
ARTICLE

Single-cell transcriptomics of human iPSC
differentiation dynamics reveal a core molecular
network of Parkinson’s disease
Gabriela Novak 1,2,3✉, Dimitrios Kyriakis 1, Kamil Grzyb1, Michela Bernini1, Sophie Rodius4,

Gunnar Dittmar 4,5, Steven Finkbeiner 3 & Alexander Skupin 1,6✉

Parkinson’s disease (PD) is the second-most prevalent neurodegenerative disorder, char-

acterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying

mechanisms are only partly understood and there is no treatment to reverse PD progression.

Here, we investigated the disease mechanism using mDA neurons differentiated from human

induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1

gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene

expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially

expressed during mDA neuron differentiation. Network analysis revealed that these genes

form a core network, members of which interact with all known 19 protein-coding Parkinson’s

disease-associated genes. This core network encompasses key PD-associated pathways,

including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and

vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopa-

mine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN

neurons. Our findings suggest the existence of a network onto which pathways associated

with PD pathology converge, and offers an inclusive interpretation of the phenotypic

heterogeneity of PD.
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Parkinson’s disease (PD) is one of the most prevalent neu-
rological disorders, second only to Alzheimer’s disease, with
a prevalence of 1.8%, among persons over the age of 65 and

2.6% in the 85 to 89 age group1–3. As the average age of the
population increases, PD is expected to pose an increasing burden
to society. PD is characterized by the death of the midbrain
dopaminergic (mDA) neurons found in the substantia nigra
region of the brain, which are selectively sensitive to Parkinson’s
disease-associated neuronal cell death4–7. This results in the
development of motor deficits, including bradykinesia, rigidity,
and tremor, but many patients also develop non-motor symp-
toms, such as depression or dementia8. Unfortunately, current
treatments only temporarily ameliorate the motor symptoms and
do not reverse or slow down the progression of PD4.

Most of our understanding of PD pathology at the molecular
level is based on mutations known to cause PD, although these
account for only 3–5% of PD cases, the remaining cases being
idiopathic2. Despite the small fraction of cases they explain, these
mutations provide an important window into the underlying
molecular mechanisms of PD because they identify pathways
which, when disrupted, are able to cause the disease. Many of
these mutations converge on mitochondrial homeostasis, repair,
and mitophagy. Hence, mitochondrial dysfunction likely plays a
key role in the pathophysiology of PD9. An important group of
these mutations lies within the PINK1 gene. The PINK1 protein is
expressed ubiquitously throughout the brain, in all cell types,
where it localizes to the mitochondrial membrane10. PINK1 is a
mitochondrial ubiquitin kinase and, together with the cytosolic
ubiquitin ligase PARKIN, it targets damaged mitochondria for
degradation via mitophagy, performing a mitochondrial quality
control function needed to prevent accumulation of damaged
mitochondria, which otherwise results in neuronal cell death11–13.
The ILE368ASN mutation interferes with this process by redu-
cing the interaction of PINK1 with its chaperone, HSP90, and
destabilizing PINK1 at the mitochondrial membrane11. It also
reduces its ubiquitin kinase activity through the deformation of
its substrate-binding pocket and substrate misalignment11. Even
though multiple publications have shown the involvement of
PINK1 in mitophagy, its function is much broader. The targets of
this kinase are involved in many cellular functions, including
neuronal maturation14, neurite outgrowth15, suppression of
mitophagy16, and cell cycle modulation17. The broader impact on
these pathways of loss-of-function mutations in this important
kinase has not yet been fully elucidated18.

One of the main obstacles to the study of Parkinson’s disease is
the death of mDA neurons and the resulting shortage of available
postmortem samples. By the time of diagnosis, 60% of these
neurons have disappeared and about 90% die by the late stage of
the disease6. One approach is to study PD-associated mutations
in animal models19, but human-like mutations in animals often
do not lead to the development of comparable pathology due to
species differences in expression of key genes20,21. Thankfully, the
development of cellular reprogramming allows nowadays for the
conversion of somatic cells into induced pluripotent stem cells
(iPSCs), which can subsequently be differentiated into neurons.
This enables us to generate iPSCs from the skin cells of PD
patients22 and differentiate them into mDA neurons carrying
disease-associated mutations23–25. Differentiating mDA neurons
from iPSCs provides an almost unlimited source of neurons that
allow for deep phenotyping and the elucidation of the cellular
mechanisms underlying PD pathology.

Here, we generated iPSCs from the fibroblasts of a patient
homozygous for the PD-associated mutation ILE368ASN
(p.I368N) in the PINK1 gene2. We used an optimized differ-
entiation protocol to specifically generate mDA neurons, as this
cell type displays a unique susceptibility to cell death in

PD;23,25,26 the effect of PD on other types of DA neurons is
variable6,27.

The mDA neurons are unique and distinct from other DA
neurons. Their development diverges from that of other DA
neurons even before they commit to neural fate28. During early
neural development, neural tube stem cells generate neurons and
glia, the two basic building blocks of the brain. While other DA
neurons follow this direct path, which is determined by the
expression of the PAX6 transcription factor, mDA neurons
develop from radial glial cells of the floor plate and their devel-
opment is driven by early exposure to high levels of the SHH
transcription factor29, which prevents expression of the PAX6
transcription factor30 and sets these cells on an entirely different
developmental path25,28. As a result, mDA neuronal precursors
follow a very unique signaling cascade, leading to the expression
of a transcriptome that greatly differs from that of other DA
neurons21,25–28,31–35. Their distinct identity is reflected in their
function and current research indicates that this leads to their
unique susceptibility to death in PD, which in turn has been
directly associated with the classic movement symptoms of the
disease6,26–28,36. This is also supported by the observation that
gene expression differences between murine and human mDA
neurons, which translate into subtle functional differences, lead to
incomplete PD phenotype in animal models19,21.

To investigate the disease mechanisms linked to the PINK1
mutation, we performed extensive single-cell RNA sequencing
(SC-RNAseq) analysis using Drop-Seq37 at four different time-
points during mDA neuron differentiation23–25. We generated
four pairs of samples, each consisting of a PINK1-ILE368ASN
and a control (17608/638) cell line differentiated in parallel. The
pairs were differentiated in succession so that they would be at a
different stage of differentiation on the collection day (Fig. 1).
This also means that they represent four independent biological
replicates. Pairwise differential expression analysis was then
performed between the PINK1-ILE368ASN and control cell line
of each pair, with a constraint that genes must be strongly and
consistently dysregulated in all pairs, hence at all timepoints, to be
considered in our analysis. The reasons for this are listed in the
discussion section. Using databases of known protein-protein
interactions, we show that these genes form a network and that its
members directly interact with all 19 protein-coding PARK genes
associated with PD. This suggests that other PD-associated
mutations may also be acting through this common network of
genes. Furthermore, the pathway most strongly associated with
the genes of this network is the Parkinson’s disease KEGG
pathway. Subsequent proteomics analysis of differentiated cells
confirmed the manifestation of the transcriptional modifications
at the protein level. Our results point to the existence of a com-
mon disease mechanism that potentially underlies idiopathic PD
and may represent a unifying perspective on PD progression that
will guide future intervention strategies.

Results
We performed a systematic differential expression analysis at a
single-cell resolution between an iPSC line carrying the PD-
associated ILE368ASN mutation in the PINK1 gene and age- and
sex-matched control cell line (control 1–2 in ref. 38) during their
parallel differentiation into mDA neurons (Fig. 1 and Supple-
mentary Tables 1, 2). After preprocessing and quality-filtering, we
used 4495 cells and 18,097 genes in our downstream analysis
(Methods). For data integration, we performed a network analysis
to identify the underlying key mechanisms of PD progression.

Fibroblasts were isolated from a 64-year-old male with PD
symptom onset at 33 years of age who was homozygous for the
ILE368ASN (P.I368N/P.I368N) mutation in the PINK1 gene
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(Coriell Institute, Cat. No. ND40066). The fibroblasts were con-
firmed to have a normal karyotype (Supplementary Fig. 1).
Reprogramming was done at Yale Human Embryonic Stem Cell
Core (New Haven CT) using the Sendai virus. The normal kar-
yotype of iPSCs was confirmed (Supplementary Fig. 2 and Sup-
plementary Tables 9, 10). Their iPSC status was ascertained by
staining for the POU5F1 (also known as OCT4)39–42 and the
TRA-1-8042,43 iPSC markers (Fig. 2a), by expression of key iPSC
status markers using sc-RNAseq (Fig. 2b), and by the TaqMan
iPSC Scorecard Assay44,45, which also confirmed the trilineage
potential of the cell line44 (Fig. 2c).

Single-cell RNAseq (sc-RNAseq) analysis reveals gene expres-
sion panel for direct classification of iPSCs’ stemness or
pluripotency. Staining for OCT/TRA proteins and Scorecard are
common approaches for determining iPSC status (reviewed by
Smith and Stein)42. Here we show that a panel of genes indicative
of iPSC status is readily detectable by single-cell analysis and can
be used to indicate iPSC status directly in the cells used in an sc-
RNAseq experiment, rather than by staining or expression ana-
lysis of an independent sample, which in some cases may not
reflect the iPSC status of the experimental sample. Furthermore,
this may be useful in cases where the samples are no longer
available, such as for data obtained from an sc-RNAseq data
repository. In our dataset, we quantified the expression of genes
commonly used to ascertain iPSC status (MYC46 and
POU5F139–42) and showed that these can be readily detected by
sc-RNAseq analysis (Fig. 2b). However, sc-RNAseq analysis
comes with some limitations. In particular, it is not able to detect
genes which are naturally expressed at low levels. We, therefore,
created a list of genes associated with high stemness, i.e.,
expressed selectively in iPSCs exhibiting full stem cell phenotype,
which are readily detectable in sc-RNAseq data, creating a link
between an iPSC state characterized by standard techniques and a
signature visible in sc-RNAseq data. The heatmap of top genes
differentially expressed during the transition between iPSC and
subsequent differentiation stages shows that the iPSCs express
several genes associated with stemness (Fig. 2b). For instance, we
detected the expression of TDGF-1, which was shown to be
expressed by stem cells with the highest expression of stemness

markers41. Additional genes expressed by the iPSCs were L1TD1,
USP44, POLR3G, and TERF1 (essential for the maintenance of
pluripotency in human stem cells47–50), as well as IFITM1,
DPPA4, and PRDX1 (associated with stemness51–53).

Based on our observations, we propose that the following panel
of genes should provide a reliable indication of stemness in
single-cell experiments: MYC (cMyc), POU5F1 (Oct4), LIN28A,
TDGF-1, L1TD1, USP44, POLR3G, and TERF1 (Fig. 2b).

In vitro differentiation of iPSC-derived mDA neurons recapi-
tulates the in vivo process. As stated by Bjorklund & Dunnett
“expression of TH is not in itself sufficient to prove that a neuron
is catecholaminergic, let alone dopaminergic”35. Hence, we made
great effort to confirm that the neurons generated by our protocol
display a true mDA phenotype.

To confirm that our differentiation protocol (Supplementary
Table 1) recapitulates the in vivo mDA differentiation path, we
identified genes that are essential and specific to the in vivo
mDA differentiation process (OTX2, EN1, LMX1B, LMX1A,
FOXA2, MSX1, NR4A2, PITX3, and others) (Supplementary
Table 3)25–28,33–35 and analyzed their expression during the
development of the control cell line at timepoints D0 (iPSCs),
D6, D10, D15, D21 D26, D35, and D50, which represent the
major developmental steps of the protocol (Fig. 3).

We first imaged cells at timepoints Day 25 and Day 35, as at
this stage the cells should have developed mDA characteristics.
Staining for key mDA protein markers TH, PITX3, LMX1A, and
DAT, with MAP2 as a neuronal marker, confirmed the mDA
phenotype (Fig. 3a). (The co-expression of these mDA markers
with TH is shown in Fig. 4a.) At D25, neuronal cells possess only
short processes and generally low mDA marker expression, but
by D35 their axons are far longer and mDA marker expression is
more defined and more robust. The mRNA expression of TH,
LMX1A, and ALDHA1A was further validated by qPCR, and the
trajectory of these genes’ expression indicated the development of
mDA characteristics by Day 21 (Fig. 3b), in agreement with the
imaging results at Day 25 (Fig. 3a).

To characterize the differentiation process in more detail, we
performed the sc-RNAseq analysis at eight timepoints of the
differentiation process. Analysis of differentially expressed genes

Fig. 1 Experimental design. a Fibroblasts were used to generate human induced pluripotent stem cells (iPSCs), which were then used to generate mDA
neurons. Differentiation was initiated concurrently in a PINK1-ILE368ASN and a control cell line, at three different timepoints, to obtain cells which reach
different stages of differentiation on the same collection day (generating four independent pairs). The samples were collected and processed for SC-
RNAseq at the same time to avoid batch effects. “P+ 1” indicates that the iPSCs were passaged before new differentiation was initiated. Since D10 was not
used in the pairwise analysis, we indicated “P+ 2” between D15 and D6 differentiation initiation. b Heatmap illustrating the transitions in gene expression
from iPSC markers (MYC and POU5F1-OCT3/4), to genes associated with mDA differentiation (PTCH1, FZDZ, HES1, OTX2, SLIT1, and LMX1A), and finally to
an early expression of mature mDA markers (DCX and DDC). This is discussed in more detail in the text and in Figs. 3 and 4. The gene expression matrix
used here consists of 4495 cells (39,194 genes). Colors correlate to normalized counts (z-score, centered, and scaled) of the indicated gene.
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across timepoints revealed the expression of specific differentia-
tion stage modules (Supplementary Fig. 12), in accordance with
known in vivo stage-specific expression patterns (Fig. 3c and
Supplementary Table 3). For example, in vivo, the development of
mDA phenotype depends on the early high expression of Sonic
Hedgehog (SHH), followed by the induction of Wnt signaling and
the expression mDA-specific downstream pathways25,26,28 (Fig. 3c
and Supplementary Table 3). Consistent with these in vivo
differentiation steps, PTCH1, a receptor for SHH, and FZD7, a
receptor for Wnt proteins (Fig. 3c) were among the highest-
expressed genes on day 6 (D6) of the differentiation protocol. The
presence of EN1 as a key entity was confirmed by qPCR
(Supplementary Fig. 15), as its expression level was too low for
detection by sc-RNAseq. The sc-RNAseq analysis again revealed
that at Day 21 many factors that are specific to the mDA
differentiation path, such as TCF12, ALCAM, PITX2, ASCL1, and
DDC27,54–57, were among the most highly expressed genes
(Fig. 3c and Supplementary Fig. 12). Overall, these observations
confirm that our in vitro differentiation protocol does indeed
recapitulate the in vivo differentiation of mDA neurons and
produces genuine mDA neurons (PAX6-, ALDH1A1+, PITX3+,
KCNH6/GIRK2+, NR4A2/NURR1+, and LMX1A+), rather

than other types of DA neurons (PAX6+ and ALDH1A3+)
(Table 1 and Supplementary Fig. 3).

However, this assessment of the differentiation process of
human mDAs was mostly based on the pattern of mDA
differentiation gene expression in murine brains. We, therefore,
compared our data with the recently outlined pattern of gene
expression during human mDA21,58. The pattern of gene
expression during our in vitro differentiation of human iPSCs
into mDA neurons matched the pattern of human mDA
differentiation21 more closely than that of murine neurons,
confirming the validity of our differentiation protocol.

Using the gene expression groups associated with different
stages of maturation, from radial glia (Rgl), progenitors (Prog), to
neural progenitors (NProg), and finally to mDA neurons (DA)21

(Supplementary Table 3), we could characterize the differentia-
tion trajectory by the level of gene expression (Fig. 3d). We then
used these gene groups to characterize individual cells with
respect to their most likely cell type and determined the
population dynamics by the percentage of cell types present at
each timepoint (Fig. 3e). The analysis showed fast differentiation
from iPSC state to a neuronal lineage by Day 6, and the
subsequent maturation towards an mDA phenotype starting at

Fig. 2 Classification of iPSC status. a Immunocytochemistry (ICC). Staining for the iPSC markers POU5F1 (more commonly known as OCT3/4) and TRA-
1-60 of iPSC colonies, prior to differentiation. DAPI was used to stain cell nuclei as a reference. b Expression of genes known to indicate iPSC status (MYC
and POU5F1) and of genes identified by a differential expression analysis between iPSCs and differentiating cells (also see Supplementary Fig. 12). Colors
correlate to normalized counts (z-score, centered, and scaled) of the indicated genes. TDGF-1 is expressed in iPS cells of high stemness;41 L1TD1, USP44,
POLR3G, and TERF1 are essential for the maintenance of pluripotency in human stem cells;47–50 IFITM1, PRDX1, DNMT3B, DPPA4, and LIN28A and are
associated with stemness51–53,137,138. c Results of Scorecard analysis of iPSCs and embryonic bodies (EBs)44,45. iPSCs are expected to show high
expression of self-renewal genes and low expression of mesoderm, ectoderm, and endoderm markers. EBs are cells at an early stage of spontaneous
differentiation. Scorecard analysis of EBs determines the iPSC line’s potential to differentiate into the three germ layers, hence, EBs are expected to express
few or no self-renewal genes and to show expression of some mesoderm, ectoderm and endoderm markers: Ecto±, Meso±, Endo±.
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Day 21, accompanied by the increasing prevalence of DA
phenotype, from 20% at Day 21, to 28% at Day 26, and 61% at
D35, after which it seemed to stabilize (Fig. 3d). This
characterization further confirms that early mDA differentiation
is achieved around Day 21.

The PINK1-ILE368ASN mutation is associated with persis-
tently dysregulated expression of nearly 300 loci. To investigate
the effect of the PINK1 mutation on mDA development, we
differentiated the control and the PINK1-ILE368ASN cell lines in
parallel (Figs. 1, 4) and focused on the early differentiation period,
to increase our chances of finding the direct effects of PINK1-
ILE368ASN, as described below. Co-staining of TH positive
neurons with the midbrain dopaminergic markers PITX3,
LMX1A, and DAT in both the control and PINK1 cell lines
identified neurons at day D21 as early postmitotic mDA
neurons25 with clearly neuronal morphology and no major dif-
ferences between the cell lines (Fig. 4a).

To investigate potential underlying mechanisms of the PINK1
mutation, differential expression between the two, in parallel
differentiated, cell lines at each timepoint was determined and
genes that were identified as differentially expressed at all four
timepoints were identified. Each timepoint is an independent
biological replicate, initiated at a different time and with cells of a
different passage number. Control and PINK1- ILE368ASN cells

co-clustered together based on their differentiation stage, from
iPSCs, to day 6 (D6), D15, and D21 (Fig. 4b), indicating that
overall RNA expression was specific to differentiation stages, and
rather uniform between cell lines, which was amenable to the
identification of subtle gene expression differences due to the
presence of a mutation in the PINK1- ILE368ASN cell line.

The PINK1- ILE368ASN cells at D10 showed low viability,
hence the D10 timepoint was not included in the pairwise
analysis. After preprocessing and quality-filtering (Methods and
Supplementary Fig. 4), a total of 4495 cells (2518 control and
1977 PINK1 cells) and 18,097 genes were included in our
analysis. UMAP analysis of the single-cell data revealed that gene
expression was rather similar between the cell lines and mainly
defined by differentiation stage, rather than by cell line origin
(Fig. 4b). In accordance with the staining results (Figs. 3a, 4a), we
observed the onset of expression of the mature mDA markers TH
and KCNH6 (also known as GIRK2) on D21 (Fig. 4c).

The analysis of pairwise differential expression at each
timepoint (adjusted p values (padj) <0.01 fold changes (FC)
>0.1) (Fig. 5a) identified 14 genes that were upregulated and 13
genes that were significantly downregulated in the PINK1-
ILE368ASN cell line compared to control (Fig. 5b and Table 2,
indicated by “X”). Because iPSCs are very different from
differentiating neuronal precursors, we next tested whether
including iPSCs had disproportionately affected the results by
excluding neuron-specific genes. Repeating the analysis on D6,

Fig. 3 In vitro differentiation of iPSC-derived mDA neurons recapitulates the in vivo process. a To illustrate the maturation of neuronal morphology and
mDA status, differentiated neurons were stained at D25 and D35 for a neuronal marker MAP2 (red) and mDA markers (green): TH, PITX3, LMX1A, and
DAT. While D25 neurons show short processes and low expression of mDA markers, D35 neurons show much longer axons and well-defined expression
of mDA markers (green/red overlap resulting on orange/yellow). b Quantitation of mDA markers TH, ALDH1A1, and LMX1A, using absolute quantitation
via qPCR. Each timepoint represents three independently differentiated biological replicates, amplified in duplicate. Standard error (SE) bars are the SE
of biological replicates. The expression levels are standardized to total RNA and to the expression of the housekeeping gene GAPDH (see Methods).
c Heatmap showing the expression of genes known from the literature to be involved and necessary for mDA neuron differentiation (Supplementary
Table 3). Colors correlate to normalized counts (z-score, centered, and scaled) of the indicated genes. d The mDA differentiation gene expression profile
recently published by Ásgrímsdóttir and Arenas (2020)21 was used to show the progression during differentiation, from iPSCs to radial glia (Rgl), to
progenitors (Prog) and neuroprogenitors (NProg), and to early mDA neurons (DA). Genes used to determine the expression modules are listed in
Supplementary Table 3. e Proportions of cells expressing the various phenotypes illustrated in (d). The gene expression matrix obtained by SC-RNAseq
used here consists of 4495 cells (see Methods section).
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D15 and D21 only identified 28 genes that were upregulated and
27 genes that were downregulated at all three timepoints,
including all genes previously identified (Table 2). As expected,
excluding iPSCs resulted in the identification of a broader range
of genes because genes that are differentially expressed only in the
neuronal lineage were previously excluded due to the requirement
that DEGs be dysregulated at all timepoints. However, both sets
are equally valuable, as genes dysregulated even in iPSCs are likely
to participate in systemic PD pathology, regardless of cell type,
and may be relevant to a broader spectrum of PD pathology than
the death of mDA neurons. Interestingly, most of the differen-
tially expressed genes are already linked to PD, other PD
mutations, or neurodegeneration (Table 2).

For an alternative definition of differentially expressed genes
(DEGs), we used the maximum adjusted p value in a pairwise
combination as an adjusted p value, and the average fold change
that occurred in the pairwise comparison as a fold change
threshold. With this approach, we retained only genes dysregu-
lated in the same direction at all timepoints. This analysis led to
151 DEGs (named Group B, Supplementary Table 4), which
included the previously identified genes of Group A, and of which
65 were upregulated and 86 downregulated compared with

controls (padj < 0.01 and FC > 0.1). Taking the mean of FC of
the different timepoints enhanced the identification of DEGs
because it reduced the effect of the variability between pairs due
to their different differentiation states. Repeating the same
analysis for the four timepoints (iPSCs, D6, D15, and D21),
but taking into account only the absolute degree of change in
iPSCs, yielded 172 genes (Group C, Supplementary Table 5).
Repeating the analysis using only timepoints D6, D15, and D21
identified a total of 286 DEGs (Group D) (also see Fig. 6a and
Supplementary Data 1). Together, when all analyses were pooled,
we obtained 292 DEGs (six genes in Group C depended on the
inclusion of iPSCs and did not appear in Group D, see
Supplementary Data 1).

Enrichment analysis reveals a strong association with the
KEGG Parkinson pathway. Enrichment analysis was performed
using the STRING59 database (Fig. 5c). The highest-associated KEGG
pathways were the Parkinson’s, Huntington’s, and spliceosome
pathways. Details are listed in Supplementary Data 5. Biological
processes most strongly associated with the DEGs were C3HC4-type
RING finger domain binding, Ran GTPase binding, and protein

Fig. 4 Classification of mDA status. a TH positive neurons co-express mDA markers PITX3, LMX1A, and DAT in control (top) and PINK1 cell line
(bottom), at D35. For images of individual targets see Supplementary Fig. 13 and for colorblind-friendly images see Supplementary Fig. 14. b Based on our
SC-RNAseq data, cell lines cluster according to differentiation stage, indicating that gene expression is very homogenous between the control and the
PINK1-ILE368ASN cell lines, which allows for the detection of even subtle alteration induced the presence of the PINK1 mutation. c Trajectory of expression
of TH and KCNJ6 (GIRK2), two mDA neuron markers. At D21 neurons begin to show TH expression, together with an expression of other mDA markers,
which indicates that they are becoming early postmitotic mDA neurons25. Similar observations can also be made from an expression heatmap shown in
Supplementary Fig. 12. The scale represents normalized counts.

Table 1 DA neuron heterogeneity: mDA and non-mDA markers.

Dopaminergic neuron type TH DDC AADC SLC6A3 DAT SLC18a2 VMAT PAX6 Other

A8–10 midbrain dopaminergic neurons + + + + - ALDH1A1
A11 periventricular nucleus (PVN) + + - + - ALDH1A3
A12 arcuate nucleus (endocrine) + + + + - ALDH1A3 Dlx1
A13 medial zona incerta + + - + +* ALDH1A3 Dlx1, SST
A14 preoptic periventricular nucleus + + - + +* ALDH1A3
A15 preoptic & endopeduncular area + - - +? + ALDH1A3
A16 periglomerular cells, olfactory bulb + + + - + ALDH1A1
A17 interplexiform cells in the retina + + + NKR

When studying PD, it is important to ascertain that the DA neurons are in fact mDA neurons. In an in vitro differentiation system, simple marker combinations that normally distinguish mDA neurons,
such as positional and anatomical information, are missing. We relied instead on molecular markers culled from the literature to monitor our differentiation protocols. (* A13 and A14 PAVH express
PAX6 transiently during development. PAX6 is expressed early in development, whereas the remaining markers are expressed later and are markers of mature DA neurons. “?” indicates that the
literature regarding the expression is not unanimous.)25,34,35,139–144.
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folding chaperones. Respiratory chain transport was the most
strongly associated Reactome pathway.

Data integration reveals a common PD network. To integrate
the expression analysis and identify underlying disease mechan-
isms, we generated a network of interactions between the DEGs
via Gephi60, using protein–protein interaction (PPI) information
obtained from the STRING and GeneMANIA databases59,61. The
network we obtained includes 246 of the 292 DEGs, since pseu-
dogenes and non-coding RNAs could not be integrated into a
protein–protein interaction network (Fig. 6), and 2122 interac-
tions (Supplementary Data 2). The curated network contains only
DEGs and any genes that were automatically added by the
databases were removed to ensure a reliable core network based
solely on DEG data. Based on known protein–protein interac-
tions, the DEGs integrate into a close-knit core network in which
several DEGs form central nodes (Fig. 6). To evaluate the
importance of the DEG-based PPI network produced by
STRINGdb (v10)59, we compared the DEG-based network with
corresponding random networks generated from sets of 292
randomly chosen genes excluding DEGs. Based on 50 random

networks, we show that the DEG-based network includes sig-
nificantly more protein-coding genes and interactions than by
chance (Supplementary Fig. 5) and that the network structure in
terms of degree distribution is significantly distinct as evaluated
by the Wilcoxon test (p= 2.22e-16) and indicates the mechanistic
character of the network.

The network of genes dysregulated by the presence of the
PINK1-ILE368ASN mutation includes genes related to other PD-
associated pathways, which is intriguing since it was generally
assumed that each PD-associated mutation leads to PD pathology
via an independent, characteristic path. For example, two DEGs,
GOPC, and GPC362,63 interact with the PD-associated gene DJ-1
(PARK7)2,64. The DEG network also includes genes of the LRRK2
(PARK8) network2,64, namely ENAH, HSPA8, MYL6, MALAT1,
and SNHG5 (Supplementary Fig. 6). SNHG5 and MALAT1
interact with LRRK2 via miR-205-5p44,45. DLK1 and MALAT1
mediate α-synuclein accumulation65,66. In fact, the DLK1-
NURR1 interaction involved in this process may be mDA
neuron-specific67, highlighting the necessity to use mDA neurons
for the study of PD-related pathways. Additionally, MALAT1 was
shown to increase α-synuclein protein expression68. In short, this
suggests that interactions leading to PD pathology are more

Fig. 5 Differentially expressed genes (DEGs) in a cell line homozygous for a mutation in the PINK1 gene, compared to a control cell line, at three
timepoints during the differentiation of mDA neurons (D6, D15, and D21). a Heatmap of the top DEGs. Each column corresponds to a timepoint for
either control or PINK1 cells; each row shows the expression of one gene in individual cells. Colors correlate to normalized counts (z-score, centered, and
scaled) of the indicated genes. b Top DEGs. The minimum fold change was increased to highlight the top differentially expressed genes. We identified the
top 56 genes as our group A (Table 2); here we show the top five upregulated genes (left Venn diagram) and the top three downregulated genes (right
Venn diagram). c Enrichment analysis performed using the STRING59 database. The top KEGG pathway associated with this dataset is Parkinson’s disease.
The other three KEGG pathways identified were Spliceosome, Huntington’s disease, and Thermogenesis. Details are listed in Supplementary Data 5. The
gene expression matrix used for the downstream analysis consisted of 4495 cells (39,194 genes) and differential expression analysis resulted in 292 DEGs,
which were used to perform the enrichment analysis.
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complex than one mutation - one path to PD, as generally
thought. It also indicates that many druggable targets may be
useful in treating PD and that these may be universally effective
for PD caused by several different mutations, and perhaps even
for idiopathic PD. For example, terazosin, which is already in
clinical use, was found to be associated with slower disease
progression, likely by enhancing the activity of phosphoglycerate
kinase 1 (PGK1)69, one of the top DEGs identified in our study.

For the evaluation of the relative importance of each node
within the network, we applied betweenness centrality60 (Fig. 6a),
an approach that reveals the overall connectedness of each gene.
Genes onto which several other genes converge are shown as large
circles or nodes, their size being proportional to the number of
interactions they form. Interestingly, the major nodes of this
network are genes already known to play an important role in
ubiquitination (Fig. 6b) and PD pathology (Fig. 6c and Table 3).
Next, we built a correlation network (p value < 0.05, r > 0.1) of the
246 DEGs based on the normalized counts. By extracting the
common interactions of these two networks, we obtained a
network with 297 interactions (Supplementary Table 6), which
highlights protein–protein connections that correlate with
differential expression of the genes. This analysis further supports
the role of the connections between these genes in mediating the
resulting differential expression in the presence of the PINK1-
ILE368ASN mutation. STRING was subsequently used to high-
light functional pathways represented within the DEG network
(Supplementary Fig. 7 and Supplementary Data 3). Several

pathways known to play a role in PD pathology are strongly
represented within the network, notably ubiquitination19,70,
mitochondrial pathways9,71, cellular response to stress72, lysoso-
mal proteins73, protein metabolism (localization, modification,
transport, folding, and stability), RNA processing74, aromatic
compound metabolism75–78, vesicle-mediated transport and
exocytosis79, and cellular catabolic processes72,73 (Supplementary
Fig. 7). Importantly, the strongest-associated pathway is the
KEGG-PD59 pathway (Supplementary Fig. 9a). The CHCHD2
gene was identified as a dysregulated gene through our analysis,
but it was also recently identified as a PD-associated gene and
named PARK2264,80,81 (Fig. 6a).

To investigate further how the identified network relates to
other known PD mechanisms, PD-associated genes, also known
as PARK genes (Supplementary Table 6 and Supplementary
Fig. 9), were added to the DEG network. Next, PARK–PARK
interactions were removed and only PARK–DEG interactions
were retained to test how PARK genes integrate into the network.
All 19 protein-coding PARK genes2,64 interact directly with at
least one, but usually several DEGs (Supplementary Fig. 9). The
degree of interaction of PARK genes with the DEGs of the
network is illustrated by coloring (in pink) DEGs that directly
interact with a PARK gene. The darker the color, the greater the
number of PARK genes the DEG interacts with. The preexisting
central nodes of the network generally interact with several PARK
genes, suggesting that they play a central role in linking the PARK
genes to the network, but also that PARK genes may mediate PD

Table 2 The top genes dysregulated consistently in PINK1 vs. control cells across differentiation stages.

Upregulated in PINK1 Downregulated in PINK1

GENE incl.
iPSCs

excl. in
STRING

PD association Ref. GENE incl.
iPSCs

excl. in
STRING

PD association Ref.

AC009245.3 X Pseudogene ACTN1 PD 145

ADGRG7 X rare var., mito 146 C6ORF48 X
BBS2 CCDC144NL.AS1 X RNA
CALM2P2 X Pseudogene CD59 X PD 147

CALR PD 148 COMT PD 149

CECR1 CRYZ X GWAS, PD Gene 63

CMTM8 GWAS, PD 63 CYFIP1 X (via mTOR) 150

EFCAB2 X microarray 151 DLK1 PD 152

FOS rat, L-DOPA 153 ENAH GWAS, LRRK2 154

GOPC PARK7 (DJ-1) 63 EXOC5 Parkinson Dis.Map 155

HNRNPC X binds Parkin 101 GPC3 reduced in DJ-1 mut. 62

MALAT1 PD 156 HSPA8 X PD, LRRK2 157

MINOS1P3 X Pseudogene LGI1 PD 119

MLF1 via HTRA2 158 LMAN1 Parkin transloc. 104

MORF4L1P1 X Pseudogene MYL12A binds Parkin 101

MT-CYB mito 159 MYL6 X interacts with LRRK2 160

MTRNR2L1 X binds Parkin 101 NIPA2 X tremor 161

NAP1L5 OSBPL8 via ZNF746, Biogrid 162

NLRP2 X inflammasome 163 PALLD PD 164

PTGR1 PGK1 X PD 165

RP11.692N5.2 X Pseudogene RANBP1
RP4.765C7.2 X Pseudogene SLC25A4 binds Parkin 101

RSRP1 SNHG5 X RNA via miR-205, LRRK2 166

S100A6 X PD 167 SNHG8 RNA
TCEAL5 X TYW3 X
TSPYL5 Ubiquit. 168 ZNF37A X
ZNF280D X GWAS* 169 ZNF880 X
ZNF528
ZNF528.AS1 RNA Gene

Pairwise differential expression analysis of each timepoint (iPSCs, D6, D15, and D21), resulted in 14 genes that were upregulated and 13 genes that were downregulated in the PINK1-ILE368ASN cell line,
compared to control (p_val_adj <0.01 and abs(avg_logFC) >0.1); these genes are marked with “x” in column “Incl. iPSCs”. Twenty-nine additional genes were identified in an analysis that included D6,
D15, and D21, but not iPSCs. The “Excluded” column explains why a gene was not included in the protein–protein interaction network. These 56 top DEGs are later referred to as Group A. The gene
expression matrix used for the downstream analysis consisted of 4495 cells (39,194 genes). * rs11060180.
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pathology through a few central pathways of this network, and
that the effects of different PARK genes converge on the same set
of pathways (Supplementary Fig. 9).

Further analysis revealed that a large number of the DEGs
interact with genes associated with mitochondria or ubiquitina-
tion (Fig. 6b and Supplementary Fig. 8). For this analysis, we used
BioGRID61,82 to identify interactions with mitochondrial or
ubiquitination proteins for the top 172 DEGs (groups A–C).
These interactions were used to create a network illustrating that
many of the DEGs in our study directly interact with genes
involved in mitochondrial function and in ubiquitination. Only
direct DEG to mitochondrial gene or DEG to ubiquitination gene
interactions were included and PARK genes were added for
reference (Supplementary Fig. 8). Based on manual literature
search, we determined that at least 68% of the DEGs (174 of 255
genes, not including pseudogenes and RNA genes) are already
directly associated with PD, either experimentally, or linked
through GWAS-PD, or by PD expression studies (Fig. 6c and
Supplementary Data 4). This is particularly true for the major
nodes of the network (Table 3 and Fig. 6c).

Proteomics analysis confirms impaired neuronal phenotype in
PINK1-ILE368ASN mutant line. To investigate how the identi-
fied transcriptional modifications manifest in the neuronal phe-
notypes, we performed proteomics analysis at an early (day 25)
and later maturation stage (day 40). The analysis identified 39
differentially abundant proteins in PINK1-ILE368ASN cells as
compared to controls, based on biological duplicates with a log2
fold change larger than 1 (Fig. 7a). Of these, four differ at both
timepoints (D25 and D40). Overall, 31 proteins were differen-
tially abundant at D25, including CSRP2 and VWASA, which
were also identified by sc-RNAseq as differentially expressed at
the mRNA level at D6, D15, and D21 (Fig. 7b and Supplementary
Table 8). At D40, 12 proteins were found to be differentially
abundant, including four also identified at D25, namely TH,
DDC, NES, and VIM. We performed a network analysis based on
the differentially abundant proteins (Fig. 7b). The resulting net-
work again connects PD-related nodes and exhibits a good
overlap with the transcriptional-derived network. This consistent
result indicates that the observed transcriptional modification led
to an impaired neuronal phenotype, despite the subtle differences

Fig. 6 Network analysis. a Protein–protein interaction network based on known interactions available through the STRING59 and GeneMANIA61 databases.
Only strong interactions were retained, predicted interactions or text associations were omitted (see Methods). Betweenness centrality was used to
illustrate the relative importance of each node within the network through the level of its connectedness to other proteins. The larger the circle, the more
partners the node is connected to. The colors represent the four DEG sets, with the top 56 DEGs (group A) in light blue, group B in purple, group C in dark
green, and group D in light green. Each set consists of genes of the previous set plus additional genes identified by the new parameters. CHCHD2 (pink, part
of group B) is a DEG, which has recently been identified as a PARK gene. Random selection of genes from genes detected by sc-RNAseq did not lead to a
network formation (Supplementary Fig. 5). b DEGs which play a role in ubiquitination. Additional functional pathways are listed in Supplementary Fig. 7 and
Supplementary Data 3. Specific connections to ubiquitination proteins are shown in Supplementary Fig. 8. c Based on the literature, 68% of the DEGs of
this network are already known to be associated with PD (for references see Supplementary Data 4). Supplementary Fig. 9 shows which genes/proteins of
the network directly interact with PARK genes through known protein–protein interactions. The topology of all three networks is the same, the different
appearance is a result of a separate analysis run, but the connections and size of the nodes remain identical.
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in expression, and further highlights the importance of the pro-
posed PD Core network.

Discussion
The aim of this study was to identify genes that were differentially
expressed as a result of a mutation in the PINK1 gene, using mDA
neurons differentiated from patient-derived iPSCs, a model
relevant to PD. We focused on the analysis of early timepoints of
the differentiation protocol, on cells undergoing neural differ-
entiation up to the state of early postmitotic mDA neurons (D21),
as these are not expected to display the activation of damage-
control pathways induced by neurotoxicity, but are likely to reveal
pathways that lead to primary pathology of PD. Because genetic
background can potentially influence the severity and course of
the disease12,83, we chose a cell line homozygous for the
ILE368ASN-PINK1 mutation. This mutation imparts a very
strong drive towards PD, resulting in full penetrance and an early
onset of the disease, hence its impact is expected to diminish the
effect of genetic background12.

By including four different differentiation timepoints and
requiring each DEG to be altered at every timepoint, we excluded
pathways associated with mDA differentiation, as the expression
of such genes changes between each step (Supplementary Fig. 12).
The limitation of using an early time period is that we could not
identify pathways associated with PD pathology in mature and
aging neurons, however, this was intentional. We focused on the
identification of pathways prior to damage onset, in order to

eliminate the identification of pathways secondary to the disease,
ones induced by damage and associated with cell death. Extension
of the timeline to mature and aging neurons is the focus of our
future experiments.

Figure 4b shows that samples clustered according to the dif-
ferentiation stage, rather than cell line identity. Therefore, while
the requirement for expression at all timepoints allowed us to
identify changes independent of cell state transition, pairwise
comparison excluded genes commonly expressed at any parti-
cular timepoint, with remaining expression changes being specific
to the presence of the PD-associated mutation. The single-cell
expression data were analyzed in several layers. First, we identi-
fied the most strongly DEGs consistently altered in the same
direction at all four timepoints including iPSCs (Fig. 6a and
Table 2). This led to a list of genes dysregulated by the PINK1-
ILE368ASN mutation independent of the cell type (iPSCs, neu-
ronal precursors, or neurons) (Table 2, Group A “incl. iPSCs”,
marked by “X”). Second, we applied an approach, in which the
iPSC timepoint was excluded, leading to an expanded gene list,
which included genes more likely to be dysregulated specifically
in a neural cell type (Table 2 and Fig. 6, Group A, 56 genes).
Using an approach that reduced the effect of variability between
pairs due to different differentiation states expanded the list to
151 genes dysregulated in the same direction at all timepoints
(Fig. 6a—Group B and Supplementary Table 4), while taking into
account only the absolute degree of change in iPSCs expanded the
list further, to 172 non-neuron-specific DEGs (incl. iPSCs, Fig. 6a
—group C and Supplementary Table 5). Excluding iPSCs from

Table 3 Central nodes of the DEG network are associated with PD (Fig. 6c).

Node gene Role in Parkinson’s disease

HSPA8 (also known as HSP73,
HSC70)

Disaggregation of α-synuclein amyloid fibrils85

Autophagy, part of the catabolic pathway for α-synuclein86
Mediates mitophagy by regulating the stability of PINK1 protein87

Impaired gene expression in sporadic PD88

EEF1A1 Mediates activation of heat-shock transcription factor HSF1, prevents α-synuclein aggregation90

Interacts with Parkin (PARK2)82

HNRNPC Interacts with Parkin (PARK2)82

Part of the poly ADP-ribose (PAR) cell death pathway accountable for selective dopaminergic neuronal loss99

PSMA4 Part of the Parkinson’s disease KEGG pathway92,93

Interacts with Parkin (PARK2) and FBX07 (PARK15)82

CYCS Role in aggregation of alpha-synuclein170

CTD gene-disease associations - Parkinson disease gene set63

ACTN1 Interacts with DJ-1 (PARK7)82

It is a binding partner of mitochondrial-shaping proteins171

PGK1 PGK1 mutation causes vulnerability to parkinsonism172

Activation of PGK1 partially restored motor function and slowed disease progression69

PHB Regulates dopaminergic cell death in substantia nigra173

SHH Play a role in neuroinflammatory response in the MPTP model of Parkinson’s disease174

BRCA2 Deubiquitinase plays a role in neuronal inflammation175

VPS39 It is part of the endocytic membrane trafficking pathway involved in PD and its methylation rates are associated
with Parkinson’s disease risk176

Plays complex functions in endocytic and autophagic pathways177

UQCRFS1 KEGG pathway, Parkinson disease92,93

CNTNAP2 Differentially expressed in the presence of LRRK2 G2019S mutation, associated with PD97

GWASdb SNP-disease associations, Parkinson’s disease gene set63

Plays a role in the formation of protein aggregates and PD95,96

CUL3 Ubiquitin ligase, a potential drug target for Parkinson’s disease84

PLCB4 GWAS - Parkinson’s disease63

Motor defect consistent with ataxia in Plcb4-null mice100

EGLN3 GEO signatures of differentially expressed genes for diseases—Parkinson’s Disease_Substantia Nigra63

Prolyl hydroxylase targets substrates for ubiquitination178

RALGPS2 Targets include Nurr1, which is associated with Parkinson disease63

Central nodes were determined using the Gephi visualization platform. They represent points of convergence of the network (Supplementary Fig. 5). Since these nodes have already been linked to PD
pathways, many more DEGs might also contribute to PD pathology through these pathways. These nodes not only provide a point of convergence for DEGs identified in our study, but they also interact
with several PARK genes, suggesting that PARK proteins may also converge on the pathways identified here (Supplementary Fig. 7).
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this analysis again expanded this list by neuron-specific DEGs, to
a total of 285 (Fig. 6a—group D and Supplementary Data 1).
Creating a protein–protein interaction network based on these
groups of DEGs demonstrated that genes of all groups formed
important nodes within the interaction network. Furthermore,
genes of all groups were frequently associated with PD. Overall,
this indicates that all the selection criteria levels identified rele-
vant targets (Fig. 6 and Supplementary Data 4).

Analysis of the network shows that certain DEGs are points of
convergence within the protein network and form major nodes
(Fig. 6 and Supplementary Fig. 9), namely CUL3, HSPA8,
EEF1A1, UQCRFS1, CNTNAR2, PSMA4, HNRNPC, and PLCB4.
The proteins forming the major nodes are already known to play
an important role in PD pathology (Fig. 6c and Table 3). CUL3
has been linked to PD by GWAS studies and is considered a
potential PD drug target84. HSPA8 (also known as HSP73 and
HSC70), disaggregates α-synuclein amyloid fibrils and plays a role
in autophagy and the catabolic pathway for α-synuclein, mediates
mitophagy by regulating the stability of the PINK1 protein, and
its expression was shown to be impaired in sporadic PD85–88. In
fact, HSPA8 is by far the most important node in the network
generated with data from the STRING59 database, which is pre-
ferentially based on functional interaction (Supplementary
Fig. 9a, b). It is also one of the most highly dysregulated genes in
our dataset. EEF1A1 Translation Elongation Factor mediates
activation of the heat-shock transcription factor HSF1, a key
player in PD89, and prevents α-synuclein aggregation, as well as
interacting with Parkin (PARK2) and HTRA2 (PARK13)82,90

(Supplementary Fig. 9). UQCRFS1 is a mitochondrial electron
transport chain ubiquinol-cytochrome c reductase91, a member of
the KEGG-PD pathway (Entry K0041192,93), and has been
identified as a PD risk gene94. CNTNAP2, which belongs to the
neurexin superfamily, plays a role in triggering protein
aggregates95,96, was found to be differentially expressed in the
blood of PD patients with LRRK2 mutation97, and was also
associated with PD by GWAS63. PSMA4, a proteasome subunit, is
part of the KEGG-PD pathway (hsa05012, bta05012, and
K02728)92,93 and is a member of the ubiquitin-proteasomal
pathway, which plays a key role in Parkinson’s disease98. It also
interacts with Parkin (PARK2) and FBXO7 (PARK15)82.
HNRNPC interacts with both PARK2 and members of the Poly
(ADP-ribose)-dependent cell death pathway implicated in PD99.
PLCB4 has been linked to PD63 and knock-out mice show motor
defects consistent with ataxia100. However, many of the less
conspicuous nodes are also known to play a role in PD, including
EGLN3, IPO5, IPO7, PALLD, PGD, RALGPS2, CYCS, SHH,
BRCA2, and others (Fig. 6c and Table 3).

Hence, the network derived from our analysis of the
ILE368ASN-PINK1 mutation is revealing the convergence of
many known key PD-associated pathways. This convergence
suggests that different mutations may feed into the same PD
pathology-associated routes and that each mutation can act
through several pathways. A good example of such previously
unexplored interaction complexity are the interactions between
two prominent PD partners, PINK1 and PARKIN. The PINK1
protein is known to interact with PARKIN directly and together

Fig. 7 Comparative proteomics analysis between CTRL and PINK1-ILE368ASN cell line at D25 and D40 validates the manifestation of the
transcriptional phenotype. Results of proteomic analysis at D25 and D40 of the differentiation protocol. a The volcano plot shows significantly
differentially abundant proteins (FDR <0.05, fold change larger than 2 or −2) as red points, with remaining datapoints shown in blue. The names of
proteins that were detected as both top differentially abundant at the protein level by the proteomics analysis and as differentially expressed at the mRNA
level by SC-RNAseq are highlighted using a textbox. The data shows results at two timepoints, D25 and D40, in two biological replicates per timepoint. Box
plots further highlight the expression of genes shown in textboxes of the volcano plot (interquartile range, showing the expression at D25 and D40, in the
PINK1 cell line and in control (IQR, 25–75% q1–q3), with bars indicating Q1 ± 1.5 IQR). b This figure shows a network of proteins differentially expressed
between a control and a PINK1 mutation-carrying cell line, at D25 and D40. Proteins which are differentially expressed at both D25 and D40 are
highlighted in green and point to a dysfunction of the dopaminergic system. D25 differentially abundant proteins are in purple, D40 in blue, proteins also
identified as by SC-RNAseq differentially expressed at the mRNA level are in pink. For a table of proteins see Supplementary Table 8. Betweenness
centrality was used to illustrate the relative connectedness of each node within the network, the greater the number of documented interactions with other
nodes, the larger the circle.
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they target damaged mitochondria for degradation11–13. How-
ever, our data indicates that the presence of the ILE368ASN-
PINK1 mutation results in the dysregulation of several other
genes that are possibly upstream of PARKIN101, including
HNRNPC99, MTRNR2L1102, MYL12A, and SLC25A4103, as well
as LMAN1, a membrane mannose-binding lectin, which was
shown to play a role in PARKIN translocation104. This suggests
that the direct interaction between PINK1 and PARKIN is not the
only means by which PINK1 interacts with the PARKIN pathway.

A strength of our network analysis is that it might shed light on
PD-associated genes whose function is so far poorly understood.
An example is the mitochondria-localized CHCHD2 protein105,
also called PARK22. Mutations in its gene are linked with auto-
somal dominant PD, but the precise mechanism is unknown106.
One hypothesis is that CHCHD2 colocalizes with the mito-
chondrial contact site and cristae organizing system (MICOS)106.
However, in the DEG-based protein network, CHCHD2 directly
interacts with at least three other proteins, SLC25A4/ANT1
(STRING59), GHITM (STRING59 and GeneMANIA61), and
NME4 (GeneMANIA61). Evidence suggests that GHITM plays a
role in PINK1-mediated neurodegeneration107 and NME4 was
shown to be downregulated in PD75. SLC25A4 (also known as
ANT1) plays an essential role in mitophagy and has been linked
to PD pathology103,108. Hence, when it comes to mediating
pathological changes in CHCHD2-associated PD, the interaction
of CHCHD2 with SLC25A4 (ANT1), GHITM, and NME4 may
be more relevant than its previously proposed interaction with
MICOS in (Fig. 6, in pink).

We also analyzed the correlation of expression between various
gene pairs. This correlation may indicate that the genes and their
proteins are targets of the same regulatory pathway, or are otherwise
related. In our dataset, the expression of several interaction partners
shows high correlation, namely PLCB4-RALGPS-TTC3-ZNF37A,
EIF3B-HSPA8 (a major network node, ubiquitination pathway)-
PCBP1 (ubiquitination pathway). Another cluster centers on MT-
CYB and involves both mitochondrial and ubiquitination pathways
by NME1–MT-CYB–MT-ND5–MT-CO3–MRPS21 interactions.
Among the top pairs are also PSMD7-PSMB5, TAGLN-MYL9, and
VWA5A- ZCCHC11 (Supplementary Figs. 16, 17). The interactions
of these proteins may, therefore, play a key role in PINK1-mediated
PD pathology. To further investigate the involvement of this net-
work in PD, we performed a manual search and found that 68% of
the DEGs are already known to be associated with PD (Fig. 7b and
Supplementary Data 4), with nearly all major nodes having strong
PD association (Table 3 and Fig. 7b). This indicates that these nodes
may be key points of integration of the effects of PD pathology, an
idea further substantiated by the convergence of the added PARK
genes onto these nodes (Supplementary Fig. 9). Furthermore, these
nodes form a link between different functional pathways known to
be involved in PD. In particular, this is true for CUL3, HSPA8, and
PSMA4 (Supplementary Fig. 7 and Supplementary Data 3).

To see whether a reciprocal approach leads to the same con-
clusion, we looked at whether some of the known PARK proteins
directly interact with the network (Supplementary Fig. 9 and
Supplementary Table 6). This has revealed that all 19 protein-
coding PARK genes form direct interactions with the network,
often with several DEGs, as indicated by the size of the node they
form when included in the network (Supplementary Fig. 9b, d,
DEGs that directly interact with PARK proteins are in pink). Not
surprisingly, PARKIN, a known PINK1 partner, was the most
strongly associated member of the PARK group with the DEG-
based network. The CHCHD2 gene (PARK22) was itself identified
as one of the DEGs. The resulting network illustrates that, in spite
of the very different nature of PD-associated mutations, the
molecular pathways through which the different PARK genes
mediate PD pathology are interconnected. In fact, it is often the

central nodes which directly interact with proteins of the PARK
genes (Supplementary Table 6), which suggests that PD-
associated mutations converge on the same network of central
nodes, which then mediate common aspects of PD pathology and
would explain why mutations in so many genes lead to a similar
outcome109. As a corollary, any mutation can lead to pathology
via several molecular paths. This allows for the involvement of a
network which contains many potential modifiers and under-
scores the role genetic background plays in PD penetrance and
severity, as alleles of several network genes may reduce or amplify
the effect of any given mutation12,83.

Another line of supporting evidence for the network’s role in
PD is that, based on the STRING59 database search, the most
strongly associated KEGG pathway of this dataset is the Parkin-
son’s disease KEGG pathway (Fig. 5c). CYCS, an important node
of the network, is part of the KEGG Parkinson’s pathway (Sup-
plementary Fig. 9 and Supplementary Data 5). The other three
KEGG pathways identified were spliceosome, Huntington’s dis-
ease, and thermogenesis, in order of decreasing strength of
association (Fig. 5c and Supplementary Data 5).

A surprising finding from our work, which examined neurons
during their differentiation and up to their early postmitotic state,
is that pathways known to play a key role in PD are profoundly
and consistently dysregulated at all timepoints examined, far
before the onset of PD pathology. This is in line with current
research suggesting that pathology far precedes the onset of
notable mDA neuron cell death and observable PD motor
symptoms19,110. For example, the CHCHD2 protein is part of the
purine metabolic pathway that produces DNA, RNA, nucleosides,
and nucleotides and has been shown to be altered in PD75–78. The
DEG network illustrates that the expression of a large number of
interconnected genes in the aromatic compound metabolic
pathway is altered in cells carrying the PINK1-ILE368ASN
mutation (Supplementary Fig. 7b). In total, 39 genes of the
nitrogen compound metabolic process (Ncmp) and 88 genes
specific to the aromatic compound metabolic process (Acmp, a
subgroup of the Ncmp) are differentially expressed in our dataset
(Supplementary Data 3). Many of the DEGs identified in our
study are part of more than one pathway and, therefore, inter-
connect the various pathways known to play a role in PD,
including stress and catabolic processes72,73, aromatic compound
metabolism75, vesicle-mediated transport and exocytosis79, RNA
metabolism74, protein transport, localization, folding, stability,
and ubiquitination70 (Supplementary Fig. 7a–g and Supplemen-
tary Data 3). This confirms observations that PD pathology
involves many different pathways111 and suggests that the final
stage is a result of long-term untreated pathology. It also points to
possible early alterations which may be detectable and used as a
diagnostic tool, as well as to targets for early treatment and
prevention of the disease.

To investigate whether the observed transcriptional modifica-
tions lead to functional deficits that would further support the
relevance of this model, we performed a proteomics analysis at
D25 and D40 of the protocol. D21 represents early postmitotic
neurons, while D25 represents early mature neurons and D40
mature neurons. Our first analysis showed dysregulation of
dopaminergic metabolism at D25 and D40 of differentiation
(Fig. 7b and Supplementary Table 8). The list of differentially
abundant proteins identified by proteomics analysis exhibits an
overlap with the DEGs identified in the sc-RNAseq analysis
(Fig. 7b and Supplementary Table 8) and many of these proteins
are already known to be involved in PD112. Importantly, two
proteins that were differentially expressed at both D25 and D40,
DDC and TH, are key enzymes involved in dopamine metabolism
and closely associated with PD113,114. Altogether, four proteins
were differentially expressed at both timepoints, in two
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independent biological replicates per timepoint (Fig. 7b and
Supplementary Table 8). The other two proteins are the cytos-
keletal proteins VIM (Vimentin)115 and NES (Nestin), the latter
is co-expressed with the PD-associated gene DJ-1 (PARK7)116.
These were found to be abnormal also by other studies, and are
involved in cytoskeletal transport, which represents a key aspect
of PD pathology112. Performing a network analysis based on
the proteome phenotype revealed a proteomics network
related to the transcriptional network (Fig. 7b). In all, these data
show a consistent abnormality in the levels of enzymes needed
for DA metabolism, which indicates that cells carrying the
PINK1-ILE368ASN mutation have a functional deficit of the DA
metabolic pathway that eventually can lead to neuronal loss
of mDA.

The next important step will be to investigate gene expression
alterations in aging neurons and how this leads to neurodegen-
eration in the presence of PD-associated mutations. Genetic back-
ground likely plays a greater role in PD caused by mutations with
lower penetrance or in idiopathic cases. Therefore, in the future, we
will explore the potential overlap between the network identified in
this study and the pathways altered by idiopathic disease, as well as
the effect of genetic background, by investigating isogenic controls
together with cell lines carrying PD mutations. The challenge is that
idiopathic cases can be caused by interactions between genes of
small effect and the environment, or between environmental factors
alone, which potentially broadens the spectrum of pathways
involved in the development of PD in these cases117,118. Many of
these pathways are unlikely to be strongly altered by gene mutations
and are likely difficult to distinguish from background noise gen-
erated by natural variation in PD-unrelated pathways. Therefore,
we first focused to understand the effect of PD-associated mutations
of strong effect, in order to detect a core network of pathways
distinctly altered in PD.

It will be of great interest to see if cells from idiopathic patients
show dysregulation of this integrated network. In fact, our ana-
lysis has identified genes, which are known to be associated with
sporadic PD, but which had no known connection to molecular
mechanisms underlying PD pathology. Knowing how they inte-
grate into the network may point to the mechanism by which
they cause PD pathology. For example, one of the top DEGs is
LGI1119. The development of antibodies to the LGI1 protein leads
to immunomodulated Parkinsonism, yet there is no known
mechanism linking it to PD pathology119. In the network, LGI1
directly interacts with several neighbors (Supplementary Fig. 10).
Its most important interaction is its co-expression with
CNTNAP2, which is part of the neurexin family and is required
for axon organization, and MGMT, which repairs the methylated
nucleobase in DNA59. From GeneMANIA alone, the strongest
evidence is for interaction with GOLT1B, which plays a role in
Golgi transport120. Hence, LGI1-associated pathology leading to
PD symptoms may be mediated through pathways, which are also
dysregulated by the presence of the PINK1-ILE368ASN mutation.
CNTNAP2 is another very good candidate, as it was shown to be
dysregulated in PD patients carrying a mutation in the LRRK2
gene, providing additional evidence that it likely plays a role in
PD pathology97.

The fact that so many genes which belong to other PD mutation-
related pathways were dysregulated by the presence of the PINK1-
ILE368ASN mutation suggests that pathways involved in PD
pathology are far more interconnected than previously thought. It is
likely that PD pathology is more a disease with a characteristic
network fingerprint than a disease caused by independent muta-
tions acting through unrelated pathways (Fig. 6a). This and future
studies will hopefully provide a picture of how various mutations
feed into this network and cause its dysregulation. If idiopathic PD
is shown to also be mediated by the dysregulation of this network,

then we may finally be able to understand the cause of idiopathic
PD, which represents 80–85% of all PD cases2.

Methods
Generation of iPSC cell lines. Fibroblasts (cat. No. ND40066) isolated from a 64-
year-old male with PD symptom onset at 33 years of age who carried a homo-
zygous mutation ILE368ASN (P.I368N/P.I368N) (Supplementary Fig. 11) in the
PINK1 gene were obtained from the Coriell Institute (Cat. No. ND40066). Samples
were collected in accordance with the US Government guidelines and are subject to
an MTA issued by Coriell Institute for Medical Research NINDS Cell Repository.
Conditions for use of the NINDS Materials are governed by the Rutgers University
Institution Review Board (IRB) and must be in compliance with the Office of
Human Research Protection (OHRP), Department of Health and Human Services
(DHHS), regulations for the protection of human subjects found at 45 CFR Part 46.
Patient consent was obtained before collection as per NINDS requirements,
described in Supplementary file “NINDS sample submission guidelines & consent”
under the section “Sample Submission”. Fibroblasts were cultured on gelatin-
coated plates (10% gelatin in PBS, coated for 10 min at room temperature) in KO
DMEM+ 10% FBS+ 1% penicillin/streptomycin (stock was 10,000 units penicillin
and 10 mg streptomycin ml-1) at standard culture conditions (37 °C, 5% CO2).

Live adherent fibroblasts in culture media were sent to be karyotyped by Cell
Line Genetics, Madison, WI, USA (Supplementary Fig. 1) and confirmed to have a
normal karyotype. The reprogramming of fibroblasts into pluripotent stem cells
was done at Yale Human Embryonic Stem Cell Core (New Haven CT) using the
Sendai virus. The iPSC clone was again analyzed using Array Comparative
Genomic Hybridization (aCGH), a high-resolution karyotype analysis for the
detection of unbalanced structural and numerical chromosomal alterations and
confirmed to be normal (Supplementary Fig. 2 and Supplementary Tables 9, 10).
To confirm the presence of homozygous PINK1 (P.I368N/P.I368N) mutation, PCR
was performed using GoTaq (Promega), Cycling: 95oC 30 s, 36x (95oC 15 s, 60oC
20 s, 68oC 15 s), 68oC 5 min. Primers are listed in Supplementary Table 7
(designed using Primer3Plus and synthesized by Eurogentec). The PCR was
confirmed by electrophoresis to produce only one band, the remaining reaction
was cleaned using a PCR cleaning kit (Pure Link PCR Micro Kit Cat. 310050). The
PCR fragment was sequenced by Eurofins Genomics and sequencing results are
listed in Supplementary Fig. 11a, b (the sequence underlying Supplementary Fig. 11
has been deposited to NCBI under the accession OK050183.1). The resulting iPSC
cell lines were maintained on Geltrex matrix (Gibco) in mTeSR™1 media (StemCell
Technologies) under standard incubator conditions of 5% CO2 and humidity. The
protocol was approved by the Committee on Human Research at the University of
California San Francisco. The control cell line (also known as 17608/6) is described
in ref. 38, it was stained for Oct 3/4 and Tra-1-60 in parallel to the PINK1 cell line.
The source is the dermal fibroblasts of a healthy 67-year-old male.

Analysis of iPSC status and trilineage potential by TaqMan iPSC Scorecard
assay. To confirm the iPSC status of reprogrammed donor fibroblasts, we per-
formed a TaqMan iPSC Scorecard Assay44, which also confirmed the cells’ trili-
neage potential (Fig. 2b). We followed the protocol described by the manufacturer
of the TaqMan hPSC Scorecard Assay (Thermo Fisher Scientific).

Stem cells were cultured on Geltrex matrix (Gibco) in mTeSR™1 media
(StemCell Technologies) under standard incubator conditions of 5% CO2 and
humidity. On the day of analysis, the cells were dissociated using Accutase and
pelleted by centrifugation. RNA was extracted using a Qiagen extraction kit and
cDNA was synthesized as per Scorecard kit instructions. Embryonic bodies were
generated as per Scorecard kit instructions, RNA was extracted and cDNA
synthesized in the same way as for iPSC pellets. The TaqMan hPSC Scorecard Kit
384w plate was amplified using Lightcycler 480 (Roche Diagnostics) and the data
were uploaded to the hPSC Scorecard analysis software available online from
Thermo Fisher Scientific. The resulting graphs were downloaded and included in
Fig. 2.

Immunocytochemistry. A 24-well cell culture plate was seeded with iPSCs, one or
two wells per cell line, and the IPSCs were then allowed to form colonies. At least a
dozen colonies were present in each well and images were taken of several
representative stained colonies. This was performed prior to any major experiment,
to confirm the status of the cell line. Any evidence of differentiation identified by a
loss of iPSC marker expression was documented. These adherent colonies were
fixed in 4% PFA for 10 min, washed and permeabilized with 0.1% Triton X-100 in
1X PBS for 15 min, then washed and incubated in a blocking solution of 2% BSA in
1X PBS for 1 h. They were then incubated with a primary antibody for POU5F1
(also known as Oct 3/4, Santa Cruz Biotechnology, sc-5279) and TRA-1-60
(MAB4360, Merck Millipore) at 1/500 dilution in blocking solution, overnight at
4 °C (Fig. 2a). The next day they were washed three times with PBS and a sec-
ondary antibody (AlexaFluor 488, Thermo Fisher) was applied at a 1/1000 dilution
in blocking solution and incubated for 1 h at room temperature. The cells were
then washed three times with PBS and imaged. Differentiated cells were stained for
microtubule-associated protein 2 (MAP2, MAB3418, Merck Millipore), tyrosine
hydroxylase (TH, Pel-Freez Biologicals P40101), PAX6 (901301, Imtec diagnostics)
at 1/500 dilution, PITX3 (Sigma-Aldrich, HPA044639), LMX1A (Abcam,
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ab139726) and SLC6A3/DAT (Thermo fisher, PA1-4656). (Supplementary Table 7
and Supplementary Figs. 3, 13, 14). Images were captured using a confocal Zeiss
Laser Scanning Microscope 710 with a 20x air objective and processed using ZEISS
ZEN Microscope Software. The same preset parameters were used for the acqui-
sition of images. Images were converted from.czi format to.tiff format and scale
bars were added using Fiji open-source software121.

Differentiation of iPSCs into mDA neurons. The protocol used to differentiate
iPSCs into mDA neurons was modified from refs. 24,122 (Table 1). The iPSCs were
grown to 95% confluence, dissociated using accutase, and 1.5 wells were combined
into one well at day −1. They were allowed to recover in the presence of ROCK
inhibitor for about 8 h and then in mTeSR without ROCK inhibitor for about 16 h.
After this, day 0 media were applied (Table 1). Both control and PINK1-
ILE368ASN cell lines were differentiated at the same time so that they would be
subject to the same conditions. Different timepoints were generated by repeating
the differentiation protocol on a later date, as described in Supplementary Table 2.

Cells were fed fresh media daily, 36 ml per six-well plate or as needed, judging
consumption from media color, and replacing media whenever it started to turn
yellow, using the appropriate media and factor mix for that day.

Real-time quantitative PCR of mDA and non-mDA markers. Total RNA was
extracted from a cell pellet of a 12-well plate well using the RNeasy Plus Universal
Kit Mini (50), Catalog no. 73404), as per manufacturer instructions. The RNA
concentration was determined through absorption at 260 nm using the Nanodrop
instrument (Fisher Scientific). The Superscript IIITM First-Strand Synthesis Sys-
tem for RT-PCR (Invitrogen) was used to prepare cDNA, using oligo(dT)20 and
2 ug of total RNA as per manufacturer instructions. The cDNA was stored at
−20 °C.

Primers were designed using Primer Blast123 and synthesized by Eurogentec
Belgium. The primers used are listed in Supplementary Table 7. Standard templates
of 90–150 bp in length were generated by PCR, purified using Invitrogen Pure Link
PCR Micro Kit (K310050), and their concentration determined using NanoDrop
Spectrophotometer. These were then diluted to generate a series of standards of
known concentration, from 200 to 0.002 fg μl−1. The cDNA levels within samples
were determined using quantitative real-time PCR (QRT-PCR) on a Roche
Lightcycler 480 using the Maxima® SYBR Green/ROX qPCR Master Mix (2×) (cat.
#K0223) using absolute quantitation by generating a standard curve based on the
standards of known concentration and extrapolating the concentration of the
unknowns (samples). The parameters were: initial denaturation at 95 oC for
10 min., followed by 40 cycles of 95 oC for 15 s, 60 oC for 30 s, and 72 oC for 35 s.
This was followed by a dissociation curve to confirm that only one PCR product
was present. Each absolute concentration of a particular gene was then divided by
the absolute concentration of a housekeeping gene, in this case, GAPDH. In
previous experiments, GAPDH has been identified as the most stable housekeeping
gene in iPSCs and in iPSCs differentiating using our protocol. The values were,
therefore, standardized per total RNA of the sample, since 2 ug of total RNA was
used for every sample, as well as per expression GAPDH.

Statistics and reproducibility. In real-time qPCR graphs, each timepoint consists
of at least three independently differentiated samples, seeded at the same time,
hence representing biological replicates. The sample concentration was determined
by absolute quantitation, comparing the sample concentration to a known con-
centration of a standard template identical to the one being amplified. The value
was standardized to total RNA, by cDNA synthesizing each cDNA sample from a
standard amount of total RNA for each sample. This value was then divided by the
concentration of GAPDH obtained for that particular sample, thus standardizing to
GAPDH levels and generating a unitless number denoting expression relative to the
expression of the housekeeping gene GAPDH. GAPDH was selected from among a
number of possible housekeeping genes, as it showed the best ability to normalize
gene expression in a population of untreated samples. A detailed description of this
rationale and approach is in Novak et al.124. Each of the samples was amplified in
duplicate. Each sample value was an average of the experimental duplicate. Stan-
dard error was calculated as the standard deviation of the three biological repli-
cates, divided by the square root of the number of samples125.

To allow for reproducibility through independent analysis, all datasets were
made accessible and can be accessed from repositories listed in the Code
availability and Data availability sections.

Single-cell RNA sequencing. On the day of collection, cells were dissociated using
accutase. The single-cell suspension was spun down and cells were washed with
(PBS, 2% BSA) twice, then passed through a 40 μm filter to remove larger cell
clumps. The sample was then counted and viability was determined using (Vi-
CELL XR, Cell Counter, Beckman Coulter). Cells were required to have at least a
95% viability. The samples were then diluted in PBS with 2% BSA to a final
concentration of 190,000 cells ml−1. About 3 ml were then used for single-cell
analysis. Subsequently, cells were processed by the Drop-Seq approach37,126,127 and
sequenced.

Microfluidics fabrication for single-cell RNAseq. Microfluidics devices were
generated on-site, using a technique described below, which is based on an earlier
Drop-Seq protocol37,128,129. Soft lithography was performed using SU-8 2050
photoresist (MicroChem) on a 4″ silicon substrate, to generate a 90 μm aspect
depth feature. The wafer masks were subjected to silanization overnight using
chlorotrimethylsilane (Sigma), before being used for the fabrication of micro-
fluidics. Silicon-based polymerization chemistry was used to fabricate the Drop-Seq
chips. In short, we prepared a 1:10 ration mix of polydimethylsiloxane (PDMS)
base and cross-linker (Dow Corning), which was degassed and poured onto the
Drop-Seq master template. PDMS was cured on the master template, at 70 °C for
2 h. After cooling, PDMS monoliths were cut and 1.25 mm biopsy punchers
(World Precision Instruments) were used to punch out the inlet/outlet ports. Using
a Harrick plasma cleaner, the PDMS monolith was then plasma bonded to a clean
microscope glass slide. After the pairing of the PDMS monolith’s plasma-treated
surfaces with the glass slide, we subjected the flow channels to a hydrophobicity
treatment using 1H,1H,2H,2H-perfluorodecyltri-chlorosilane (in 2% v/v in FC-40
oil; Alfa Aesar/Sigma) for 5 min of treatment. Excess silane was removed by being
blown through the inlet/outlet ports. Chips were then incubated at 80 °C for
15 min.

Single-cell isolation and RNA capturing. We determined experimentally that,
when using the microfluidics chips, a bead concentration of 180 beads/μL is
optimal for an efficient co-encapsulation of the synthesized barcoded beads
(ChemGenes Corp., USA) and cells, inside droplets containing lysis reagents in
Drop-Seq lysis buffer medium. Barcoded oligo (dT) handles synthesized on the
surface of the beads were used to capture cellular mRNA.

For cell encapsulation, we loaded into one syringe each, 1.5 ml of bead
suspensions (BD) and the cell suspension. Micro-stirrer was used (VP Scientific) to
keep beads in homogenous suspension. For the droplet generation, a QX200 carrier
oil (Bio-Rad) was loaded into a 20-ml syringe and used as a continuous phase. To
create droplets, we used KD Scientific Legato Syringe Pumps to generate 2.5 and
11 ml/h flowrates for the dispersed and continuous phase flows, respectively. After
the droplet formation was optimal and stable, the droplet suspension was collected
into a 50-ml Falcon tube. In total, 1 ml of the single-cell suspension was collected.
Bright-field microscopy using INCYTO C-Chip Disposable Hemacytometer
(Thermo Fisher Scientific) was used to evaluate droplet consistency and stability.
To avoid multiple beads per droplet, bead formation and occupancy within
individual droplets was monitored throughout the collection process.

The subsequent steps of droplet breakage, bead harvesting, reverse
transcription, and exonuclease treatment were carried out as described below, in
accordance with the Drop-Seq protocol37. The RT buffer was premixed as follows,
1× Maxima RT buffer, 4% Ficoll PM-400 (Sigma), 1 μM dNTPs (Thermo Fisher
Scientific), 1 U/ml RNase Inhibitor (Lucigen), 2.5 μM Template Switch Oligo, and
10 U/ml Maxima H-RT (Thermo Fisher Scientific). After Exo-I treatment,
INCYTO C-Chip Disposable Hemacytometer was used to estimate the bead
counts, and 10,000 beads were aliquoted in 0.2 ml Eppendorf PCR tubes. We then
added 50 μl of PCR mix, consisting of 1× HiFi HotStart ReadyMix (Kapa
Biosystems) and a 0.8 mM Template Switch PCR primer. The thermocycling
program of the PCR was 95 °C (3 min), four cycles of 98 °C (20 s), 65 °C (45 s),
72 °C (3 min) and 9 cycles of 98 °C (20 s), 67 °C (20 s), 72 °C (3 min), and a final
extension step of 72 °C for 5 min. After PCR amplification, 0.6× Agencourt
AMPure XP beads (Beckman Coulter) were used for library purification according
to the manufacturer’s protocol. The purified libraries were eluted in 10 μl RNase/
DNase-free Molecular Grade Water. We used the Bioanalyzer High Sensitivity
Chip (Agilent Technologies) to analyze the quality and concentration of the
sequencing libraries.

NGS preparation for Drop-seq libraries. The 3′ end-enriched cDNA libraries
were prepared by tagmentation reaction of 600 pg cDNA library using the standard
Nextera XT tagmentation kit (Illumina). Reactions were performed according to
the manufacturer’s instructions. The PCR amplification cycling program used was
95 °C 30 s, and 12 cycles of 95 °C (10 s), 55 °C (30 s), and 72 °C (30 s), followed by a
final extension step of 72 °C (5 min). Libraries were purified twice to reduce pri-
mers and short DNA fragments with 0.6× and 1× Agencourt AMPure XP beads
(Beckman Coulter), respectively, in accordance with the manufacturer’s protocol.
Finally, purified libraries were eluted in 10 μl Molecular Grade Water. Quality and
quantity of the tagmented cDNA library were evaluated using Bioanalyzer High
Sensitivity DNA Chip. The average size of the tagmented libraries prior to
sequencing was between 400 and 700 bps.

Purified Drop-seq cDNA libraries were sequenced using Illumina NextSeq 500
with the recommended sequencing protocol except for 6 pM of custom primer
(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) applied for
priming of read 1. Paired-end sequencing of 20 bases (covering the 1–12 bases of
random cell barcode and the remaining 13–20 bases of random unique molecular
identifier (UMI)) was performed for read 1, and of 50 bases of the genes for read 2
(Supplementary Fig. 4).

Bioinformatics processing and data analysis. The FASTQ files were assembled
from the raw BCL files using Illumina’s bcl2fastq converter and run through the
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FASTQC codes (Babraham bioinformatics; https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) to check for consistency in library qualities. The monitored
quality assessment parameters monitored were (i) per-base sequence quality (espe-
cially for the read 2 of the gene), (ii) per-base N content, (iii) per-base sequence
content, and (iv) over-represented sequences. The FASTQ files were then merged and
converted into binaries using PICARD’s FastqToSam algorithm. The sequencing
reads were converted into a digital gene expression matrix using the Drop-seq
bioinformatics pipeline37.

Single-cell RNAseq data analysis. The identification of low-quality cells was
done separately for each dataset. In order to select only the highest quality data, we
sorted the cells by their cumulative gene expression. Only cells with the highest
cumulative expression were considered for the analysis130.

In addition to this filtering, we defined cells as low-quality based on three
criteria for each cell. The number of expressed genes must be more than 200 and 2
median absolute- deviations

(MADs) above the median; the total number of counts has to be 2 MADs above
or below the median, and the percentage of counts to mitochondrial genes has to be
1.5 MADs above the median. Cells failing at least one criteria were considered as
low-quality cells and filtered out from the further analysis. Similar to the cell
filtering, we filtered out low-quality genes, identified by being expressed in less than
ten cells in the data.

The integration of the filtered matrices of the different datasets was performed
using scTransform131 on a Seurat object132 based on the treatment. The final gene
expression matrix, which was used for the downstream analysis, consisted of 4495
cells and 39,194 genes with a median total number of mRNA counts of 7750 and a
median number of expressed genes of 3521. Principal component analysis (PCA)
was computed using the 5000 most variable genes of the integrated data. The
clustering of data were performed using Louvain clustering. The resolution of the
clustering was selected based on the best silhouette score of the different
resolutions133. A shortlist of manually curated markers was used to validate the
different stages of the differentiation process.

We then performed differential expression analysis between the two treatments
(control and PINK1) at each timepoint. The differential expression analysis was
done using MAST132 (default parameters) on the normalized counts using the total
number of transcripts in each cell as a covariate and the Bonferroni correction to
correct for multiple hypothesis testing (Padj). In addition, we tried to find
conserved markers among the different timepoints using MAST again and the total
number of transcripts in each cell as a latent variable. Genes with fold changes of
the same sign in the fold change were then identified across the different
timepoints and the average fold change was calculated. The genes with average fold
change > 0.1 and maximum adjusted p value < 0.01 were selected as differentially
expressed.

The first analysis of pairwise differential expression at each timepoint (adjusted
p values (padj) <0.01 fold changes (FC) >0.1) was performed to identify genes that
were upregulated and downregulated in the PINK1 cell line compared to control
(see Results section). The analysis was repeated with the exclusion of iPSCs and
using only D6, D15, and D21 timepoints. We then used the maximum adjusted p
value in a pairwise combination as an adjusted p value, and the average fold change
that occurred in the pairwise comparison as fold change threshold hence retained
only genes dysregulated in the same direction at all timepoints (Group B). We then
took the mean of FC of the different timepoints to reduce the effect of the
variability between pairs due to their different differentiation states. The analysis
was performed for the four timepoints (iPSCs, D6, D15, and D21), taking into
account only the absolute degree of change in iPSCs (Group C). The analysis was
then repeated using only timepoints D6, D15, and D21 (Group D).

Network analysis. We extracted protein–protein interaction information between
the DEGs from STRING59 and from GeneMANIA61. We excluded indirect asso-
ciation, such as text mining, co-occurrence, and neighborhood from STRING, and
co-expression, colocalization, shared protein domains, and predicted interactions
from GeneMANIA, retaining only genetic interactions, pathways, and physical
interactions (2122 interactions in total). We deleted any genes or interactions that
were added by these databases, in order to only focus on DEGs and interactions
among them. The network diameter was calculated and betweenness centrality was
used to illustrate the relative importance of each node within the network. As a
control, we selected the same number of genes at random, using the list of genes
detected by our RNAseq analysis, excluding DEGs. This control set did not pro-
duce a network and led to a mostly disconnected array of genes (Supplementary
Fig. 5). Networks were also generated using the STRING and GeneMANIA inputs
independently (Supplementary Fig. 9). We constructed a correlation network based
on the correlation of expression of DEGs (p value <0.05, correlation >0.1) and
identify edges that are common to the two networks. This network consisted of 860
interactions (Supplementary Fig. 16). We then extracted shared interactions of
these two networks, which amounted to 297 interactions (Supplementary Fig. 17a).

In order to validate the PPI network produced by STIRNGdb (v10), we created
50 PPI (protein–protein interaction) networks using 292 random genes (same as
the number of DEGs). We then compared the number of detected proteins, the
number of interactions between the genes, and the distribution of the node degrees.
We performed the Wilcoxon test to access if the two-degree distributions are

different from one another in a statistically significant manner, which showed a
statistically significant difference (p= 2.22e-16) (Supplementary Fig. 17b).

Proteome analysis. Cell pellets were lysed in 1% sodium deoxycholate in 50 mM
sodium bicarbonate pH8. After sonication, samples were incubated on ice for
30 min and centrifuged at 4 °C for 30 min at 16,000×g. Supernatants were recov-
ered and quantified using PierceTM BCA Protein Assay Kit (23225, Thermo Sci-
entific). Protein extracts (10 μg) were reduced with 10 mM DTT for 45 min at
37 °C, incubated for 15 min at room temperature, then alkylated with 25 mM
iodoacetamide for 30 min at room temperature in darkness. Proteins were further
digested overnight at 37 °C with 0.2 μg of trypsin/Lys-C Mix (V507A, Promega).
Samples were acidified in 1% formic acid and centrifuged for 10 min at 12,000 × g.
Supernatants were recovered and peptides were desalted on Sep-Pak tC18 μElution
Plates (Waters, 186002318), dried by vacuum centrifugation, and reconstituted in
25 μl of 1% Acetonitrile/0.05% trifluoroacetic acid.

Following quantification by nanodrop, each sample (200 ng) was analysed by
mass spectrometry. The LCMS setup consisted of a Dionex Ultimate 3000 RSLC
chromatography system configured in column switching mode. The mobile phases
A and B consisted of 0.1% formic acid in water and 0.1% formic acid in acetonitrile,
respectively. The loading phase consisted of 0.05% trifluoroacetic acid and 1%
acetonitrile in water. The LC system was operated with a Thermo pepmap100 C18
(2 µm particles) 75 µm × 15 cm analytical column (loading 5 ul min−1; analytical
300 nl min−1). The loading column consisted of Thermo pepmap100 C18 (3 µm
particles) 75 µm × 2 cm. Samples were separated by a linear gradient ranging from
2% B to 35% B 66min and sprayed into the mass spectrometer using a Nanospray
Flex (Thermo Scientific) ion source. MS acquisition was performed on Q Exactive-
HF (Thermo Scientific) operated in data-dependent acquisition mode. MS cycle
(AGC MS1 3e6; AGC MS2 1e5) consisted of a high-resolution survey scan (60,000
at 200 m/z) followed by the fragmentation of the top 12 most intense peptides at a
resolution of 15,000 at 200 m/z. Dynamic exclusion of already fragmented peptide
ions was set to 20 s.

Analysis was performed with the MaxQuant software package version
1.6.17.0134. The minimum ratio for LFQ was set to 2. An FDR <1% was applied for
peptides and proteins. A human Uniprot database (July 2018) was used to perform
the Andromeda search135. Oxidized methionine and acetylated N-termini were set
as variable modifications while carbamidomethylation on cysteine was set as a fixed
modification. Peptide tolerance was 20 ppm. MS intensities were normalized by the
MaxLFQ algorithm136 implemented in MaxQuant while using the match-between-
runs feature.

Ethics. Patient-derived cell lines were handled according to the ethics guidelines set
out by the National Ethics Board of Luxembourg, (Comité National d’Ethique dans
la Recherche; CNER). The use of these cell lines is governed by a materials transfer
agreement (MTA) with the NINDS (fibroblast supplier), which states that the
conditions for use of the NINDS Materials are governed by the Rutgers University
Institution Review Board (IRB) and must be in compliance with the Office of
Human Research Protection (OHRP), Department of Health and Human Services
(DHHS), regulations for the protection of human subjects found at 45 CFR Part 46.
Patient consent was obtained before collection as per NINDS requirements. Samples
are collected with informed consent (under IRB approval) and the process is
described in Supplementary file “NINDS sample submission guidelines & consent”
under the section “Sample Submission”. https://catalog.coriell.org/1/NINDS/About/
NINDS-Repository-FAQ; https://stemcells.nindsgenetics.org/?line=ND40066

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence underlying Supplementary Fig. 11 has been deposited to NCBI under the
accession OK050183.1. Single-cell RNAseq data is available through the Gene Expression
Omnibus (GEO), accession number GSE183248. The proteomics data is available via the
Proteomics Identification Database (PRIDE), identifier PXD028283. The proteomics
dataset is available at https://r3lab.uni.lu/frozen/cca2-s098, with a https://doi.org/
10.17881/cca2-s098.

Code availability
All analysis scripts are publicly available via: https://gitlab.lcsb.uni.lu/ICS-lcsb/
ipscs_pink1.
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