Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Embracing data science in catalysis research

Abstract

Accelerating catalyst discovery and development is of paramount importance in addressing the global energy, sustainability and healthcare demands. The past decade has witnessed significant momentum in harnessing data science concepts in catalysis research to aid the aforementioned cause. Here we comprehensively review how catalysis practitioners have leveraged data-driven strategies to solve complex challenges across heterogeneous, homogeneous and enzymatic catalysis. We delineate all studies into deductive or inductive modes, and statistically infer the prevalence of catalytic tasks, model reactions, data representations and choice of algorithms. We highlight frontiers in the field and knowledge transfer opportunities among the catalysis subdisciplines. Our critical assessment reveals a glaring gap in data science exploration in experimental catalysis, which we bridge by elaborating on four pillars of data science, namely descriptive, predictive, causal and prescriptive analytics. We advocate their adoption into routine experimental workflows and underscore the importance of data standardization to spur future research in digital catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of research trends and ML applications in catalysis.
Fig. 2: Navigating the landscape of ML in catalysis.
Fig. 3: Summary of major open-source databases in catalysis.
Fig. 4: Establishing structure–property–performance relationship through ML.
Fig. 5: Advanced AI frameworks in catalysis.
Fig. 6: Four pillars of data-driven catalysis.
Fig. 7: Life cycle of data-driven catalysis.
Fig. 8: Accelerating innovation in characterization workflows.

Similar content being viewed by others

References

  1. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  PubMed  Google Scholar 

  2. Ye, R., Zhao, J., Wickemeyer, B. B., Toste, F. D. & Somorjai, G. A. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 1, 318–325 (2018).

    Article  Google Scholar 

  3. Copéret, C., Chabanas, M., Petroff Saint-Arroman, R. & Basset, J. M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).

    Article  Google Scholar 

  4. Ye, R., Hurlburt, T. J., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl Acad. Sci. USA 113, 5159–5166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, B., Han, Z. & Ding, K. The N-H functional group in organometallic catalysis. Angew. Chem. Int. Ed. 52, 4744–4788 (2013).

    Article  CAS  Google Scholar 

  6. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Munnik, P., de Jongh, P. E. & de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Grunwaldt, J.-D. & Schroer, C. G. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem. Soc. Rev. 39, 4741–4753 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Article  Google Scholar 

  11. Chen, B. W. J., Xu, L. & Mavrikakis, M. Computational methods in heterogeneous catalysis. Chem. Rev. 121, 1007–1048 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Durand, D. J. & Fey, N. Computational ligand descriptors for catalyst design. Chem. Rev. 119, 6561–6594 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Article  Google Scholar 

  16. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    Article  CAS  Google Scholar 

  17. Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C-N cross-coupling using machine learning. Science 360, 186–190 (2018). The application of interpretable machine learning on a high-throughput Buchwald–Hartwig dataset to predict high-performing palladium catalysts and unravel their inhibition mechanism.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, M. et al. Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments. Adv. Mater. 34, 2108900 (2022).

    Article  CAS  Google Scholar 

  20. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021). Development of Bayesian optimization on palladium-catalysed Mitsunobu and deoxyfluorination reactions where the algorithm consistently outperformed human decision-making in terms number of experiments and actual yields to optimize the process.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022). A deep learning methodology to predict enzyme turnover numbers of metabolic enzymes from any organism merely from substrate structures and protein sequences.

    Article  CAS  Google Scholar 

  25. Holeňa, M. & Baerns, M. Feedforward neural networks in catalysis: a tool for the approximation of the dependency of yield on catalyst composition and for knowledge extraction. Catal. Today 81, 485–494 (2003). Amongst the earliest reports on applied machine learning in catalysis, wherein a feedforward neural network was used to predict propene yield based on the catalyst composition.

    Article  Google Scholar 

  26. Baumes, L., Farrusseng, D., Lengliz, M. & Mirodatos, C. Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis. QSAR Comb. Sci. 23, 767–778 (2004).

    Article  CAS  Google Scholar 

  27. Burello, E., Farrusseng, D. & Rothenberg, G. Combinatorial explosion in homogeneous catalysis: screening 60,000 cross-coupling reactions. Adv. Synth. Catal. 346, 1844–1853 (2004).

