect to catalytic residues. Mutation L241M could contribute in a similar
way by influencing adjacentM242W.KeymutationQ245S,which lies at the
back of the binding pocket and in proximity to themethyl substituent of the
cyclopentylmoiety of1a—opposite to the targeted carbonyl group—is likely
necessary to enlarge the binding pocket (Fig. 7b) improving placement of 1a
for catalysis. In support of this theory, we found that incorporation of the
slightly larger threonine at position 245 seems to change positioning of the
target carbonyl group as evidenced by a drop in selectivity (variant Q245T,
Supplementary Table 8). Moreover, mutation Q245T caused a decreased
reaction rate in the context of more evolved variants (e.g., in combination
with F97W_L241Q/A_M242W, a FIOWT of 7–8 was obtained in the
presence of Q245S while the corresponding Q245T variants displayed a
lower FIOWT of 3–4, Supplementary Table 8).

The final variant M6 harbors the additional mutation T134V, which
lies in proximity to catalytic residue S133. In previous studies amino acid
T134 has been described to anchor functional groups in other small
molecules, e.g., the non-targeted carbonyl oxygen atom in the cyclic dike-
tone camphorquinone or the chlorine atom in ethyl 4-chloroacetoacetate31.
In case of substrate 1a, we observed that substituting T134 with a hydro-
phobic residue was beneficial presumably because 1a lacks other functional
groups near the target carbonyl group. Furthermore, we observed that
because of the T134Vmutation polar interactions between the side chain of
position 134 and NADPH-binding residues P206 and N207 were lost. The
rearrangement of polar interactions in the active sitemight allow for amore
efficient interaction of residues P206 and N207 with the cofactor NADPH
(Fig. 7c) in this way positively affecting activity48.

Along the evolutionary trajectory, secondary structure features chan-
ged particularly due to mutations located in the substrate entrance tunnel,
namely F97W (loop region 91–101), A238K (helix α8) and L241M (loop
region 241–245). A238K does not seem to interact with neighboring resi-
dues or the positioned substrate, yet it has a large effect on turnover. Given
the literature-described properties of lysine, it might act as a “tunnel gate”
(Fig. 7d), involving a side chain conformational change and in this way
modulating access of the substrate or the solvent into the tunnel49.Mutation
Y246G, present only in M6, appears to cause β-strand 3 slightly move
toward the substrate, thus potentially influencing the rotamer orientation of

Table 1 | Comparison of KRED-mediated syntheses of 2a

Parameter Ssal-KRED (WT) Ssal-KRED_M6

s/ea 5 5 50

KREDb 20mg 2 g 0.2 g

CRSc iPrOH iPrOH Glc/GDH

Substrate 1a 100mg 10 g 10 g

Conversiond 26%e 99% >99%

de (trans) >99.5% 99.7% 99.9%

HPLC-purityf n.d. 99.7% 99.5%

Reaction time 24 h 30 h 27 h

Temperature 23 °C 23 °C 23 °C

n.d. not determined, WT wild-type enzyme.
aSubstrate-to-enzyme ratio.
bAs lyophilized enzyme lysate.
cCofactor recycling system.
dDetermined by achiral HPLC.
eReaction stalled.
fDetermined by chiral HPLC.

Table 2 | Kinetic characterization of selected Ssal-KRED var-
iants using ketone 1a for the synthesis of 2a

Ssal-KRED
variant

app. KM, [µM] app.
kcat, [min−1]

app. kcat/KM,
[min−1 mM−1]

rel. kcat

WT 11.9 ± 1.1 0.49 ± 0.02 41 1

M1 162.8 ± 7.8 5.8 ± 0.1 35.5 12

M2 175.2 ± 9.9 6.2 ± 0.2 35.6 13

M3 299.7 ± 7.9 15.3 ± 0.4 51.2 31

M4a 1668 ± 103 45.8 ± 2.4 27.5 94

M5 471.7 ± 34.6 21.3 ± 1.0 45.2 43

M6 143.5 ± 5.5 31.5 ± 0.8 219.7 64

Source data for this table is available (Supplementary Data 6).
WT wild-type enzyme.
aSubstrate saturation was not reached.
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Q245S or its proximity to the substrate (Fig. 7b). Looking forward, more
detailed information on the structural features governing catalysis could be
obtained through X-ray crystallography studies of the cofactor- and
substrate-bound enzyme variants.

