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Vertical structural complexity of plant
communities represents the combined
effects of resource acquisition and
environmental stress on the Tibetan
Plateau

Check for updates

Changjin Cheng1,2, Jiahui Zhang 3 , Mingxu Li 4, Congcong Liu4, Li Xu4 & Nianpeng He 3,5

The vertical structural complexity (VSC) of plant communities reflects the occupancy of spatial niches
and is closely related to resource utilization and environmental adaptation. However, understanding
the large-scale spatial pattern of VSC and its underlying mechanisms remains limited. Here, we
systematically investigate 2013 plant communities through grid sampling on the Tibetan Plateau. VSC
is quantified as the maximum plant height within a plot (Height-max), coefficient of variation of plant
height (Height-var), and Shannon evenness of plant height (Height-even). Precipitation dominates the
spatial variation in VSC in forests and shrublands, supporting the classic physiological tolerance
hypothesis. In contrast, for alpinemeadows, steppes, anddesert grasslands in extremeenvironments,
non-resource limiting factors (e.g., wide diurnal temperature ranges and strong winds) dominate VSC
variation. Generally, with the shifting of climate from favorable to extreme, the effect of resource
availability gradually decreases, but the effect of non-resource limiting factors gradually increases,
and that the physiological tolerance hypothesis only applicable in favorable conditions. With the help
ofmachine learningmodels,mapsof VSCat 1-km resolution are produced for theTibetanPlateau.Our
findings and maps of VSC provide insights into macroecological studies, especially for adaptation
mechanisms and model optimization.

Vertical structural complexity (VSC) in plant heights, which is physical
niche partitioning in above-ground space, is thought to be an important
property for a specific plant community1. VSC is closely linked to various
ecological processes1,2. For example, in research on the diversity-
productivity relationships, the classical complementary effect3 proposes
that the spatial complementarity due to VSC is a key determinant of
overyielding in species-rich communities4–6, as more complex vertical
structures mean stronger spatial niche partitioning, thereby reducing
competition7,8 and leading to the unique occupancy of niche axes such as

light2,4. However, few large-scale studies provide direct evidence that
VSC links the diversity-productivity relationship because VSC is rarely
quantified. We have conducted a statistical analysis of 136 documents
from various locations worldwide, and only 10 of them have quantified
VSC (Table S1). In addition, a recent study showed that VSC has a
stronger ability to explain spatial variation in productivity than species
diversity at regional scales9. Hence, it is imperative to investigate the
underlying mechanisms of VSC spatial variation and develop high-
resolution VSC atlases, which will aid in understanding the diversity-
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productivity relationship and accurately predicting spatial variations in
productivity.

The knowledge of the spatial variation of VSC at large scale is mainly
explained by the physiological tolerance hypothesis (PTH)10–12. PHT reveals
VSC spatial variationmainly from the perspective of regional differences in
resource availability9. The PTH proposes that more adequate resources
(e.g., more humid and warmer climates) support greater plant height, more
complex species composition, and a wider spectrum of plant functional
strategies (for example, greater crown plasticity and more shade-tolerant
species), resulting in greater VSC10,11. Differently, related studies at the local
community scale have more often attributed the complex vertical structure
to asymmetric competition between plants. Competition often results in

inconsistent individual sizes and promotes complex vertical structures,
because larger individuals gain more resources per unit of biomass and
should inhibit the growth of their smaller neighbors13. In addition, the
intensity of competition between species will be greater in areas with
superior environments14.

The resource acquisition strategies (resource availability and compe-
tition for resources) highlighted by PTH and asymmetric competition help
to some extent the understanding of VSC spatial variation10,15. However, a
trade-off exists among the plant species in communities to acquire resources
for rapid growth in “favorable conditions” (when resource availability is
high and environmental stresses are low) vs. its ability to acquire higher
fitness to avoid mortality in “extreme conditions” (when resource