    Article  CAS  Google Scholar 

  28. Corma, A. et al. Optimisation of olefin epoxidation catalysts with the application of high-throughput and genetic algorithms assisted by artificial neural networks (softcomputing techniques). J. Catal. 229, 513–524 (2005).

    Article  CAS  Google Scholar 

  29. Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: is it here, finally? AIChE J. 65, 466–478 (2019).

    Article  CAS  Google Scholar 

  30. Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. NPJ Comput. Mater. 8, 84 (2022).

    Article  Google Scholar 

  31. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  32. RDKit; https://www.rdkit.org/

  33. Chanussot, L. et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021). The most extensive database consisting of close to 1.3 million density DFT relaxations across a wide swath of materials, surfaces and adsorbates (nitrogen, carbon and oxygen chemistries) for application in heterogeneous catalysis.

    Article  CAS  Google Scholar 

  34. Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Yano, J. et al. The case for data science in experimental chemistry: examples and recommendations. Nat. Rev. Chem. 6, 357–370 (2022).

    Article  PubMed  Google Scholar 

  36. Schlexer Lamoureux, P. et al. Machine learning for computational heterogeneous catalysis. ChemCatChem 11, 3581–3601 (2019).

    Article  CAS  Google Scholar 

  37. Medford, A. J., Kunz, M. R., Ewing, S. M., Borders, T. & Fushimi, R. Extracting knowledge from data through catalysis informatics. ACS Catal. 8, 7403–7429 (2018).

    Article  CAS  Google Scholar 

  38. Maldonado, A. G. & Rothenberg, G. Predictive modeling in homogeneous catalysis: a tutorial. Chem. Soc. Rev. 39, 1891–1902 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Mazurenko, S., Prokop, Z. & Damborsky, J. Machine learning in enzyme engineering. ACS Catal. 10, 1210–1223 (2020).

    Article  CAS  Google Scholar 

  40. Suvarna, M. & Pérez-Ramírez, J. Dataset: Embracing Data Science in Catalysis Research (Zenodo, 2024); https://doi.org/10.5281/zenodo.10640876

  41. Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science 363, eaau5631 (2019). The study models multiple conformations of more than 800 prospective catalysts for the coupling reaction of imines and thiols, and trained machine learning algorithms on a subset of experimental results, to achieve highly accurate predictions of enantioselectivities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen, T. N. et al. High-throughput experimentation and catalyst informatics for oxidative coupling of methane. ACS Catal. 10, 921–932 (2020).

    Article  CAS  Google Scholar 

  43. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018). A fully automated screening method developed by integrating machine learning and optimization algorithms to guide DFT calculations, for in silico prediction of electrocatalyst performance for CO2 reduction and H2 evolution.

    Article  CAS  Google Scholar 

  44. Wang, G. et al. Accelerated discovery of multi-elemental reverse water–gas shift catalysts using extrapolative machine learning approach. Nat. Commun. 14, 5861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amar, Y., Schweidtmann, A. M., Deutsch, P., Cao, L. & Lapkin, A. Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis. Chem. Sci. 10, 6697–6706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rinehart, N. I. et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 381, 965–972 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Schweidtmann, A. M. et al. Machine learning meets continuous flow chemistry: automated optimization towards the pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018).

    Article  CAS  Google Scholar 

  48. O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Article  Google Scholar 

  49. Foppa, L. et al. Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence. MRS Bull. 46, 1016–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, S. et al. Enantiodivergent Pd-catalyzed C-C bond formation enabled through ligand parameterization. Science 362, 670–674 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Timoshenko, J., Lu, D., Lin, Y. & Frenkel, A. I. Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 8, 5091–5098 (2017). Application of deep learning to solve metal catalyst from XANES, broadly applicable to the determination of nanoparticle structures in operando studies and generalizable to other nanoscale systems.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, C. et al. Automated generation and ensemble-learned matching of X-ray absorption spectra. NPJ Comput. Mater. 4, 12 (2018).

    Article  Google Scholar 

  53. Mitchell, S. et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 144, 8018–8029 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Büchler, J. et al. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nat. Commun. 13, 371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wulf, C. et al. A unified research data infrastructure for catalysis research - challenges and concepts. ChemCatChem 13, 3223–3236 (2021).

    Article  CAS  Google Scholar 

  56. Mendes, P. S. F., Siradze, S., Pirro, L. & Thybaut, J. W. Open data in catalysis: from today’s big picture to the future of small data. ChemCatChem 13, 836–850 (2021).

    Article  CAS  Google Scholar 

  57. Marshall, C. P., Schumann, J. & Trunschke, A. Achieving digital catalysis: strategies for data acquisition, storage and use. Angew. Chem. Int. Ed. 62, e202302971 (2023).

    Article  CAS  Google Scholar 

  58. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    Article  CAS  Google Scholar 

  59. Odabasi, C., Gunay, M. E. & Yildrim, R. Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012. Int. J. Hydrog. Energy 39, 5733–5746 (2014).

    Article  CAS  Google Scholar 

  60. Suvarna, M., Araújo, T. P. & Pérez-Ramírez, J. A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. Appl. Catal. B Environ. 315, 121530 (2022).

    Article  CAS  Google Scholar 

  61. Mamun, O., Winther, K. T., Boes, J. R. & Bligaard, T. High-throughput calculations of catalytic properties of bimetallic alloy surfaces. Sci. Data 6, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  Google Scholar 

  66. Schomburg, I., Chang, A. & Schomburg, D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 30, 47–49 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagano, N. EzCatDB: the enzyme catalytic-mechanism database. Nucleic Acids Res. 33, D407–D412 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Finnigan, W. et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  PubMed  Google Scholar 

  71. Gensch, T. et al. A comprehensive discovery platform for organophosphorus ligands for catalysis. J. Am. Chem. Soc. 144, 1205–1217 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  PubMed  Google Scholar 

  73. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5, 83 (2019).

    Article  Google Scholar 

  74. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Mitchell, J. B. O. Machine learning methods in chemoinformatics. WIREs Comput. Mol. Sci. 4, 468–481 (2014).

    Article  CAS  Google Scholar 

  76. Wigh, D. S., Goodman, J. M. & Lapkin, A. A. A review of molecular representation in the age of machine learning. WIREs Comput. Mol. Sci. 12, e1603 (2022).

    Article  Google Scholar 

  77. Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).

    Article  Google Scholar 

  78. Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7, 041317 (2020).

    Article  CAS  Google Scholar 

  80. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    Article  CAS  Google Scholar 

  81. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 61, e202200242 (2022).

    Article  CAS  Google Scholar 

  83. Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048–18062 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Suvarna, M., Vaucher, A. C., Mitchell, S., Laino, T. & Pérez-Ramírez, J. Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis. Nat. Commun. 14, 7964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lai, N. S. et al. Artificial intelligence (AI) workflow for catalyst design and optimization. Ind. Eng. Chem. Res. 62, 17835–17848 (2023).

    Article  Google Scholar 

  86. Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moon, J. et al. Active learning guides discovery of a champion four-metal perovskite oxide for oxygen evolution electrocatalysis. Nat. Mater. 23, 108–115 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). Discovery of Cu-Al electrocatalysts, though DFT aided machine learning, to efficiently reduce CO2 to ethylene with a Faradaic efficiency of 80%.

    Article  CAS  PubMed  Google Scholar 

  89. Torres, J. A. G. et al. A multi-objective active learning platform and web app for reaction optimization. J. Am. Chem. Soc. 144, 19999–20007 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Greenhalgh, J. C., Fahlberg, S. A., Pfleger, B. F. & Romero, P. A. Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nat. Commun. 12, 5825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tallorin, L. et al. Discovering de novo peptide substrates for enzymes using machine learning. Nat. Commun. 9, 5253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anstine, D. M. & Isayev, O. Generative models as an emerging paradigm in the chemical sciences. J. Am. Chem. Soc. 145, 8736–8750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018). A method to convert discrete representations of molecules into multidimensional continuous representations for generating compounds in silico.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article  Google Scholar 

  96. Hawkins-Hooker, A. et al. Generating functional protein variants with variational autoencoders. PLoS Comput. Biol. 17, e1008736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson, S. R. et al. Computational scoring and experimental evaluation of enzymes generated by neural networks. Preprint at https://www.biorxiv.org/content/10.1101/2023.03.04.531015v1 (2023).