Conclusion
In our enzyme evolution campaign, we found that an engineering strategy
consisting of enzyme hot spot identification through mutational scanning
libraries followed by the set-up of structure-guided libraries, usable to train
machine learning algorithms, allowed us to effectively develop a high-per-
formance, industrial biocatalyst.Within six evolution roundswe created a10-
amino acid substituted variant, which exhibited a 64-fold higher kcat and
improved robustness under process conditions. While algorithm-based
approaches have been shown several times to successfully identify improved
enzyme variants in unexplored parts of sequence space45,50, other
examples report that the machine learning effect could be traced back to
simple linear additivity arising from combining positive individual
mutations42,51. When analyzing the composition of our best variant M6
(F97W_T134V_S224A_A238K_L241M_M242W_Q245S_Y246G_L316M
_T342M) in this light, ourmachine learning algorithm seems—at least atfirst
glance—to also simply have helped us find linearly additive mutations.
However, “simply” combining all identified beneficial andwild-type residues
from L2 (L174: 6 residues; A238: 14 residues; L241: 10 residues; M242: 5
residues; Q245: 7 residues) in a combinatorial fashion would have led to a
library size of 29,400, which, when considering the necessary oversampling
and inclusion of controls, would have required us to screen close to a thou-
sand 96-well plates. Filtering machine learning predictions with data from
previous engineering rounds supported the construction of a library

consisting of only 75 variants, which reduced the screening burden con-
siderably. Notably, the library also harbored improved enzyme solutions
containing for example substitutionA238G orA238L, whichwere neutral or
deleterious mutations within the context of the wild-type enzyme (L2) and
would thus have been difficult to find. Nevertheless, it should be noted that
the benefits of reducing the library size comes at the cost of previously having
to screen and sequence variants for the machine learning algorithm (in our
case 2453 datapoints). Such an endeavor might thus bemost profitable if the
sequence-function pairs generated to train the algorithms stem from libraries
which are substrate “naïve”, e.g., have been constructed in the frame of an
early enzymeengineering round. In thisway, the expensive sequencedata can
be reused for future (machine-learning)-aided enzyme engineering cam-
paigns dedicated to other substrates.

Next toGaussian processes,whichwere appliedhere, various otherML
algorithms can be employed to predict protein characteristics, such as
solubility, stability, specificity, or activity. These methodologies, including
partial least-squares regression, random forest, decision trees, support
vector machines, K-nearest neighbors, and neural networks, have been
discussed in comprehensive reviews52–57. Overall, the machine-learning
based evolution round was one puzzle piece in a comprehensive enzyme
optimization campaign: We further improved the enzyme activity and
stability by targeting experimentally determined and literature-
derived31,33–35,58 amino acid positions by applying iterative site saturation
mutagenesis47. Overall, key mutations for the efficient reduction of 1a as
elucidated by kinetic studies, and modeling included active site residues
T134V, A238K, M242W and Q245S while changes on the enzyme surface
and in the substrate access tunnel more likely contribute to stability of the
enzyme under process conditions.
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Fig. 7 | Modeling of key variants M1, M3, andM6.Homology models of wild-type
Ssal-KRED (light gray) and variantsM1 (smudge),M3 (wheat) andM6 (slate) with
binding modes of 1a. The cofactor is shown in pale yellow, sand, yellow and orange,
respectively. Catalytic residues are indicated in red letters. a Superimposed WT and
M1 displaying the aromatic cage-like binding site formed by F97W, M242W and
W226 in the latter (only one variant is shown for clarity). b Close-up view on key
positions 241, 242 and 245 in the WT,M3 andM6. Coordination of 1a by catalytic

S133 and Y177 is indicated in blue and red dashes for the WT andM6, respectively.
c Polar interactions of key position 134 with other residues in theWT (blue dashes)
and M6 (red dashes). Interactions with P206 and N207 are lost in variant M6.
d Secondary structure differences on positions 97, 238 and 241 betweenWT and all
evolved variants. Mutation A238K in M3 and M6 might act as a “tunnel gate”
residue.
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At the end of the evolution campaign for Ssal-KRED covering 180
amino acid positions in 13 libraries (Supplementary Tables 19 and 20), we
used our best engineered KRED in preparative scale reactions showcasing a
technical feasible and commercially viable process of ipatasertib inter-
mediate 2a. The developed biocatalytic process is characterized by
remarkably high product yield and purity level.