Fig. 1 | . The theoretical framework (a) and scientific hypothesis (b) for the vertical
structural complexity (VSC) response to environmental change on a large scale.
Under favorable environmental conditions, adequate resources supporting greater
height and more complex community composition, as explained by the physiolo-
gical tolerance hypothesis. In contrast, plants in regions of high environmental
stress, strong filtering, and conservation priority will result in shorter and more

homogeneous community structure. We, therefore, assumed that with the shift of
climate from favorable to extreme, the effect of resource availability on VSC would
become smaller, but the effect of non-resource limiting factors would gradually
increase, as an adaptationmechanism. Height-max, maximum plant height within a
plot; Height-var, coefficient of variation of plant height; Height-even, Shannon
evenness of plant height.
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availability is low and environmental stresses are high)14,16–18. Therefore, we
assumed that as climatic conditions shift from favorable to extreme, the
impact of resource availability on spatial variation of VSC will decrease as
environmental stress increases, while the effect size of non-resource limiting
factors (that is, environmental factors that cause physiological restrictions
on plant growth and reproduction without providing resources) such as
extreme low temperatures, high ultraviolet radiation, and strong wind will
gradually increase (Fig. 1). When resource availability is higher (e.g.,
favorable precipitation and heat conditions), the resource acquisition
strategy of plants dominates VSC variation (emphasized by PTH). When
environmental stresses are high, the environmental filtering effects of non-
resource limiting factors will be strong, implying a simpler community
composition under harsher environmental conditions19–21. In addition,
plants that have adapted to harsh environments should pursue a con-
servation strategy (e.g., morphological changes in plants and facilitations) to
avoid mortality16,22. For example, under conditions of extremely low tem-
peratures and strong winds, plants will maintain a suitable temperature in
their immediate environment by growing near other plants and growing
closer to the ground, which is similar to the idea of “warming in a group”23.
This dwarf plant community avoids freezing damage caused by low

temperatures and wind-shearing forces caused by strong winds23,24.
Although these theoretical underpinnings provide the basis for our extra-
polations, but few empirical studies have been able to span from the
favorable to extreme climate gradient.

The Tibetan Plateau is an ideal region for investigating the spatial
patterns and underlyingmechanisms of VSC, because it has a wide range of
biomes from subtropical forests to tundra, a consequence of the variation in
environments resulting from the broad altitudinal range in the region
(Fig. 2b).Considering this variation, it is also an important ecological reserve
and has always been a hotspot for ecologists. We surveyed 2013 standard
plots using a grid-samplingmethod, covering fivemajor vegetation types in
the region (Fig. 2a). Three parameters were selected to quantify VSC, viz.
maximum plant height within a plot (Height-max), the coefficient of var-
iation of plant height (Height-var), and the Shannon evenness of plant
height (Height-even). These three parameters can fully describe the spatial
niche occupancy of community individuals in the vertical dimension2. The
main objectives of this study were to: (1) explore the changes in VSC of
different vegetation types on the Tibetan Plateau; (2) identify the factors
influencing VSC spatial variation; and (3) produce 1-km spatial resolution
maps of VSC, which could provide important parameters for related

Fig. 2 | Geographical and spatial distribution of sampling sites and climatic
differences among vegetation types of Tibetan Plateau (TP). The background in
figure (a) represents different vegetation types on the TP. The biome types were
defined in Whittaker’s classification (b). The climatic data in figure (c) was

standardized tomean = 0 and standard deviation = 1 to aid their presentation in one
graph. The black lines represent the median. The depopulated zone was not inves-
tigated due to a lack of access. MAT annual mean temperature, AI aridity index,
Tdiurnal diurnal temperature range, Wind wind speed.
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macroecological studies. Specifically, we tested our assumption that the
underlying mechanisms that dominate VSC variation will gradually shift
from resource acquisition strategies to conservation priority strategies as
environmental conditions shift from favorable to extreme (Fig. 1), and that
the classic PTH would be more applicable in “favorable conditions”.

Results
Changes in VSC amongdifferent vegetation types on the Tibetan
Plateau
The Height-max in the forests, shrublands, alpine meadows, alpine steppes
and alpine desert grasslands were 23.48 (±8.11 SD), 1.23 (±0.51 SD), 0.17
(±0.11 SD), 0.16 (±0.08 SD) and 0.17 (±0.10 SD) m, respectively. The
Height-var of the alpinemeadowswas larger than that of the alpine steppes,
followed by the alpine desert grasslands, but the Height-even of the alpine
desert grasslands was greater than that of the alpine steppes, followed by
alpine meadows (Table 1).

