Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites

Abstract

Artificial enzymes, which are hybrids of proteins with abiological catalytic groups, have emerged as a powerful approach towards the creation of enzymes for new-to-nature reactions. Typically, only a single abiological catalytic moiety is incorporated. Here we introduce a design of an artificial enzyme that comprises two different abiological catalytic moieties and show that these can act synergistically to achieve high activity and enantioselectivity (up to >99% e.e.) in the catalysed Michael addition reaction. The design is based on the lactococcal multidrug resistance regulator as the protein scaffold and combines a genetically encoded unnatural p-aminophenylalanine residue (which activates an enal through iminium ion formation) and a supramolecularly bound Lewis acidic Cu(ii) complex (which activates the Michael donor by enolization and delivers it to one preferred prochiral face of the activated enal). This study demonstrates that synergistic combination of abiological catalytic groups is a robust way to achieve catalysis that is normally outside of the realm of artificial enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial enzyme designs based on LmrR.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the Article and its Supplementary Information, or from the corresponding author on reasonable request.

References

  1. Hilvert, D. Design of protein catalysts. Annu. Rev. Biochem. 82, 447–470 (2013).

    Article  CAS  Google Scholar 

  2. Nanda, V. & Koder, R. L. Designing artificial enzymes by intuition and computation. Nat. Chem. 2, 15–24 (2010).

    Article  CAS  Google Scholar 

  3. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  Google Scholar 

  4. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    Article  Google Scholar 

  5. Mayer, C., Dulson, C., Reddem, E., Thunnissen, A. M. W. H. & Roelfes, G. Directed evolution of a designer enzyme featuring an unnatural catalytic amino acid. Angew. Chem. Int. Ed. 58, 2083–2087 (2019).

    Article  CAS  Google Scholar 

  6. Nödling, A. R. et al. Reactivity and selectivity of iminium organocatalysis improved by a protein host. Angew. Chem. Int. Ed. 57, 12478–12482 (2018).

    Article  Google Scholar 

  7. Burke, A. J. et al. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 570, 219–223 (2019).

    Article  CAS  Google Scholar 

  8. Markel, U., Sauer, D. F., Schiffels, J., Okuda, J. & Schwaneberg, U. Towards the evolution of artificial metalloenzymes—a protein engineer’s perspective. Angew. Chem. Int. Ed. 58, 4454–4464 (2019).

    Article  CAS  Google Scholar 

  9. Hyster, T. K. & Ward, T. R. Genetic optimization of metalloenzymes: enhancing enzymes for non-natural reactions. Angew. Chem. Int. Ed. 55, 7344–7357 (2016).

    Article  CAS  Google Scholar 

  10. Sträter, N., Lipscomb, W. N., Klabunde, T. & Krebs, B. Two-metal ion catalysis in enzymatic acyl- and phosphoryl-transfer reactions. Angew. Chem. Int. Ed. 35, 2024–2055 (1996).

    Article  Google Scholar 

  11. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    Article  CAS  Google Scholar 

  12. Patil, N. T., Shinde, V. S. & Gajula, B. A one-pot catalysis: the strategic classification with some recent examples. Org. Biomol. Chem. 10, 211–224 (2012).

    Article  CAS  Google Scholar 

  13. Afewerki, S. & Córdova, A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem. Rev. 116, 13512–13570 (2016).

    Article  CAS  Google Scholar 

  14. Deng, Y., Kumar, S. & Wang, H. Synergistic-cooperative combination of enamine catalysis with transition metal catalysis. Chem. Commun. 50, 4272–4284 (2014).

    Article  CAS  Google Scholar 

  15. Krautwald, S., Schafroth, M. A., Sarlah, D. & Carreira, E. M. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis. J. Am. Chem. Soc. 136, 3020–3023 (2014).

    Article  CAS  Google Scholar 

  16. Zhang, M. et al. Synergetic iridium and amine catalysis enables asymmetric [4+2] cycloadditions of vinyl aminoalcohols with carbonyls. Nat. Commun. 10, 2716 (2019).

    Article  Google Scholar 

  17. Du, Z. & Shao, Z. Combining transition metal catalysis and organocatalysis—an update. Chem. Soc. Rev. 42, 1337–1378 (2012).

    Article  Google Scholar 

  18. Agustiandari, H., Lubelski, J., Van Den Berg Van Saparoea, H. B., Kuipers, O. P. & Driessen, A. J. M. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in lactococcus lactis. J. Bacteriol. 190, 759–763 (2008).

    Article  CAS  Google Scholar 

  19. Madoori, P. K., Agustiandari, H., Driessen, A. J. M. & Thunnissen, A. M. W. H. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition. EMBO J. 28, 156–166 (2009).

    Article  CAS  Google Scholar 

  20. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    Article  CAS  Google Scholar 

  21. Bos, J., Browne, W. R., Driessen, A. J. M. & Roelfes, G. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J. Am. Chem. Soc. 137, 9796–9799 (2015).

    Article  CAS  Google Scholar 

  22. Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

    Article  Google Scholar 

  23. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  24. Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment—expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).

    Article  CAS  Google Scholar 

  25. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  Google Scholar 

  26. Mehl, R. A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    Article  CAS  Google Scholar 

  27. Guo, C., Saifuddin, M., Saravanan, T., Sharifi, M. & Poelarends, G. J. Biocatalytic asymmetric Michael additions of nitromethane to α,β-unsaturated aldehydes via enzyme-bound iminium ion intermediates. ACS Catal. 9, 4369–4373 (2019).

    Article  CAS  Google Scholar 

  28. Garrabou, X., Verez, R. & Hilvert, D. Enantiocomplementary synthesis of γ-nitroketones using designed and evolved carboligases. J. Am. Chem. Soc. 139, 103–106 (2017).

    Article  CAS  Google Scholar 

  29. Garrabou, X., Macdonald, D. S., Wicky, B. I. M. & Hilvert, D. Stereodivergent evolution of artificial enzymes for the michael reaction. Angew. Chem. Int. Ed. 57, 5288–5291 (2018).

    Article  CAS  Google Scholar 

  30. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  Google Scholar 

  31. Huang, X., Webster, R. D., Harms, K. & Meggers, E. Asymmetric catalysis with organic azides and diazo compounds initiated by photoinduced electron transfer. J. Am. Chem. Soc. 138, 12636–12642 (2016).

    Article  CAS  Google Scholar 

  32. Zhang, D. H., Knelles, J. & Plietker, B. Iron-catalyzed michael addition of ketones to polar olefins. Adv. Synth. Catal. 358, 2469–2479 (2016).

    Article  CAS  Google Scholar 

  33. Villarino, L. et al. An artificial heme enzyme for cyclopropanation reactions. Angew. Chem. Int. Ed. 57, 7785–7789 (2018).

    Article  Google Scholar 

  34. Chin, J. W. et al. Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  35. Bos, J., García-Herraiz, A. & Roelfes, G. An enantioselective artificial metallo-hydratase. Chem. Sci. 4, 3578–3582 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. B. Leveson-Gower for assistance in preparation of the figures and K. E. Splan for useful discussions. Support from the Netherlands Organisation for Scientific Research (NWO) (Vici grant no. 724.013.003) and the Ministry of Education, Culture and Science (Gravitation programme no. 024.001.035) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.R. conceived and directed the project. Z.Z. performed the experimental work and analysed the data. The authors discussed the results and wrote the manuscript together.

Corresponding author

Correspondence to Gerard Roelfes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–7, methods and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat Catal 3, 289–294 (2020). https://doi.org/10.1038/s41929-019-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0420-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing