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Priority index for critical Covid-19
identifies clinically actionable targets
and drugs

Check for updates

ZhiqiangZhang1,2,13, ShanWang1,13, Lulu Jiang3,13, JianwenWei4,13, ChangLu5,13, Shengli Li 6, YizhuDiao7,
Zhongcheng Fang1,2, Shuo He8, Tingting Tan1, Yisheng Yang1, Kexin Zou1,2, Jiantao Shi9, James Lin4,
Liye Chen10 , Chaohui Bao 1,11 , Jian Fei 11,12 & Hai Fang 1

While genome-wide studies have identified genomic loci in hosts associated with life-threatening
Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of
clinically actionable targets and drugs. Building upon our previous success, we here present a priority
index solution designed to address this challenge, generating the target and drug resource that
consists of two indexes: the target index and the drug index. The primary purpose of the target index is
to identify clinically actionable targets by prioritising genes associatedwith Covid-19.We illustrate the
validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug
targets, with the majority of these targets being found at the leading prioritisation (leading targets).
These leading targets have their evolutionary origins in Amniota (‘four-leg vertebrates’) and are
predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug
index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either
individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported
by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials
for Covid-19.

Host genetics, encompassing human genetic contributions to infectious
diseases, holds the potential to unveil genetically informed mechanisms for
disease prevention and drug therapy. Naturally occurring genetic variations
within the host genome have catalysed strategies in preventing infectious
diseases, often referred to as ‘natural immunity’. Successful examples
include the discovery of HIV-1 infection natural resistance attributed to the
CCR5 gene1, the identification of the malaria resistance locus at the HBB
gene2, and the protective effects conferred by the WT1 locus against
tuberculosis3. In addition to providing evidence of disease prevention
mechanisms, these host variations can offer insights into therapeutic tar-
geting bymimicking the on-target effects of pharmacological interventions,
known as ‘clinical trials by nature’4. Moreover, genetic variations can exert
regulatory influence on genes (‘effector genes’), which encode protein tar-
gets of drugs — both those approved/licensed and those in clinical phase
development— thus providing opportunities for repurposing pre-existing
drugs into new indications5,6.

Genetic targets are defined as early-stage genetically informed and
validated therapeutic candidates7. The endorsement of genetic targets

enhances the chance of approval along the drug development pipeline, as
compared to drug-target pairs without such genetic backing8,9. The pro-
position of genetic targets is timely, particularly amid the pandemic crisis
brought about by coronavirus disease 2019 (Covid-19), attributed to the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)10. Its
severity exhibits strong correlations with factors such as older age, being
male, lower socio-economic status, non-European demographic ancestry,
and pre-existing clinical comorbidities (including diabetes)11. Nonetheless,
these non-genetic factors donot fully explain disease severity, as instances of
severe cases among young, otherwise healthy individuals, often run in
families12 and persistently hint at genetic contributions to disease severity13.

In a fast-moving landscapeofCovid-19field14,15, there emerges aneed for
the timed translationofhost geneticfindings intoprecise therapeutics targeted
to treat critically ill patients with life-threatening Covid-19 (referred to herein
as ‘critical Covid-19’). Individuals suffering from critical Covid-19 are
likely to develop acute respiratory distress syndrome, accompanied
by a hyperinflammation phenotype characterised by the release of
excessive pro-inflammatory cytokines, resembling immune-related disorder
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manifestations16. With the continual expansion of sample sizes and a clearer
definitionofdisease severity, genome-wide studies17–24 offer awealthof genetic
targets pertinent to critical Covid-19. Nonetheless, the task of identifying
genetic targets is intricate, primarily due to the prevalence of disease severity
loci within the non-coding human genome. This challenge is further exa-
cerbated by the regulatory nature of non-coding loci on effector genes, often
involving long-range and cell-type-specific mechanisms25.

Addressing the challengementioned above necessitates a paradigm shift
in strategies. To this end, we have devised a principled strategy26,27 that links
non-coding loci to effector genes, eventually cascading down to drug targets.
This strategy has found diverse applications for various diseases28–33. Building
upon our previous accomplishments and aligning with the transition from
Covid-19 host genetic findings to translational applications, in this study we
report a genetically powered drug-target discovery engine, culminating in the
introductionof a resource, namelyPIC2,madeaccessible and reproducible via
a publicly available web portal (www.genetictargets.com/PIC2) (Fig. 1). The
engine features a genetics-led target prioritisation (an approach PIT gen-
erating the target index PIC2Target), and a crosstalk-based drug repurposing
(an approachPIDgenerating the drug indexPIC2Drug).Wedemonstrate the
validity of the target index in successfully recoveringknown therapeutics. The
drug index highlights opportunities for repurposing clinically approved JAK-
STAT inhibitors, either individually or in combination. The introduction of
this dual-indexes strategy sets this work apart from our earlier studies7,34,35.
This strategy is especially distinctive in its capacity to streamline computa-
tional translational medicine for Covid-19, seamlessly transitioning from
genetic target prioritisation to rational drug repurposing.

Results
The target index
As an extension to our previous genetics-led approach34, PIT converts host
geneticfindings (derived from the latest critical Covid-19GWAS summary-
level data21) into an index for genetically informed therapeutic targets
(Fig. 2a). The target-index generation/prioritisation process involved two
key steps (see Materials and Methods): (1) predictor preparation, which
harnessed the value of multi-modal regulatory genomic datasets on proxi-
mity, quantitative trait locus (QTL), and promoter capture Hi-C (PCHi-C)
(constituting genomic evidence), while simultaneously leveraging the
knowledge of high-quality protein interactions (sourced from the STRING
database36) through the random walk with restart (RWR) algorithm (con-
stituting network evidence); and (2) predictor combination, accomplished
by benchmarking different target-index generation schemes, including
meta-analysis-like schemes (logistic and Fisher’s) and conventional
schemes (sum and max). In evaluating how to best combine predictors for
generating the target index (Supplementary Fig. 1), it became evident that
meta-analysis-like schemes, particularly the logistic scheme, exhibited
superior performance over conventional schemes (sumandmax), under the
same parameter setting for RWR (optimised at the restarting probability of
0.5). We also introduced the Naive scheme as a baseline for evaluation and
additionally explored another alternative employing network evidence
sourced fromtheBioGRIDdatabase37, albeit both alternatives demonstrated
inferior performance to PIT (i.e., the logistic scheme anchored by STRING)
(Fig. 2b and Supplementary Data 1).

Applying PIT to critical Covid-19 led to the generation of the target
index, which involved approximately 14,000 genes, ranked according to
their priority rating (Fig. 2c and Supplementary Data 2). To outline this
process in more detail, we first used critical Covid-19 GWAS SNPs to
define core genes based on evidence drawn from proximity, QTL, and
PCHi-C criteria. After establishing core genes, we proceeded to incor-
porate network evidence obtained from STRING to define peripheral
genes. Following this, we computed affinity scores for both core and
peripheral genes throughRWR, with core genes serving as seed nodes and
capitalising on network connectivity. These steps resulted in the pre-
paration of a gene-predictor matrix containing affinity scores for both
core and peripheral genes. Next, we used the logistic method to combine
the predictors, ensuring the incorporation of both genetic and network
evidence. This method, widely employed for combining evidence (P-
values) from various studies38, accommodates the interdependence/non-
independence of P-values during the aggregation process. By embracing
this approach, we combined different predictors grounded in proximity,
QTL, and PCHi-C criteria to formulate the target index. The specific steps
involved in this process are as follows: (1) for each predictor, the affinity
scores resulting from RWR were converted into P-like values; (2) these
convertedP-like valueswere collectively combined across predictors using
the logistic method for each gene; and (3) the combined P-values were
subsequently rescaled to yield a single, unified priority rating (i.e., target
index). This unified priority rating ranged from 0 to 5 for each gene
(further details provided in Materials and Methods).

In the uppermost (top) 1% of prioritised genes within the target index,
approximately three-fourths were genes that did not belong to the core
genes (Fig. 2d, left). This highlights a substantial contribution of non-core
peripheral genes to the top-ranked genes within our target index, further
emphasising the value of incorporating network evidence. To assess the
contribution of core genes based on different criteria (proximity, QTL, and
PCHi-C), we calculated the proportion contributed by each criterion, with
QTL being the most prominent (Fig. 2d, right). Consistent with this, QTL
exhibited the most substantial impact on performance when used as the
single criterion for prioritisation (Supplementary Fig. 2).

To elucidate the disease relevance of the target index, with a specific
focus on the top 1% of prioritised genes, we conducted enrichment analysis
using two distinct gene lists (Fig. 2e): (1) a list encompassing human genes/
proteins that directly interact with SARS-CoV-2 viral proteins (considering
virus-host interactions identified by two or more independent studies39–45),
and (2) another list comprising Covid-19 human host pathway genes
(sourced fromKEGG46). Amongst the top 1%of prioritised genes, we did not
observe any significant enrichment (P-value = 0.95 based on Fisher’s exact
test) for human proteins that directly interact with SARS-CoV-2 viral pro-
teins (SupplementaryFig. 3). Instead,we foundenrichment forCovid-19host
pathway genes.Notably, a substantial proportion of these host pathway genes
were present within the top 1% of the target index (odds ratio = 11.1; 95%
confidence intervals (CI) = [6.4, 18.4]; P-value = 8.0 × 10−14). This supports
the capacity of the target index in illuminating disease relevance within the
context of the human host pathway (Fig. 2f).

In addition to its disease relevance, the target index also
successfully recovered 23 pre-existing phase-III drug targets for Covid-19

=+
THE TARGET INDEX THE DRUG INDEX

Fig. 1 | A priority index solution to critical Covid-19.The PIC2 resource comprises
two indexes: the target index (PIC2Target) for genetically informed therapeutic
targets, and the drug index (PIC2Drug) for crosstalk-based repurposed drugs.

Incorporating ‘PI’ (emphasising priority index) and ‘C2’ (symbolising critical Covid-
19), the PIC2 logo also bears symbols (‘red cross’ and ‘spreading coronavirus’) to
signify different interpretations of the letter ‘C’.
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(P-value = 5.0 × 10−5 based on leading prioritisation analysis; Fig. 3a). These
Covid-19 phase-III targets included:

IL10RB (6th) and IFNLR1 (140th), both targeted by peginterferon
lambda-1a (an interferon λ receptor agonist);
CCR5 (7th), the target of cenicriviroc and leronlimab (two C-C
chemokine receptor Type 5 antagonists);

IFNAR2 (8th) and IFNAR1 (20th), both targeted by interferon
beta-1a and peginterferon beta-1a (two interferon α/β receptor
agonists);
CCR2 (9th), the target of cenicriviroc (a C-C chemokine receptor Type 2
antagonist);
CSF2 (49th), targeted by lenzilumab (a GM-CSF inhibitor);

Prox
im

ity

predictors
ge

ne
s

1

EVIDENCE
(genomic & network)
- core genes
- peripheral genes

COMBINED
(generating 
schemes)

0

0.5

0 0.5 1

PIT (AUC=0.789)

Naive (AUC=0.746)Se
ns

iti
vi

ty
 =

 T
P/

(T
P+

FN
)

1 − Specificity = FP / (FP+TN)

a HLA−DQA2
HLA−DRB1CCR1

IL10RB
CCR5

IFNAR2
CD4

CD74
CTSS

TYK2
IL10 CTSO CTSF

PTPN6 CTSA
CTSV
PDCD1LG2

PDCD1
CX3CL1

JAK3

CXCL12

CXCR4 CCL2CXCL10
STAT3CSF2

CCL22
CTSC

PLCG1

CTSH
IL6

LGMN
CTSB
PAG1 CXCR3

CSKPRKCQ
GNG2

CCL24
GNAZ
LIF

IL2RG
PTPN2
YES1IRS2

CSF2RA
IL17D

VAMP7

0

1

2

3

4

5

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r10

ch
r11

ch
r12

ch
r13

ch
r14

ch
r15

ch
r16

ch
r17

ch
r18

ch
r19

ch
r20

ch
r21

ch
r22 ch

rX
ch

rY

Pr
io

rit
y 

ra
tin

g 
fo

r g
en

es

n = 34
(24%)

n = 106
(76%)

n = 20
(59%)

n = 26
(76%)n = 25

(74%)

0

10

20

N
um

be
r o

f c
or

e 
ge

ne
s

Core genes

Peripheral genes

d

Host genes 
directly 

interacting 
with 

SARS-CoV-2 
viral proteins

QTL PCHi-C

Priority rating
(TARGET INDEX)