Spatial patterns of VSC on the Tibetan Plateau
The Height-max decreases with latitude gradient, and communities grow-
ing between 26‒29° N were 93 times taller than those growing between 38‒
41° N (Fig. 3). The Height-max increased and then decreased with the
altitude gradient andwas the tallest at 1000‒2000m. Furthermore, themean
Height-varwas smaller between38‒41°Nand5000‒6000m than elsewhere.
Noclear patternof variation inHeight-even along latitude andelevationwas
observed (Fig. 3). From the southeast to the northwest of the Tibetan Pla-
teau, the Height-max decreases while the Height-even increases (Fig. 4a, c).
The Height-var was lowest in the central regions of the Tibetan Pla-
teau (Fig. 4b).

Environmental factors influencing VSC
For Height-max and Height-var, aridity index was the most influential
factor in forests and shrublands (Table 2) and increased with precipitation
availability (Fig. S1). However, in alpine grassland ecosystems (including
alpine meadows, alpine steppes, and alpine desert grasslands), the non-
resource limiting factors (especially diurnal temperature range [Tdiurnal],
wind, and oxygen partial pressure [PO2]) played a more important role in
the spatial variation of Height-max and Height-var (Table 2). The stronger
the environmental stress, the smaller the Height-max and Height-var
(Fig. S1). For Height-even, Aridity index was the dominant factor in
shrublands (R2 = 0.669), andwind explained 11.0%of the variation in alpine
meadows. However, in the analysis of forests, alpine steppes, and alpine
desert grasslands, the explanatory power of a single variable forHeight-even
variation was low (less than 10%) (Table 2).

Furthermore, the spatial autocorrelation value of the model residuals
was very close to zero, indicating that the effect of spatial autocorrelation on
the multiple stepwise regression results was negligible (Fig. S2). Further-
more, the results of the partial correlation analysis showed that the zero-
order correlation coefficient was not significantly different from the partial
correlation coefficient, indicating that the grassland community sampling
method had a negligible effect (Table S2).

Potential mechanisms for the spatial variation in VSC
Summary based on multiple regression in Table 2 (original samples) and
Table S3 (random samples), when climatic conditions gradually change
from favorable to extreme (transition from forest to alpine grassland eco-
system), the effects of resource availability on the variation in VSC were
gradually declined from subtropical forests to alpine desert grasslands, and
the effects of non-resource limiting factors have become larger (Fig. 5).

High-resolution maps of VSC on the Tibetan Plateau
Based on machine learning models, maps of Height-max, Height-var, and
Height-even with 1-km resolution were first produced on the Tibetan
Plateau (Fig. 4). The models explained 85%, 55%, and 33% of the spatial
variations in Height-max, Height-var, and Height-even, respectively
(Fig. S3). Annual temperature range (Tannual) was the most important
predictorofLogHeight-max spatial variation, followedbyoil organic carbon
(SOC) and Tdiurnal. Wind was the most important predictor of Height-var
spatial variation, followed by UR and minimum temperature of the coldest
month (Tcoldest). Wind was the most important predictor of Height-even
spatial variation, followed by mean annual precipitation (MAP) and
ultraviolet radiation (UR). To test the model, 25% of the randomly selected
plot data were used. Themodel predictions of Height-max, Height-var and,
Height-even were accurate, because the observed and predicted values were
closely and evenly distributed on both sides of the 1:1 line (Fig. 4).

Discussion
Based on large-scale field survey data on the Tibetan Plateau, this study
explains the determining mechanism of spatial variation in VSC, and pro-
duces 1-km resolution spatial atlas based on machine learning models. We
found that Height-max decreases with latitude, which is consistent with the
global study by Moles, et al. (2016)25, and further deepens our knowledge
that plants are smaller at high latitudes26. Plant height first increased and
then decreased along the altitudinal gradient, which is inconsistent with the
monotonically decreasing trend foundbyMao, et al. (2016)27 on theTibetan
Plateau, and is likely due to optimal precipitation and temperature condi-
tions at mid-altitude regions28.We also found that Height-var was lowest in
the regions of maximum altitude (5000‒6000m) and highest latitude (38‒
41°N). These findings confirmed our inference that plant communities
possess shorter and more uniform vertical structures under extreme
environmental conditions. We found that aridity index was the dominant
factor in the spatial variation of Height-max and Height-var in forest and
shrubland ecosystems, and wetter environments supported higher and
more complex community structures (Table 2, Fig. S1). These findings
support classic PTH10,11,29. These results highlight the importance of con-
sidering future changes in water availability in forest and shrubland eco-
systems, with predictions that the forest and shrubland communities in the
eastern part of the Tibetan Plateau will become taller and more complex
under wetter and warmer conditions in the Tibetan Plateau30.