Methods
General information
All chemicals, reagents and kits were purchased from commercial suppliers
(Supplementary Method 1.1). Substrate 1a as well as products 2a and 2b
were synthesized internally (SupplementaryMethod 1.2). For NMR spectra
see SupplementaryData 1. NMR spectra were recorded on a Bruker Avance
III 600MHz spectrometer using TopSpin (4.x) as software. ACD/NMR
Workbook 2019 was utilized for the analysis of NMR data.

KRED cloning and expression
Genes from the in-house KREDcollection as well as Ssal-KRED libraries L1
and L7were provided byTwist Bioscience (San Francisco, CA,USA).Other
libraries were constructed by PCR amplification using ratio-tuned NDT/
VHG/TGG primers (22c-trick technique)59, NNK primers or other specific
(non-degenerate or manually-mixed degenerate) mutagenic primers on
defined variant templates, followed by overlap extension PCR with general
flanking primers for In-Fusion cloning or T5-exonuclease-dependent
assembly (TEDA)60. Library L8 and hit combinations were generated using
the MEGAWHOP PCR technique61 with mutagenic primers on the wild
typeordefinedvariants.Ssal-KREDwild-type andhit variantsM1–M6were
subcloned into pET28b(+) for the insertion of an N-terminal 6xHis-tag.
pET22b(+) and E. coli BL21(DE3) were used for all libraries as vector and
expression strain, respectively. See Supplementary Method 1.3 for full
details. All oligonucleotide sequences used for cloning are provided in
Supplementary Table 21.

KRED expression and lysate preparation
Conditions for cultivation, KRED expression, cell lysis, lysate lyophilization
and protein purification are described in Supplementary Methods 1.4 and
1.5. Fresh clarified lysates were used for screening via a UV-based activity
assay or micro-scale biocatalytic reactions. On occasion, KRED variants
were subjected to heat or organic solvent treatment prior to the UV assay
(Supplementary Method 1.6).

UV assay-based screening
Reductase activity wasmeasured in 96-well Greinermicrotiter plates using
a spectrophotometer (SpectraMAX Plus, Tecan Spark or Tecan InfiniteM
Nano+) and corresponding software (SoftMax Pro 4.7.1 or SparkControl
2.1). Reactions were performed in a total volume of 200 µl, with compo-
nents added in the following order: (1) 178 µl of 0.1 Mpotassiumphosphate
buffer pH 7 with 2mMMgCl2 and 0.01mgml−1 NADP+ (as sodium salt);
(2) 6 µl of clarified lysate (pure or diluted in 0.1M potassium phosphate
buffer pH 7+ 2mM MgCl2, for a final lysate concentration of 3, 1.5, 1, 0.5
or 0.25% (v/v), according to the library); and (3) 16 µl of a stock solution
containing 1.25mgml−1 1a in iPrOH. The assay was run with orbital
shaking at 432 rpm and at temperatures oscillating between 28 and 32 °C
(room temperature plus 5 °C caused by shaking). Depletion of 1a was
followed at 340 nm and recorded every 5min for 80min. Slopes (ΔA
min−1) within the linear range were used for fold-increase over the parent
(FIOP) calculations. FIOP = initial reaction rate of variant ÷ initial reaction
rate of parent.