0

1

2

3

4

5

IRF3

ISG15

TBK1

IKBKE

STING1

IFIH1

TRAF3

MAMM VS

TLR3

RIGI

IFNA1

IFNA2

IFNA4

IFNA5

IFNA7

IFNA8 IFNA10

IFNA14

IFNA16 IFNA17N

IFNA21

IFNB1F

FCGR2AFCC

SYK

PIK3CA

PIK3CB

PIK3CD

PIK3R1
PIK3R2

PIK3R3

PLCG1

PLCG2

MAPK14

MAPK1

MAPK3

MAPK11

MAPK13

MAPK12

IRF9

TYK2

STATT T1

STATT T2

IFNAR2

IFNAR1RAR

JAK1JJ
IL6STS

STATT T3

IL6R

IL6

CASP1

RELA
NFKB1

ADAM17DD

HBEGF

TNF

TNFRSF1A

CHUK

IKBKG

IKBKBKBK

MAP3K7

MAPK10

MAPK88
MAPK9

TRAF6

IRAK4

IRAK1K

MYD88

TLR2

TLR7

TLR8

TLR4

IL1B

IL12A
IL12B2I 122II 11

NFKBIA

NFKBIB

OAS1OO

OAS2OO

OAS3OO

MX1

MX2

ADARDD

TAB2TT

FOS

JUN

EIF2AK2

MMP3

MMP1
CCL2

CXCL8

EGFR

NLRP3

Number of 
neighbors

5

10

15

f

Multi-modal 
regulatory 
genomics

e

640
(65%)

202
(20%)

119
(12%)

10
(1%)

2
(0%)

19
(2%)

0
(0%)

Covid-19 known host pathway 
genes (sourced from KEGG)

TARGET 
INDEX

(1%)

Pr
ox

im
ity

Q
TL

PC
H

i-C

Gene interactions
derived from KEGG 

pathways

PIT

Evidence criteria

b

c

Priority rating
(TARGET INDEX)

Same as PIT but 
based on BioGRID 
(AUC=0.695)

Fig. 2 | The target index (PIC2Target) for critical Covid-19. a Target prioritisation
workflow. b Performance benchmarking. Performance is measured by AUC, dis-
tinguishing Covid-19 phase-III drug targets from simulated negative targets. Several
target-index generation schemes are compared: PIT (using a logistic meta-analysis
combined method and employing network evidence sourced from the STRING
database), Naive schemes (frequency of therapeutic targeting by existing licensed/
approved drugs, motivated by drug repurposing), and an alternative method
employing network evidence sourced from the BioGRID database. Abbreviations
include AUC (area under the ROC curve), FN (false negatives), FP (false positives),
TN (true negatives), and TP (true positives). c Manhattan plot. Priority rating (y-

axis) for ~14,000 target genes is illustrated across genomic locations, with the top two
prioritised genes per chromosome labelled on the x-axis. d Pie plot illustrating the
composition of core and peripheral genes amongst the top 1% of the target index.
Right panel: bar plot for core genes identified through each indicated evidence of
criteria. e Venn diagram illustrating the overlap between the top 1% of the target
index, the Covid-19 host pathway genes (KEGG), and host genes directly interacting
with SARS-CoV-2 viral proteins. f Network visualisation of the Covid-19 host
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CTSC (53rd), the target of brensocatib (a dipeptidyl peptidase I
inhibitor);
JAK2 (59th), the target of baricitinib and pacritinib (two JAK2
inhibitors);
IL6 (65th), targeted by siltuximab (an interleukin-6 inhibitor);
CXCR2 (82nd), the target of reparixin (an interleukin-8 receptor B
modulator);

JAK1 (111th), the target of baricitinib (a JAK1 inhibitor);
CD86 (132nd) and CD80 (134th), both targeted by abatacept (a
T-lymphocyte activation antigen CD86/CD80 inhibitor);
CXCR1 (151st), the target of reparixin (an interleukin-8 receptor A
modulator);
IL2RA (174th), IL2RG (198th), and IL2RB (213th), all targeted by alde-
sleukin (an interleukin-2 receptor agonist);
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IL1B (189th), the target of canakinumab (an interleukin-1 β inhibitor);
IL6R (201st), targeted by levilimab, sarilumab, and tocilizumab (three
interleukin-6 receptor α subunit inhibitors);
TNF (211th), targeted by adalimumab and infliximab (two TNF-α
inhibitors);
DPP4 (221st), the target of linagliptin (a dipeptidyl peptidase IV inhi-
bitor); and
TLR7 (228th), the target of hydroxychloroquine sulfate (a Toll-like
receptor 7 antagonist).
Notably, baricitinib, a selective oral JAK1/2 inhibitor, has been

shown to improve the use of remdesivir, the only FDA-approved antiviral
drug for the treatment of Covid-19 (ref. 47). Baricitinib not only reduces
recovery time but also accelerates improvement in clinical status48. The
REMAP-CAP randomised clinical trial revealed that critical Covid-19
patients receiving IL6 receptor inhibitors (tocilizumab or sarilumab)
exhibited an improved 180-day mortality rate49. Collectively, genes
identified at the leading prioritisation (referred to as ‘leading target genes’
hereinafter; listed in Supplementary Data 3) tended to be therapeutically
considered for targeting to treat Covid-19. Approximately 70% (16/23) of
these genes have already been targeted by approveddrugs in other diseases
(odds ratio = 65.8; 95% CI = 25.4, 190); P-value = 6.6 × 10−19; see Fig. 3b),
especially in immune-mediated diseases. These immune diseases include
ankylosing spondylitis, Crohn’s disease, juvenile idiopathic arthritis,
multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythe-
matosus, and ulcerative colitis (Fig. 3c). Moreover, when incorporating
our previous findings34, we found that these approved drug targets were
also highly prioritised in their respective immune diseases, including
CD80/86, IFNAR1/2, IL1B, IL6R, JAK1/2, TLR7, and TNF (Fig. 3d, e and
Supplementary Data 4).