As expected, resource availability had weak explanatory power in
alpine ecosystems, such as alpinemeadows, alpine steppes, and alpine desert
grasslands, where the influence of non-resource limiting factors became
stronger (Table 2, Fig. 5). For the alpine steppes and alpine desert grasslands
on the Tibetan Plateau, the most influential factor on Height-max was
Tdiurnal (Table 2). In the context of global warming, we predict that plants in
the alpine steppes and alpine desert grasslands will become taller, as the
Tdiurnal will become smaller due to the warmer conditions at night than
during the day31, thus reducing the constraints on plant growth. This is
consistentwith thepredictionbyOlson, et al.32 that plant height in theArctic
tundra will increase under global warming. Furthermore, Wind (non-
resource limiting factors) was an important predictor of Height-var and
Height-even in alpinemeadows, alpine steppes, and alpine deserts (Table 2).
In the context of climate change, there is no consensus on how the wind
speed of the Tibetan Plateau will change, and both increases33 and
decreases34 have been predicted. Therefore, how theHeight-var andHeight-
even of alpine grasslands will change in the future is uncertain.

Table 1 | Differences in vertical structural complexity among
different vegetation types of the Tibetan Plateau

Vegetation type Height-
max /m

Height-var Height-
even

Na

Mean SD Mean SD Mean SD

Forests 23.48 8.11 0.38 0.13 0.74 0.13 456

Shrublands 1.23 0.51 0.79 0.18 0.75 0.11 30

Alpine meadows 0.17 0.11 0.75 0.35 0.69 0.10 669

Alpine steppes 0.16 0.08 0.67 0.31 0.75 0.12 621

Alpine deserts 0.17 0.10 0.64 0.32 0.78 0.13 237
aN number of plots.
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Considering a wider climatic gradient and different vegetation types,
the spatial variation of VSC should be the result of the trade-off between
acquiring resources and achieving greater fitness to avoidmortality (Figs. 5,
6), which is unlike the predictions based on PTH10–12,29. The potential
mechanisms of non-resource limiting factors onVSC spatial variation could
be explained as follows. First, the environmental filtering effect selects
species that can survive in alpine habitats, which implies a simpler com-
munity composition under harsher environmental conditions10,35. Second,

these plant communities are tightly packed and grow close to the ground,
thereby reducing their exposure to extreme climates. This is a survival
strategy being similar to “warming in a group”23. Third, under extreme
environmental conditions, competitionbetweenplants isweakened, and the
facilitation will be enhanced for resistance to adverse environmental con-
ditions; compared with competition, facilitation can tolerate the overlap in
spatial niches between individuals and lead to a more uniform community
structure18.

Fig. 3 | Response of vertical structural complexity to latitude and elevation. a, c, eLatitude; b,d, f elevation. The red lines represent themean.Height-max,maximumplant
height within a plot; Height-var, coefficient of variation of plant height; Height-even, Shannon evenness of plant height.
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Weproduced 1-kmresolutionmaps of theVSCon theTibetanPlateau
for the first time (Fig. 4). Thesemaps can provide important parameters for
macroecological studies frommany perspectives, such as the interpretation
of underlying mechanisms of the diversity-productivity relationship, more
accurate prediction of productivity variation, and the modification of car-
bon cycle models15. VSC has extensive connections with ecosystem pro-
cesses, so its atlas may play important value in other aspects, and its role
needs to be further explored in the future. Specifically, the general con-
nections between VSC and ecosystem processes are as follows: (i) higher
vegetation heightswill promote primary productivity, carbon sequestration,
and landscape heat uptake and more complex vertical structures will
facilitate community function by enhancing spatial complementarity
effects3,32; (ii) higher and more complex vertical structures can promote the
coexistence of species at other trophic levels by providing more ecological
niches25; and (iii) complex vertical structures mean communities have

diverse physiological traits (such as shade tolerance, crown plasticity, etc.),
which will affect the functional diversity of the community and thus the
multifunctionality of the entire ecosystem25 (Fig. 6).