Machine learning
Amino acid sequence and activity data (FIOP values) analyses of library
variants were used as input for machine learning (ML) which was adapted
from Buechler et al.37 The target label (activity) was calculated by dividing
the slope of each sample on a plate by the averaged wild-type slope for that
plate. The individual variants were represented based on the amino acids’

various physicochemical and biochemical properties at the mutated sites.
These properties were derived from the AAindex database38,39, an extensive
collection of amino acid characteristics from several sources. Thirteen fea-
tures per site, i.e., 13 × 3 (241-242-245 for L9) and 13 × 5 (174-248-241-242-
245 for L10), were considered. We then defined the feature vector of a
sequenceby joining the vector representationof its individual aminoacids at
the defined sites and aggregated them into a 651 × 39- and a 2453 × 65-
dimensional training matrix for L9 and L10, respectively. All predictions
were made based on the Algorithm 2.1 of Gaussian Processes for ML
(GPML) by Rasmussen and Williams62, implemented in the scikit-learn
Python module. To mitigate overfitting and enhance the assessment of the
generalizability of our model, we cross-validated over ten splits, and model
performance was evaluated using the coefficient of determination (R2). As a
result, average R2 scores of 0.66 and 0.77 were achieved for L9 and L10,
respectively (compare predicted vs.measured, Supplementary Fig. 6). Plotly
(5.x) and Python (3.8.x) were employed for data visualization. The code,
data, and related Supplementary Information can be accessed at https://
github.com/ccbiozhaw/Ssal-KRED_evolution.

Biocatalytic reactions
Small-scale reactions were conducted in 0.2–1.2ml (Supplementary
Method 1.8). Preparative-scale reactions were carried out in 100ml using
iPrOH or glucose as final reductant (Supplementary Method 1.9). After a
given time, reactions were quenched with HPLC-grade methanol and ana-
lyzed by achiral HPLC-UV/MS (260 nm) or chiral HPLC-UV/MS. An
Agilent 1290HPLC system and corresponding software (Agilent OpenLAB
CDS 2.4, Build 2.204.0661) were utilized for data acquisition and analysis
(Supplementary Method 1.10 and Supplementary Figs. 4 and 13–17).

Determination of kinetic constants
Kinetic parameters toward 1a were measured using purified His-tagged
proteins and the UV assay (Supplementary Method 1.11), after confirming
that analysis by HPLC-UV (260 nm) at different time points and the UV-
based kinetic assay (340 nm) led to comparable values in case of wild-type
Ssal-KRED (Supplementary Fig. 19). GraphPad Prism (9.2.0) was used for
non-linear curve-fitting.

Substrate binding mode models of Ssal-KRED wild type and
variants
To construct a binding mode model of 1a, the NADPH-bound X-ray
structure of Ssal-KRED (PDB ID: 1Y1P) was used as starting point. First,
overlays with other oxidoreductase X-ray structures (PDB ID: 2NNL,
4P38) employing NADPH as redox partner and having the same Ser and
Tyr as catalytic residues were generated to identify an anchor for the C=O
moiety of1a. This informationwasused to initially place1a in the structure
1y1p in an orientation which is consistent with hydride transfer from
NADPH to the substrate resulting in the correct trans-stereoisomer 2a.
The model was then relaxed using distance constraints of d = 2.8 Å for the
interaction of the ligand carbonyl oxygen with Tyr177 OH and
Ser133_OG, respectively, as well as d = 3.8 Å for the distance between the
carbon atom of NADPH involved in hydride transfer and the ligand car-
bonyl carbon. Structure superposition was performed using Molecular
Operating Environment (MOE 2019.01)63 and for the model building
Moloc64 was used. Homologymodels for protein sequences corresponding
to hit variants M1, M3 and M6 were built using the same methodology.
Each model was visually inspected in PyMOL 2.5.2 and the images were
generated using the same software.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Gene and protein sequences are
found in Supplementary Information. NMR spectra can be found in
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Supplementary Data 1 and Source Data for Fig. 2, Table 2 and Supple-
mentary Figs. 9–11, 19 can be found in SupplementaryData2–6.The crystal
structure used for the substrate docking and homology modeling experi-
ments can be accessed via PDB ID: 1Y1P.

Code availability
Training data and scripts used to predict enzyme function are available at
https://github.com/ccbiozhaw/Ssal-KRED_evolution.
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