Based on leading target genes, we delved deeper into: (1) the cellular
basis, revealing the involvement of multiple immune and inflammatory
lineages (Fig. 4a and Supplementary Fig. 4); (2) molecular functions, bio-
logical processes, and environmental information processing pathways
(Fig. 4b and Supplementary Data 5); and (3) their evolutionary origins,
particularly emerging at the time of Amniota (the most recent common
ancestor of all living reptiles, birds, and mammals) (Fig. 4c and Supple-
mentary Data 6). Amniotes represent the clade of tetrapod (‘four-leg’)
vertebrates characterised by protective extra-embryonic membranes.
Remarkably, genes originating at Amniota were mostly involved in
cytokine-cytokine receptor interactions, as well as the JAK-STAT signaling
(i.e., IFNAR2, IFNG, IFNGR1/2, IFNK, IL10RA, IL22RA1, IL2RA, IL4R, IL5/
6, and LIF). The knowledge ofmolecular interactions within the JAK-STAT
signaling was illustrated, with genes color-coded based on their priority
rating (Fig. 5).

The drug index
One of the distinguishing features of PID lies in its capacity to perform
crosstalk-based drug repurposing and effect-by-removal analysis to deter-
mine the impact of node removal on pathway crosstalk, generating an index
for crosstalk-based repurposed drugs (refer to Fig. 1c). Central to this
capability is the identification of genes that mediate crosstalk between

pathways. The resulting 50-gene network for pathway crosstalk (P-
value = 1.41 × 10−112 based on the permutation test) all contained highly
prioritised genes in critical Covid-19 (Fig. 6a and Supplementary Data 7).
Remarkably, 8 genes (i.e.,CSF2,CXCR2, IFNAR1/2, IL10RB, IL6, and JAK1/
2) targeted by drugs currently undergoing phase-III clinical trials for Covid-
19 were present within this network (Fig. 6b, c). By focusing on pathways
significantly over-represented in this crosstalk network (Fig. 6d and Sup-
plementary Data 8), we could represent the crosstalk at the pathway level,
with edges estimated based on the extent of genes being shared between two
endpoint pathways (Fig. 6e).

We proceeded to explore the evidence in support of drug repurposing
by askingwhether pathway crosstalk genes could be targeted by approved or
phased drugs in diseases other than Covid-19. Our analysis yielded sub-
stantial clinical evidence (approveddrugs)with false discovery rate (FDR)of
1.9 × 10−8, identifying 13 genes already targeted by approved drugs used to
treat other diseases, that is, licensed medications in clinical use for diseases
other than Covid-19 (Supplementary Fig. 5). Notably, out of these 13
approved drug targets, 12 genes (IFNAR1/2, IFNG, IFNGR1/2, IL6/13,
JAK1/2/3, PIK3CA, and TYK2) were integral to the JAK-STAT signaling
pathway, highlighting repurposing opportunities of targeting this pathway.
Additionally, we identified four phase-III drug targets (CSF2, CXCR2,
IL10RA, and IL10RB; FDR = 5.9 × 10−3).

Finally, we delved into drug repurposing opportunities by imple-
menting crosstalk-based effect-by-removal analysis. Effect-by-removal
analysis gauged the vulnerability of the pathway crosstalk to node
removal, either individually or in combination; removing critical network
nodes would result in a larger proportion of disconnected nodes in the
crosstalk (Fig. 7 and Supplementary Data 9). This analysis generated an
index for repurposed drugs, that is, the drug index measured as the
fraction of disconnected nodes (ranged 0–1). The drug index underscored
repurposing opportunities of clinically approved inhibitors targeting the
JAK-STAT signaling. Notably, removing the gene PIK3CA alone resulted
in a maximum of 36.4% node disconnection (i.e., the drug index of 0.34).
This gene is intricately linked to thePI3K/AKT/mTORaxis andpresents a
potential Covid-19 pharmacological target50. The disconnection fraction
increased to 40.0%when further removing JAK2 (i.e.,PIK3CA+ JAK2) or
IFNB1 (i.e., PIK3CA+ IFNB1), representing the maximal/optimal effect
achievable by removing any twonodes in combination (i.e., the drug index
of 0.38). Further disconnection, reaching a maximum of 42% dis-
connections (i.e., the drug index of 0.42), was observed upon removing
PIK3CA+ JAK2+ IFNB1. In summary, drug repurposing coupled
with effect-by-removal analysis provided evidence for targeting key
components (i.e., PIK3CA, JAK2, and IFNB1) of the JAK-STAT
signaling pathway, either individually or in combination (potentially for
the poly-therapeutics discovery in critical Covid-19)51. The ongoing
focus on targeting this pathway is reinforced by the presence of ther-
apeutic agents now in active phase-II/III clinical trials in Covid-19. This
includes therapeutic agents targeting the gene IFNB1, which are currently
under phase-II clinical trials for Covid-19 (Fig. 7, top), while agents tar-
geting the gene JAK2 are undergoing phase-III trials for Covid-19 (also
see Fig. 6c).

Fig. 3 | Leading prioritisations for critical Covid-19. a Leading prioritisation plot
for Covid-19 phase-III drug targets. Those Covid-19 phase-III drug targets (n = 23)
recovered at the leading prioritisation (zoomed in left panel) are denoted by gene
symbols and indicated in vertical lines (also color-coded by priority rating). The
leading prioritisation represents the core subset of prioritised target genes that
accounts for the enrichment signal, visualised as the left-most region of the peak in
the running enrichment plot (middle panel). All genes at the leading prioritisation,
referred to as ‘leading target genes’ (n = 228), were subjected to enrichment analysis
in terms of cellular basis (cell types; see Fig. 4a), functions and pathways (see Fig. 4b),
and evolutionary origins (ancestors when they were first created; see Fig. 4c). bVenn
diagram illustrating the intersection between Covid-19 phase-III drug targets
recovered at the leading prioritisation and the entire pool of approved drug targets in
any disease indications. The statistical significance (P-value), odds ratio, and its 95%

confidence intervals (CI; represented by lines) were calculated using one-sided
Fisher’s exact test. c Hierarchical edge bundling for targets and drugs. Covid-19
phase-III drug targets recovered at the leading prioritisation (in pink) that are
already targeted (connected by edges) by approved drugs in other diseases are
connected by edges. Those edges involving immune-mediated diseases are high-
lighted in orange. d, e Cross-disease prioritisation map between critical Covid-19
and immune-mediated diseases. The map with a 2D butterfly-like topology was
trained using a self-organising algorithm for leading target genes in critical Covid-
19. d The architecture of the map, consisting of 49 hexagons (H1-H49) with genes
listed within per hexagon (if any). e Disease-specific illustration of target gene
prioritisation, with locations in a 2D square lattice capturing inter-disease rela-
tionships. This square map was also trained using self-organising algorithm but for
diseases.
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Fig. 4 | Enrichment analysis for leading target genes. a Circular illustration of cell
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plot illustrating enriched functions and pathways, with the 10 most significant
terms/pathways labelled. Functions are based on Gene Ontology (GO) Biological
Process and Molecular Function terms, while pathways based on KEGG (Envir-
onmental Information Processing pathways). Each dot corresponds to an individual
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c Forest plot illustrating enriched phylostrata (ancestors) ordered by evolutionary
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ratio, and its 95% confidence intervals (CIs; represented by lines) were calculated
using one-sided Fisher’s exact test.
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Discussion
In deepening our long-standing efforts in therapeutic target prediction and
validation, our work has culminated in the creation of the PIC2 solution,
dedicated to expediting Covid-19 translational medicine research. It
streamlines the running from genetic target prioritisation to rational drug
repurposing, thereby contributing to informed decisions about potential
therapeutic candidates for next preclinical validations and, ultimately,
clinical trials.

An outstanding feature of PIC2 lies in its capacity in seamlessly inte-
grating GWAS summary-level data with a wealth of multi-modal regulatory
genomic datasets and high-quality protein interactions. Comprehensively
incorporating both genetic and network information, this integration cul-
minates in the generation of the target index, demonstrated to be informative
in recovering pre-existing Covid-19 phase-III drug targets. Another notable
feature offered by PIC2 is its capacity in discerning crosstalk between path-
ways, which represents an advancement compared to our previous
studies34,35. This crosstalk-based approach enhances the identification of
genes for potential drug repurposing. The effect-by-removal analysis is an
addition that provides insights into the impact of removing specific nodes
(genes) from the network, allowing for the evaluation of the consequences of
targeting individual genes or their combinations, particularly in the context of
pathway crosstalk, which is essential for drug repurposing. This crosstalk-
based drug repurposing, when coupled with effect-by-removal analysis, is a
component that enhances the methodology’s depth and applicability. As
exemplified in this study, it offers an avenue for repurposing clinically
approved JAK-STAT inhibitors, whether as single agents or in combination,
for potential application in the treatment of severe Covid-19 cases.

Acknowledging the limitations of PIC2 is crucial, particularly in its
reliance on the availability and quality of regulatory genomic datasets. The
quality and abundance of these datasets play a pivotal role in establishing
links between non-coding loci and the core genes that underlie host genetic
associations. As QTL and PCHi-C datasets continue to expand across
diverse cell types, states, and tissues, improvements in the accuracy and

comprehensiveness of target prioritisation and drug repurposing are
anticipated. Exploring alternative rating schemes, such as Brown’smethod52

and the Cauchy combination test53, offers a potential avenue to explicitly
address the challenge of interdependence/non-independence between
predictors.Another limitation arises from the lackof extensive experimental
or clinical validations, even though we have demonstrated the validity and
utility of the leading prioritisation and drug repurposing. The dual indexes
for targets and drugs form the foundation for validation and repurposing
within the wider research community. However, the need for substantiated
therapeutic efficacy remains paramount and necessitates further evidence,
potentially derived from human disease-relevant assays.

Our study, primarily oriented toward the prioritisation of potential
therapeutic targets for critical Covid-19, does not explicitly determine the
specific directionality (i.e., agonism or antagonism) of the prioritised genes.
Instead, the prioritisation stems from the perceived relevance of these genes
within the disease context. Additional experimental and functional inves-
tigations are required to ascertain the precise directionality of therapeutic
intervention (agonism or antagonism) for prioritised genes. Such studies
encompass in vitro and in vivo assays, preclinical models (particularly
human organoids54,55), and clinical trials, enabling a comprehensive
understanding of the effects resulting from themodulation of the activity of
these genes. Our approach yields a prioritised list of potential therapeutic
targets, mandating further empirical validation to define the most optimal
therapeutic intervention strategy.

The development of the PIC2 solution represents a big step forward
in the realm of critical Covid-19 research. However, it is just the
beginning of an exciting journey toward more accurate, comprehensive,
and context-specific target prioritisation and validation. We are com-
mitted to embracing the potential future directions (detailed below) and
welcome collaborative efforts to realise these objectives. By integrating
omics data, utilising functional annotations, and considering context-
specific interactions, we aim to enhance our understanding of Covid-19
mechanisms and improve the precision of target prioritisation, ultimately

Fig. 5 | JAK-STAT signaling pathway. Its member
genes are color-coded by priority rating, with lead-
ing target genes highlighted in bold.
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contributing to the development of effective therapeutic strategies for
critical Covid-19 patients.

- Integration of omics data. One of themost promising areas for future
exploration involves the integration of diverse omics data, including tran-
scriptomic, epigenomic, andproteomic information,whichcan enhance the

comprehensiveness of the target index. While our study primarily focused
on genetic and network evidence (which is less context-specific), we
recognise the significance of including these additional layers of omics data
information to further refine and validate the target index. The inclusion of
cell-type-specific expression information, for instance, could facilitate the
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selection of prioritised targets in specific cell types for experimental vali-
dation. This context-specific data is vital for refining the prioritisation of
genes for therapeutic targeting. Additionally, the integration of epigenomic
and proteomic data can provide insights into post-transcriptional and post-
translational modifications, offering a more comprehensive understanding
of target functionality. By combining these data types, future research can
achieve a deeper comprehension of critical Covid-19 mechanisms and
enhance therapeutic target prioritisation.

-Utilisation of functional annotations. The incorporation of functional
annotations, suchas gene ontology terms and curatedpathway information,
is another avenue for improving target prioritisation. By associating target
genes with specific biological processes or pathways relevant to Covid-19,
this approach can enhance the contextualisation of the relationship between
gene function and disease progression. Curated pathways from reputable
databases, like KEGG, can serve as reliable sources to guide the functional
annotation process. This additional layer of data can refine the selection of
prioritised targets in specific biological contexts, thus increasing the preci-
sion of target prioritisation.

- Context-specific interactions. The importance of considering
context-specific interactions, especially tissue-specific or cell-type-specific
interactions, cannot be overstated. Accurately representing host-virus
interactions necessitates leveraging context-specific networks to obtain a
more precise understanding of the disease process within the context of
critical Covid-19. These context-specific interactions are invaluable for
identifying critical nodeswithin specific cell types or tissues that play pivotal
roles in the disease process. As the importance of context-specific infor-
mation grows in phenomics56,57, our future endeavors will delve deeper into
this aspect.

In summary, our PIC2 solution, tailored for critical Covid-19, offers a
platform for in silico and timed translation of host geneticfindings into drug
repurposing. The accessibility, reproducibility, and the potential for scal-
abilitymake it a robust solution. Looking beyond the scope of this study, the
dual-indexes strategy holds promise for scalability, positioning it as an
adaptable approach for addressing a wide range of disease domains.Within
these domains, computational translational medicine emerges as an indis-
pensable tool, swiftly bridging the gap between host genetic insights and
their effective applications in translational therapeutics.

Materials and methods
Generating an index for genetically informed therapeutic targets
for critical Covid-19 (PIC2Target) through a genetics-driven and
network-based approach (PIT)
The creation of the index involved the implementation of our previously
established multi-step integrative prioritisation strategy, which integrates a
genetics-driven and network-based approach26,34,35. To elucidate, we used
criticalCovid-19GWAS summary-level data21 as inputs andharnessedboth
genetic evidence (from multi-modal regulatory genomic datasets) and
network evidence (from high-quality protein interactions), to output a
comprehensive list of approximately 14,000 target genes, ranked by their
priority ratings on a scale of 0–5. This intricate prioritisation procedure
comprises the following key components.

- GWAS SNPs. We input GWAS-detected SNPs with a significant
threshold of P-value < 5 × 10−8. In addition, SNPs in linkage disequilibrium
(LD;R2 >= 0.8)were considered according to theEuropeanpopulation58. The

scoring formula for SNPs accounted for various aspects of disease genetic
associations, including p-values, the significance threshold, and R2 values.

- Core genes. SNPs scored above were used to define core genes
through evidence of genomic proximity (nearby genes), e/pQTL (QTL
genes)59–65, and PCHi-C (conformation genes)66–71. In addition to SNP
scores, the scoring for core genes also encompassed the following factors: (1)
the distance-to-SNP window for genomic proximity; (2) the significance
level of genetic associations with gene expression for eQTL datasets or
protein abundance for pQTL datasets; and (3) the strength of gene pro-
moters physically interacting with SNP-harbouring genomic regions for
PCHi-C datasets. The empirical cumulative distribution function (eCDF)
was estimated based on all SNP-gene pairs to ensure scaling within the
0–1 range.

- Peripheral genes. Using core genes as seeds, we implemented the
RWR algorithm to identify (non-seed) peripheral genes under network
influence through exploiting knowledge of protein interactions. The RWR
algorithm is a propagation-based method that simulates the information
flowwithin a network to estimate connectivity (affinity) between twonodes.
Thismethodassignedaffinity scores togenesbasedon their connectivity to a
set of ‘seed’ genes (in this context, core genes identified through genetic
evidence). We established a network of protein interactions primarily from
the STRINGdatabase36, incorporating interactionswith an interaction score
no less than 0.7 (i.e., high confidence) and labelled as ‘experiments’ and
‘databases’ (i.e., manually curated). This interaction network encompassed
approximately 14,000 nodes/genes (and around 201,000 interactions/
edges). There were two types of nodes in this gene interaction network:
nodes labelled as seed genes (along with their corresponding scores as
weights), and the remaining nodes as non-seed genes. The algorithm started
a random walk from each seed gene and iteratively traversed neighboring
genes along network edges. At each iteration, the walker faced a choice:
either moving to a randomly chosen neighbor or jumping back to the seed
node. This process continued until a steady state was reached, characterised
by the probability distribution of each gene stabilising. The resulting steady
probability values, ranging from 0 to 1, stored affinity scores for each gene
relative to seed core genes. For each of datasets (i.e., proximity, QTL, and
PCHi-C), the process above yielded a predictor containing core and per-
ipheral genes, accompanied by affinity scores that quantified their network
connectivity to seed core genes. Notably, genes with higher network con-
nectivity to seed core genes were assigned higher affinity scores. Generally,
seed genes were more likely to receive higher affinity scores than non-seed
peripheral genes.Nonetheless, aperipheral genemight receive ahighaffinity
score if it exhibited high connectivity to most (if not all) seed genes. Thus,
non-seed peripheral genes with higher affinity scores denoted genes highly
influenced by the network.

- Gene-predictor matrix. Employing the abovementioned multi-step
scoring procedures (GWAS/LD SNPs – core genes – peripheral genes), a
gene-predictormatrix was constructed. Thismatrix featured rows for genes
and columns for predictors. Within this matrix, affinity scores were amal-
gamated, collectively incorporating genetic evidence and network evidence.

- Performance benchmarking for target-index generation/prioritisa-
tion schemes. Leveraging the gene-predictor matrix constructed above,
various generation schemes were evaluated for combining predictors. Per-
formance comparisons were conducted between (1) meta-analysis-like
schemes, including logistic and Fisher’s combined methods (detailed in the

Fig. 6 | Pathway crosstalk for critical Covid-19. It was identified from pathway-
derived gene interactions but constrained by target gene prioritisation information
(i.e., target index). aGene-centric representation of the crosstalk, with nodes labelled
by ‘gene symbol @ priority rank’ and color-coded by priority rating (target index).
The crosstalk involves highly prioritised and interconnected genes. Genes targeted
by drugs in phase-III clinical trials for Covid-19 are highlighted in bold. b Venn
diagram illustrating the overlap between crosstalk genes and Covid-19 phase-III
drug targets. The statistical significance (P-value), odds ratio, and its 95% CI were
calculated using one-sided Fisher’s exact test. c Tabular display of crosstalk genes

also being Covid-19 phase-III drug targets, along with information on drug candi-
dates and mechanisms of action. d Kite-like plot for KEGG pathways enriched in
crosstalk genes. Enrichment significance (FDR) was calculated using one-sided
Fisher’s exact test. Each kite is sized by the number of member genes (indicated by
blue dots beneath). Abbreviations include CCR (cytokine-cytokine receptor) and
TNF (tumor necrosis factor). e Pathway-centric representation of the crosstalk, with
node size indicating the number of pathway member genes, and edge thickness
proportional to the number of shared genes between two-endpoint pathways.
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Fig. 7 | The drug index (PIC2Drug) for critical Covid-19. Effect of node removal,
either individually or in combination, on the crosstalk. The fraction of disconnected
nodes (i.e., the drug index) on the y-axis is plotted against node removal (indicated
by solid circles beneath) on the x-axis. Notably, only the optimal removal with the

largest effect is illustrated for two- or three-node combinatorial removal. Inserted is
visualisation of the crosstalk, with the same layout as Fig. 6a, but labelled only for
genes with optimal removals.
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subsequent section ‘Gene-level prioritisation’), and (2) conventional
schemes, comprising sum (additively aggregating affinity scores across
predictors) and max (selecting the maximum one across predictors). Per-
formance was also compared with a Naive scheme, wherein genes were
prioritised based on the frequency of being therapeutically targeted by
licensed/approved drugs. This Naive prioritisation, motivated by drug
repurposing (though not applicable for prioritising new targets), served as
the status quo baseline for target-index prioritisation. Performance assess-
ment relied on the area under the ROC curve (AUC) for distinguishing
Covid-19 phase-III drug targets from simulated negative target controls.
Information on phase-III drug targets in Covid-19 was sourced from the
ChEMBL database72, encompassing drug candidates and mechanisms of
action explaining drug efficacy. Simulated negative target controls for
Covid-19 were established based on known therapeutics from ChEMBL,
involving three steps: (1) defining the druggable landscape as all known
target genes across various diseases and drug development phases; (2)
extracting Covid-19 drug targets (regardless of drug development phase)
from ChEMBL, along with their interacting neighbours determined by
interaction information from databases (STRING36 and Pathway
Commons73); and (3) simulating negative targets as genes from the drug-
gable landscape after excluding Covid-19 drug targets and their interacting
neighbours.

- Target-index generation/prioritisation. For comprehensive mathe-
matical explanations regarding Fisher’s combined meta-analysis method,
please consult our previous publication34. Building upon the performance
evaluation elucidated in the previous section, in this study, PIT used a
logistic combined meta-analysis method to consolidate predictors within
the gene-predictor matrix prepared earlier. Within the gene-predictor
matrix, affinity scores for a given predictor were first converted into P-like
values using empirical cumulative density function (eCDF) estimated from
affinity scores of all genes within that predictor (Eq. 1).

Pj
i ¼ eCDFðAFj

iÞ; ð1Þ

Here,AFji denotes the affinity score for the ith gene concerning the jth
predictor,Pj

i is the corresponding convertedP-value, and eCDF is estimated
based on all genes.

Subsequently, converted P-values for a gene were combined across
predictors via a logistic combined method (Eqs. 2–4); see the publication38

for a more detailed explanation. Ultimately, the combined P-value under-
went rescaling to yield priority rating (continuously from 0–5 and corre-
sponding to priority rank from1 to~14,000). This output is referred to as an
index for target genes (denoted as PIT; Eq. 5).

xi ¼ �2
XJ

j
Pj
i= 1� Pj

i

� �h i
; ð2Þ

xi ∼ St 5J þ 4ð Þ; ð3Þ

CPi ¼ CDFðxiÞ; ð4Þ

PITi ¼ 5×
� logCPi �MINK

k � logCPk

� �

MAXK
k � logCPk

� ��MINK
k � logCPk
� � ; ð5Þ

In these equations, Pj
i denotes the converted P-value for the ith gene

within the jth predictor, J is the number of predictors, St(5J+4) denotes
Student’s t-distribution with 5J+ 4 degrees of freedom, CPi symbolises the
combined P-value for the ith gene (that is, CDF valued at xi), and PITi
represents the priority rating for the ith gene (among K genes, where K
is ~14,000).

- Analysis using human genes/proteins that directly interact with
SARS-CoV-2 viral proteins. Interactions between SARS-CoV-2 viral pro-
teins and human proteins were obtained from the BioGRID database
(version 4.4.214)37. A total of 2637 virus-host interactions, encompassing 29
SARS-CoV-2 viral proteins and 652 human proteins, were independently

identified by two or more studies39–45. Fisher’s exact test was employed to
estimate the significance of the overlap between virus-interacting human
proteins and the top 1%of prioritisedgenes. This testwas also performed for
human proteins interacting with each of the 29 SARS-CoV-2 viral proteins.

- Analysis using knownCovid-19 human host pathway. The Covid-19
human host gene interaction pathway, expertly curated and extensively
documented in www.genome.jp/pathway/hsa05171 as part of the KEGG
database46, focuses notably on the downstream effects of the SARS-Cov-2
virus on the host. These effects involve not merely direct interactions with
host proteins, but also encompass variousdownstreamoutcomes suchas the
activation of the NF-kB pathway, IL-6 production, systemic inflammation,
andmanyothers. Retrieving this information fromKEGG involvedutilising
the KEGGgraph package (version 1.56.0) to download the KGML-
formatted file, which was subsequently processed and converted into an
igraph R object. Fisher’s exact test was used to assess the significance of the
overlap between the top 1% prioritised genes and the genes associated with
the host pathway. The stressmajorisation algorithmwas applied to visualise
the network layout of gene interactions within the host pathway.

- Leading prioritisation. The concept of leading prioritisation pertains
to the core subset of all prioritised genes, conveniently referred to as ‘leading
target genes’, which contribute to the enrichment of phase-III drug targets in
Covid-19. This enrichment was visually presented as the leftmost region of
the peak within the running enrichment plot generated by target set
enrichment analysis. The dnet package (version 1.1.7)74 facilitated this
analysis by quantifying the degree to which Covid-19 phase-III drug targets
were enriched at the leading prioritisation. Essentially, Covid-19 phase-III
drug targets found at the leading prioritisation were assigned high priority.
The significance (P-value) of the enrichment was ascertained through
permutation tests conducted 50,000 times.

- Cross-disease prioritisation map. We employed a self-organising
algorithm implemented in the supraHex package (version 1.40.0)75–77 to
construct a cross-disease prioritisation map for leading target genes in cri-
tical Covid-19. A butterfly-shapedmap, consisting ofN = 49 hexagons, was
trained using the input prioritisation matrix (containing priority rating)
acrossM = 9 diseases. These diseases included critical Covid-19 (this study)
and 8 immune-mediateddiseases34: ankylosing spondylitis, Crohn’s disease,
juvenile idiopathic arthritis, multiple sclerosis, psoriasis, rheumatoid
arthritis, systemic lupus erythematosus, andulcerative colitis. The codebook
matrix associated with the trained map was utilised to provide a disease-
specific view of target gene prioritisation. To further visualise inter-disease
relationships, a 2D squaremap lattice was used to self-organise diseases in a
manner that geometric locations within this square lattice delineated the
relationships between diseases.

- Enrichment analysis for leading target genes. OpenXGR78,79 was used
for conducting enrichment analysis on leading target genes to identify over-
representation (i.e., enrichments) in terms of cellular basis (cell types),
functions (GO terms), pathways (KEGGpathways), and evolutionary history
(phylostrata). Cell-type-specific gene signatures were extracted from xCell80.
GO Biological Process and Molecular Function terms, alongside their
annotated genes, were obtained from NCBI81. Environmental Information
Processing (EIP) pathways and their member genes were sourced from
KEGG46, which covers a diverse range of molecular pathways, including EIP
andsixother categories. Eachcategory captures its uniqueknowledgedomain
of molecular interactions with relative completeness. Genes first created at
each of 16 phylostrata were extracted from this study82 to delve into the
evolutionary history of leading genes. Enrichment analysis was performed
using one-sided Fisher’s exact test, producing FDR, Z-scores, odds ratio and
its 95%CI.A bipartite graphwas crafted to illustrate the relationship between
enriched cell types and their member genes.

Generating an index for repurposed drugs in critical Covid-19
(PIC2Drug) through pathway crosstalk-based effect-by-removal
analysis (PID)
- Identification of pathway crosstalk. This identification focused on genes
with high ratings and strong interconnectedness. The search involved
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selecting a subset of gene interactions that were merged from KEGG EIP
pathways. The intention of choosing EIP pathways aimed to emphasise
molecular interactions involved in signal transductions that are less
organism, cell type, and disease- specific. These EIP pathways encompassed
2158 genes, collectively forming a network of 15,375 interactions between
these genes. Each interaction in this gene networkwas present in at least one
EIP pathway(s). The process of identifying pathway crosstalk utilised a
heuristic solution for solving the prize-collecting Steiner tree problem74,78.
To assess the statistical significance (P-value) of the identified crosstalk, a
degree-preserving nodepermutation testwas conductedwith 100 iterations.
Additionally, the analysis allowed for the specification of a desired number
(e.g., 50) of nodes or genes in the resulting crosstalk could be specified, and
this desired output was obtained through a well-established iterative search
procedure. For comprehensive details, please refer to our previous
publications74,78,79. The identified crosstalk, apart from its portrayal as a gene
network, was also visualised as a pathway-centric network, in which path-
ways were depicted as nodes and their inferred connections as network
edges. Only pathways that exhibited significant over-representation in
crosstalk genes, as determined by a one-sided Fisher’s exact test, were
included as nodes. The edges were initially inferred based on the shared
member genes between pathways, and then filtered by identifying the
minimum spanning tree using the igraph package (version 1.6.0). This
process retained only the edges present within the resulting tree, with the
thickness of edges adjusted proportionally according to the number of
shared member genes between the two endpoint pathways.

- Crosstalk-based drug repurposing. The drug repurposing analysis
relied on information extracted from ChEMBL72, which aggregated ther-
apeutic data on current phase-III and approved therapeutics (including
drugs, development phases, target genes and disease indications). For a
disease indication, drugs reaching the maximum phase of development were
selected for a target gene, considering that selected target genes had well-
defined mechanisms of action and could explain the efficacy of drugs in
treating the disease. These selected target genes were categorised into two
distinct groups: one encompassing approved drug targets (i.e., genes targeted
by any approved drugs), and the other comprising phased drug targets (i.e.,
genes targeted by non-approved phased drugs that are in developmental
phases, not by any approved drugs). One-sided Fisher’s exact test was used to
evaluate the statistical significance of crosstalk genes enriched for two drug
target groups (i.e., approved drug targets and phased drug targets).

- Crosstalk-based effect-by-removal analysis. The removal analysiswas
designed to evaluate the effect of nodes on the crosstalk. This analysis
comprised two dimensions: (i) the individual removal of nodes (i.e., single-
node removal), and (ii) the simultaneous removal of nodes in combination
(i.e., combinatorial removal). Single-node removalwas undertaken todefine
an index for repurposed drugs targeting the node being removed. In
instances where a specific node earmarked for removal was pivotal for the
network, its removal would result in the disconnection of a substantial
fraction of nodes from the largest network component. This fraction,
embodying the number of disconnected nodes, was used to quantify the
drug index. Combinatorial removal, on the other hand, sought to select
optimal combinations for targeting, with the objective of maximising the
effect resulting from the simultaneous removal of specific node combina-
tions (e.g., removing two nodes at once). In other words, the largest fraction
of disconnected nodes was sought for removing a specific node combina-
tion. The effect of node removal was visually captured through an upset plot
using the ggupset package (version0.3.0). This visualisationmethodallowed
us to clearly depict the outcomes of both single-node and combinatorial
node removal.

Statistics and reproducibility
All statistical analyses were performed using R (version 4.3.0), with one-
sided Fisher’s exact test used for performing enrichment analysis, reporting
the statistical significance, odds ratio, and its 95% confidence intervals. In
the spirit of supporting reproducibility, we offer showcases (http://www.
genetictargets.com/PIC2/showcase) that enable users to reproduce all

findings presented in this study. These showcases include input data, line-
by-line codes, as well as tabular and graphical outputs, all embedded into a
single self-contained HTML file. Within this file, users can find compre-
hensive, step-by-step instructions guiding them through showcases and
providing a preview of anticipated results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data for graphs within this paper are provided in the Supplementary
Data files. More specifically, source data in Supplementary Data 1 are used
to generated Fig. 2b, source data in Supplementary Data 2 for generating
Fig. 2c, source data in Supplementary Data 3 for generating Fig. 3a, source
data in Supplementary Data 4 for generating Fig. 3d, e, source data in
Supplementary Data 5 for generating Fig. 4b, source data in Supplementary
Data 6 for generating Fig. 4c, source data in Supplementary Data 7 for
generating Fig. 6a, source data in Supplementary Data 8 for generating
Fig. 6d, and source data in Supplementary Data 9 for generating Fig. 7.
Togetherwith these source data, data used and generated during the current
study are also accessible through a web-based open-access portal at http://
www.genetictargets.com/PIC2. This portal empowers users to interactively
explore two indexes comprising genetic targets and repurposed drugs for
critical Covid-19.

Code availability
Software codes have been encapsulated within an R package, accessible at
https://hfang-bristol.github.io/PIC2. Additionally, codes have been depos-
ited into a public data repository at Figshare (https://doi.org/10.6084/m9.
figshare.24967797).
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