Despite the significant advantages and high prediction ability of these
maps (Fig. 4), it is a long method that requires improvement. There are few
limitations of the present study. First, several areas were under-sampled in
this study, such as the depopulated zone in the northern region of the
Tibetan Plateau, which may have resulted in some uncertainty in the
regional estimate. Second, themachine learningmodel has the advantage of
representing heterogeneously distributed observations, because it contains
multiple predictor variables to represent spatial variation in climatic and soil
properties36. However, it is the first to estimate these parameters of the VSC
at a regional scale and requires further development in the future. Fur-
thermore, the prediction for Height-even is relatively weak (R2 = 0.33)
(Fig. S3). In addition, plant communities in different successional stages

Fig. 4 | Predicted spatial patterns of VSC on the
TibetanPlateau at a resolution of 1 km.Panels (A),
(B), and (C) are the spatial distribution of Height-
max, Height-var, and Height-even, respectively;
panels (a), (b), and (c) are the relationship between
the observed and predicted values, using the Ran-
dom Forest model. The black dotted line is the 1:1
line, and R2 represents the prediction accuracy of the
random forest models. Height-max, maximum
plant height within a plot; Height-var, coefficient of
variation of plant height; Height-even, Shannon
evenness of plant height.
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have different resource utilization and acquisition strategies, however, this
study failed to consider this during the model construction process due to
lack of data9. More importantly, with technological innovation, we predict
that high-resolution remote sensing and terrestrial LiDAR will enable
related research to be carried out on a larger scale and provide more useful
information for responding to global climate change (Fig. 6).

Methods
Study area
The Tibetan Plateau is the largest (2.5 × 106km2) and highest plateau in the
world37,38. Its unique topography creates a distinctively variable climatic
gradient that provides excellent conditions for validating our hypotheses.
The elevation of the Tibetan Plateau ranged from 80 to 8535m, mean
annual temperature (MAT) ranged from −23 to 24 °C, and mean annual
precipitation (MAP) ranged from 18 to 3200mm. From southeast to
northwest, the precipitation and temperature conditions gradually declined,
and the effect of non-resource limiting abiotic factors (e.g., extreme low
temperature, diurnal temperature range [Tdiurnal], UR, oxygen partial
pressure [PO2], and wind speed [Wind]) gradually increased (Fig. S4).

The Tibetan Plateau mainly includes five vegetation types that vary
with climate: subtropical forests, shrublands, alpine meadows, alpine
steppes, and alpine desert grasslands39. In previous studies, ecologists often
divided temperature, precipitation, etc. into multiple environmental levels
to explore the variation in biological responses along environmental
gradients40. To make the division in the study ecologically meaningful,
segmentationwas determinedat the boundariesbetween vegetation types as
far as possible40. Exciting, the Tibetan Plateau has a unique advantage in this

regard, as the five vegetation types mentioned above correspond closely to
the climatic gradients of the Tibetan Plateau. From subtropical forests to
alpine desert grasslands, non-resource limiting factors such as Tdiurnal and
Wind gradually strengthen, and the precipitation and temperature condi-
tions gradually worsen (Fig. 2c).

Field sampling
Field sampling was conducted during the high-growth period from mid-
July to late August in 2018, 2019, and 2020. According to the latitude and
longitude,wedivided the entireTibetanPlateau into1000 grids of equal area
(0.5° × 0.5°). For alpine grasslands (i.e., alpinemeadows, alpine steppes, and
alpine desert grasslands), we selected the dominant plant communities via
visual observation in each grid and randomly set up three 1m × 1m plots
for the field investigation. There were 1527 plots for grassland communities
(Table 1). We determined the tallest plant in each plot by visual inspection,
and theheight of the tallest plant in eachplotwasmeasuredwith a steel ruler.
For each species within the plots, we recorded their coverage and then
randomly selected three plants of each species tomeasure their heightwith a
steel ruler (all measurements for less than three individuals); in total, 19,320
plants were measured.

For forest and shrubland ecosystems, three 20m× 20m plots were
randomly established in each grid, for a total of 486 plots (Forests: 456;
shrublands: 30; Table 1). For forests, we recorded all vascular plants in these
plots, including trees, shrubs, and herbaceous species. Diameter at breast
height (DBH)wasmeasured for treeswith aDBHof ˃3 cm.A telescopic stick
was used to measure the tree height, and 17,443 trees were measured. The
maximum measurement scale of the telescopic stick is 20m, and the

Fig. 5 | The relative importance (% of model R2) of
resource factors and non-resource limiting factors
for each vegetation type model. The analysis of
Height-even is not provided here, because themodel
we constructed is less explanatory (Table 2); see
Table 2 and Table S2 for more detailed information.
Height-max, maximum plant height within a plot;
Height-var, coefficient of variation of plant height;
Height-even, Shannon evenness of plant height.
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telescopic stick is marked with measurements accurate to centimeters. For
those trees with a height greater than 20m, we complete the measurement
based on climbing the trunk. Only trees with aDBH > 3 cmweremeasured,
as this is a common standard for recording tree layer-related data in forest
community surveys41. For shrublands, we recorded their basal diameter and
height, and 339 plants were measured. Across all vegetation types, a total of
2013 field plots were investigated, and the height of 37,102 plants was used
for the analysis. The areawithin thewhite curve in Fig. 2a is the depopulated
zone, which was not investigated due to challenges accessing these sites.

Calculations of VSC parameters
Three parameters were used to quantify VSC for each plot, where Height-
max is the maximum plant height within a plot, and Height-var is the
coefficient of variation of the plant height, which is calculated using Eq. 1.
The Shannon evenness of plant height (Height-even) was calculated using
Eq. 21. The smaller the Height-var and the larger the Height-even, themore
uniform the height distribution of the species in the plant community.

Height � var ¼ SDH

MeanH
ð1Þ

Height � even ¼ �
XNh

k¼1

Pk× lnðPkÞ
" #

=lnðNhÞ ð2Þ

where SDH is the standard deviation of plant heights, MeanH is the mean
plant height, Nh number of height classes, and we used class widths of
100 cm, 10 cm, and 1 cm for forests, shrublands, and grasslands, respec-
tively. For forests and shrublands, Pk refers to the proportion of the basal
area for the kth height class. For grasslands, we divided Nh by the mean
height of each species, and Pk refers to the mean of the relative height and
relative coverage of the kth height class.

Selected explanatory variables
Based on the research objectives andhypotheses, 13 explanatory variables in
total, representing resource- and non-resource limiting variables, were
selected. Resource variables are characterized as precipitation conditions,
heat conditions, and variables related to soil fertility, as they are often used to
reflect an area’s capacity and resources for plant growth, reproduction, and
survival10,35,42. We chose MAP and an aridity index (AI) to represent pre-
cipitation conditions, whileMAT represents heat conditions.Wemeasured
pH, soil organic carbon (SOC), and total nitrogen (TN) levels. SOC and TN
are important indicators of soil fertility. Soil pH was considered because

highly acidic soil affects community species diversity and regulates soil
nutrient supply and uptake by plants42. Growing-season climate variables
were not considered, because it is difficult to define a consistent growing
seasonover such a large spatial scale. Photosynthetically active radiationwas
also not considered, although competition for light resources within local
communities is an important source of VSC. It has not been considered a
resource factor in large-scale studies, because plants only use a very small
part of the photosynthetically active radiation reaching the Earth’s surface,
generally considered to be less than 1%20,43.

Non-resource limiting variables limit plant growth and reproduction19.
As the third pole of the world, alpine ecosystems in the Tibetan Plateau’s
central andnorthwest regions are usually adapted to stressful environmental
conditions. Based on prior knowledge14,21,23,44, we chose the following seven
variables: minimum temperature of the coldest month (Tcoldest), diurnal
temperature range (Tdiurnal), annual temperature range (Tannual), atmo-
spheric oxygen partial pressure (PO2), atmospheric carbon dioxide partial
pressure (PCO2), ultraviolet radiation (UR), and Wind.

One topsoil sample (0–10 cm) was collected using an auger in each
1m2 grassland plot. Further, 15‒30 topsoil sampleswere randomly sampled
from each 400m2 forest and shrubland plot and then mixed into a com-
posite sample45. The soil samples were air-dried and sieved (<2mm) to
homogenize them. Soil pHwasmeasured using a pH electrode (Leici), SOC
content was measured using the H2SO4-K2Cr2O7 oxidation method, and
TN was measured using Kjeldahl nitrogen determination.

MAT,MAP, Tcoldest, Tdiurnal, Tannual, andWind data were downloaded
from the WorldClim database (www.worldclim.org) at a spatial resolution
of 30 arc-sec. The mean annual potential evapotranspiration (PET), with a
spatial resolution of 30 arc-sec, was obtained from the Consortium of
International Agricultural Research Centers (http://www.cgiar-csi.org/). AI
is the ratio of MAP to PET46. Annual average UR was obtained from the
Science Data Bank (https://doi.org/10.11922/sciencedb.332). PO2 and
PCO2 were calculated according to the method of Kouwenberg, et al.47.

Statistics and reproducibility
A machine learning model (random forest model) was used to upscale the
site-level VSC to the entire Tibetan Plateau under contemporary climate
scenarios. The predictors included all 13 explanatory variables considered in
this study. We used 75% of the total data as the training data and the
remaining 25% as the validation data. The increase in node purity of the
splitting variables was used to estimate the relative importance of the
explanatory variables. Based on the spatially gridded data of the predictors
(3,617,619 values), the spatial distributions of the VSC for each grid were
mapped at a resolution of 1 × 1 km across the Tibetan Plateau.

Fig. 6 | Conceptual diagram of the response of community vertical structural complexity (VSC) to climate change.VSCmay also affect overall ecosystem function and
stability, and future coping strategies.
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We interpolated the pH, SOC, TN, PO2, and PCO2 at a spatial resolution of
1-km using “ordinary Kriging interpolation,” which has the advantage of
accurate interpolations at sampling locations48. Glaciers and lakes were
removed from themaps. TheHeight-maxwas log-transformed to avoid the
influence of data dispersion. The analyses were conducted using MATLAB
2018b (MathWorks, Natick, MA, USA) and the ESRI ArcGIS software
(Version 10.2; Redlands, CA, USA).

Multiple stepwise regression (MSR) was used to determine the mini-
mal adequate model, and the “calc.relimp” function in the R package
relaimpo was used to estimate the relative importance (R2 and relative
importance metrics[%]) of the two types of variables in the model49. We
performed anMSR for the five vegetation types. From subtropical forests to
alpine desert grasslands, if the relative importance of resource variables
gradually decreases and non-resource limiting variables increase, our
assumption is supported (that is, the underlyingmechanisms that dominate
VSC variation will gradually shift from resource acquisition strategies to
conservation priority strategies). Considering the differences in sample size
may have an impact on the results. We randomly sampled the four vege-
tation types using the bootstrapping method and then repeated the above
analysis. The shrublands were not considered in this process because it had
only 30 plots. The sample size randomly selected was based on the sample
size of the alpine desert grasslands (237 plots), because it has the smallest
sample size of the remaining four vegetation types (Table 1).

When conducting MSR analysis, we screened explanatory variables
based on the following principles. We further screened the 13 explanatory
variables based on the Pearson correlation coefficient, because multi-
collinearity may affect the determination of the relative importance of fac-
tors. Five resource variables (MAT, AI, TN, SOC, and pH) and four non-
resource limiting factors (Tdiurnal, UR, wind, and PO2) were screened. MAP
was not considered, because its correlation with MAT (Pearson r = 0.62)
was higher than that with AI and MAT (Pearson r = 0.45), and AI was
strongly correlatedwithMAP (Pearson r = 0.95) (Fig. S1).We only retained
Tdiurnal for low temperature-related variables, because it had the lowest
correlation with MAT (Pearson r =−0.46) among all low temperature-
related variables, and a strong correlation with Tannual and Tcoldest (Pearson
r =−0.71 and −0.60). PCO2 was excluded because it was highly collinear
with PO2 (Pearson’s r = 1). We further employed variance inflation factors
(VIF) to verify whether the variables in the optimal model obtained by the
MSR are independent19. We also calculated Moran’s I values for both the
observedVSCdata and the residuals of theMSRmodels to examine how the
spatial autocorrelation in theVSCwas explainedby thepredictor variables50.
MSR analysis was performed using the stepAIC function of the MASS
package (http://www.biostathandbook.com/multipleregression.html).

Furthermore, we explored the impact of sampling methods on the
results of grassland communities. Instead of measuring the height of each
herb in the grasslands, we randomly selected three plants of each species.
Therefore, the number and evenness of specieswithin the communitiesmay
affect the analysis of Height-var andHeight-even. To quantify the impact of
this sampling, we employed partial correlation analysis. It was judged by
whether the correlations (zero-order correlation coefficient) of Height-var,
Height-even, and their dominant factors (based on MSR) changed after
controlling for the effect of the Shannon-Wiener index (partial correlation
coefficient). The important values (IV) of the Shannon Wiener index were
calculated using the following formula51:

IV ¼ ðrelative heightþ relative coverageÞ=2 ð3Þ

Graphswere plotted usingOrigin software (version 8.5; Northampton,
MA, USA). Statistical analysis was performed using R52. The significance
level was set at p < 0.05.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data for the figures and tables in the article are provided in the Supple-
mentary Data.
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