  98. Schilter, O., Vaucher, A., Schwaller, P. & Laino, T. Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions. Digit. Discov. 2, 728–735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kreutter, D., Schwaller, P. & Reymond, J.-L. Predicting enzymatic reactions with a molecular transformer. Chem. Sci. 12, 8648–8659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017). A fully automated deep reinforcement learning to optimize chemical reactions where the model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lan, T. & An, Q. Discovering catalytic reaction networks using deep reinforcement learning from first-principles. J. Am. Chem. Soc. 143, 16804–16812 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Song, Z. et al. Adaptive design of alloys for CO2 activation and methanation via reinforcement learning Monte Carlo tree search algorithm. J. Phys. Chem. Lett. 14, 3594–3601 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Suvarna, M., Preikschas, P. & Pérez-Ramírez, J. Identifying descriptors for promoted rhodium-based catalysts for higher alcohol synthesis via machine learning. ACS Catal. 12, 15373–15385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith, A., Keane, A., Dumesic, J. A., Huber, G. W. & Zavala, V. M. A machine learning framework for the analysis and prediction of catalytic activity from experimental data. Appl. Catal. B Environ. 263, 118257 (2020).

    Article  CAS  Google Scholar 

  106. Vellayappan, K. et al. Impacts of catalyst and process parameters on Ni-catalyzed methane dry reforming via interpretable machine learning. Appl. Catal. B Environ. 330, 122593 (2023).

    Article  CAS  Google Scholar 

  107. Roh, J. et al. Interpretable machine learning framework for catalyst performance prediction and validation with dry reforming of methane. Appl. Catal. B Environ. 343, 123454 (2024).

    Article  CAS  Google Scholar 

  108. McCullough, K., Williams, T., Mingle, K., Jamshidi, P. & Lauterbach, J. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery. Phys. Chem. Chem. Phys. 22, 11174–11196 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki, K. et al. Statistical analysis and discovery of heterogeneous catalysts based on machine learning from diverse published data. ChemCatChem 11, 4537–4547 (2019).

    Article  CAS  Google Scholar 

  110. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Oviedo, F., Ferres, J. L., Buonassisi, T. & Butler, K. T. Interpretable and explainable machine learning for materials science and chemistry. Acc. Mater. Res. 3, 597–607 (2022).

    Article  CAS  Google Scholar 

  112. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  113. Wu, K. & Doyle, A. G. Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects. Nat. Chem. 9, 779–784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Weng, B. et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat. Commun. 11, 3513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

    Article  CAS  Google Scholar 

  116. Foppa, L. et al. Data-centric heterogeneous catalysis: identifying rules and materials genes of alkane selective oxidation. J. Am. Chem. Soc. 145, 3427–3442 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, Z., Ma, X. & Xin, H. Feature engineering of machine-learning chemisorption models for catalyst design. Catal. Today 280, 232–238 (2017).

    Article  CAS  Google Scholar 

  118. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Timoshenko, J. et al. Linking the evolution of catalytic properties and structural changes in copper-zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 11, 3727–3736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023). A review of self-driving labs through the integration of machine learning, lab automation and robotics to accelerate digital data curation and enable data-driven discoveries in chemical sciences.

    Article  Google Scholar 

  123. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was created as part of NCCR Catalysis (grant no. 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. We thank C. Ko, M. E. Usteri, T. Zou and P. Preikschas for fruitful discussions on the manuscript and help with illustrations.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and J.P.-R. conceived the project. M.S. led the data collection and analysis efforts, and wrote the manuscript. J.P.-R. supervised the project, wrote the manuscript, and managed resources and funding. Both authors provided input to the manuscript and approved the final version.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Tables 1–3 and Fig. 1.

Source data

41929_2024_1150_MOESM2_ESM.xlsx

Source Data Fig. 1a Raw data for creating timeline plot of research trends in data-driven catalysis. Source Data Fig. 1c Raw data for creating alluvial plots linking catalysis subdisciplines with different tasks and modes. Source Data Fig. 2a Raw data for network plot mapping relations of deductive tasks based on catalysis type. Source Data Fig. 2b Raw data for network plot mapping relations of deductive tasks based on driving. Source Data Fig. 4 Raw data for establishing structure-property-performance relations through ML.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvarna, M., Pérez-Ramírez, J. Embracing data science in catalysis research. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01150-3

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics