Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia

Abstract

Ammonia is a widely produced chemical that is the basis of most fertilisers. However, it is currently derived from fossil fuels and there is an urgent need to develop sustainable approaches to its production. Ammonia is also being considered as a renewable energy carrier, allowing efficient storage and transportation of renewables. For these reasons, the electrochemical nitrogen reduction reaction (NRR) is currently being intensely investigated as the basis for future mass production of ammonia from renewables. This Perspective critiques current steps and miss-steps towards this important goal in terms of experimental methodology and catalyst selection, proposing a protocol for rigorous experimentation. We discuss the issue of catalyst selectivity and the approaches to promoting the NRR over H2 production. Finally, we translate these mechanistic discussions, and the key metrics being pursued in the field, into the bigger picture of ammonia production by other sustainable processes, discussing benchmarks by which NRR progress can be assessed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NRR experimental protocol.
Fig. 2: Comparison of DFT calculations of N2 reduction mechanisms on Ru(001).
Fig. 3: DFT free energy calculations.

Similar content being viewed by others

References

  1. Wang, L. et al. Greening ammonia toward the solar ammonia refinery. Joule 2, 1055–1074 (2018).

    Article  CAS  Google Scholar 

  2. Gilbert, N. Dirt poor. Nature 483, 525 (2012).

    Article  CAS  Google Scholar 

  3. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. (MIT Press, Cambridge, 2004).

  4. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  5. Service, R. F. Liquid sunshine. Science 361, 120–123 (2018).

    CAS  PubMed  Google Scholar 

  6. Shipman, M. A. & Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 286, 57–68 (2017).

    Article  CAS  Google Scholar 

  7. van der Ham, C. J. M., Koper, M. T. M. & Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    Article  Google Scholar 

  8. Dolan, M. (ed.) Delivering clean hydrogen fuel from ammonia using metal membranes (AIChE, 2017).

  9. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  10. Zhan, C.-G., Nichols, J. A. & Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 107, 4184–4195 (2003).

    Article  CAS  Google Scholar 

  11. Jia, H.-P. & Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014).

    Article  CAS  Google Scholar 

  12. Licht, S. et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345, 637–640 (2014).

    Article  CAS  Google Scholar 

  13. Zhou, F. et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017).

    Article  CAS  Google Scholar 

  14. Low, M. J., Ramasubramanian, N. & Rao, V. S. Reactions of ammonia with porous glass surfaces. J. Phys. Chem. 71, 1726–1734 (1967).

    Article  CAS  Google Scholar 

  15. Murray, C. A. & Greytak, T. J. Raman scattering from ammonia adsorbed on the amorphous silica surface. J. Chem. Phys. 71, 3355–3365 (1979).

    Article  CAS  Google Scholar 

  16. Richardson, G., Davies, J. & Edwards, J. Micromolar ammonia analysis and atmospheric contamination. Fresenius J. Anal. Chem. 340, 392–394 (1991).

    Article  CAS  Google Scholar 

  17. Warner, J. X. et al. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 44, 2875–2884 (2017).

    Article  CAS  Google Scholar 

  18. Ianniello, A. et al. Occurrence of gas phase ammonia in the area of Beijing (China). Atmos. Chem. Phys. 10, 9487–9503 (2010).

    Article  CAS  Google Scholar 

  19. Boucher, D. L., Davies, J. A., Edwards, J. G. & Mennad, A. An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides. J. Photochem. Photobiol. A 88, 53–64 (1995).

    Article  CAS  Google Scholar 

  20. Ritter, S. Cold fusion died 25 years ago, but the research lives on. Scientists continue to study unusual heat-generating effects, some hoping for vindication, others for an eventual payday. Chem. Eng. News 94, 34–39 (2016).

    Google Scholar 

  21. Franks, F. Polywater. (MIT Press, Cambridge, 1981).

    Google Scholar 

  22. Ishibashi, T. et al. NO(x) contamination in laboratory ware and effect of countermeasures. Nitric Oxide 4, 516–525 (2000).

    Article  CAS  Google Scholar 

  23. Makela, S., Yazdanpanah, M., Adatia, I. & Ellis, G. Disposable surgical gloves and pasteur (transfer) pipettes as potential sources of contamination in nitrite and nitrate assays. Clin. Chem. 43, 2418–2420 (1997).

    CAS  PubMed  Google Scholar 

  24. Greenlee, L. F., Renner, J. N. & Foster, S. L. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 8, 7820–7827 (2018).

    Article  CAS  Google Scholar 

  25. Cattarin, S. Electrochemical reduction of nitrogen oxyanions in 1 M sodium hydroxide solutions at silver, copper and CuInSe2 electrodes. J. Appl. Electrochem. 22, 1077–1081 (1992).

    Article  CAS  Google Scholar 

  26. Badea, G. E. Electrocatalytic reduction of nitrate on copper electrode in alkaline solution. Electrochim. Acta 54, 996–1001 (2009).

    Article  CAS  Google Scholar 

  27. Li, Hl, Robertson, D. H., Chambers, J. Q. & Hobbs, D. T. Electrochemical reduction of nitrate and nitrite in concentrated sodium hydroxide at platinum and nickel electrodes. J. Electrochem. Soc. 135, 1154–1158 (1988).

    Article  CAS  Google Scholar 

  28. Ohmori, T., El-Deab, M. S. & Osawa, M. Electroreduction of nitrate ion to nitrite and ammonia on a gold electrode in acidic and basic sodium and cesium nitrate solutions. J. Electroanal. Chem. 470, 46–52 (1999).

    Article  CAS  Google Scholar 

  29. Chen, J., Yao, B., Li, C. & Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013).

    Article  CAS  Google Scholar 

  30. Nazemi, M., Panikkanvalappil, S. R. & El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 49, 316–323 (2018).

    Article  CAS  Google Scholar 

  31. Searle, P. L. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109, 549–568 (1984).

    Article  CAS  Google Scholar 

  32. Ngo, T. T., Phan, A. P. H., Yam, C. F. & Lenhoff, H. M. Interference in determination of ammonia with the hypochlorite-alkaline phenol method of Berthelot. Anal. Chem. 52, 46–49 (1982).

    Article  Google Scholar 

  33. Moliner-Martinez, Y., Herráez-Hernández & Campíns-Falcó, R. Improved detection limit for ammonium/ammonia achieved by Berthelot’s reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy. Anal. Chim. Acta 534, 327–334 (2005).

  34. Roux, Y., Duboc, C. & Gennari, M. Molecular catalysts for N2 reduction: state of the art, mechanism, and challenges. ChemPhysChem 18, 2606–2617 (2017).

    Article  CAS  Google Scholar 

  35. Wang, D. et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions. ChemSusChem 11, 3416–3422 (2018).

    Article  CAS  Google Scholar 

  36. Skulason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article  CAS  Google Scholar 

  37. Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Reaction mechanism and kinetics for ammonia synthesis on the Fe(111) surface. J. Am. Chem. Soc. 140, 6288–6297 (2018).

    Article  CAS  Google Scholar 

  38. Liu, C. et al. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141, 2884–2888 (2019).

    Article  CAS  Google Scholar 

  39. Liu, C. et al. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia. J. Phys. Chem. C 122, 25268–25273 (2018).

    Article  CAS  Google Scholar 

  40. Azofra, L. M., Li, N., MacFarlane, D. R. & Sun, C. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 9, 2545–2549 (2016).

    Article  CAS  Google Scholar 

  41. Azofra, L. M., Sun, C., Cavallo, L. & MacFarlane, D. R. Feasibility of N2 binding and reduction to ammonia on Fe-deposited MoS2 2D sheets: a DFT study. Chem. Europ. J. 23, 8275–8279 (2017).

    Article  CAS  Google Scholar 

  42. Suryanto, B. H. R. et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 4, 430–435 (2018).

    Article  Google Scholar 

  43. Tesch, M. et al. Evolution of oxygen-metal electron transfer and metal electronic states during Mn-oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem. https://doi.org/10.1002/anie.201810825 (2019).

    Article  Google Scholar 

  44. Pfeifer, V. et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys. 18, 2292–2296 (2016).

    Article  CAS  Google Scholar 

  45. Yao, Y., Zhu, S., Wang, H., Li, H. & Shao, M. A Spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018).

    Article  CAS  Google Scholar 

  46. Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    Article  CAS  Google Scholar 

  47. Pavlovic, Z., Ranjan, C., van Gastel, M. & Schlögl, R. The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem. Commun. 53, 12414–12417 (2017).

    Article  CAS  Google Scholar 

  48. Hodnik, N., Dehm, G. & Mayrhofer, K. J. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016).

    Article  CAS  Google Scholar 

  49. MacFarlane, D. R. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016).

    Article  CAS  Google Scholar 

  50. Kang, C. S. M., Zhang, X. & MacFarlane, D. R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 122, 24550–24558 (2018).

    Article  CAS  Google Scholar 

  51. Suryanto, B. H. R. et al. A rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 3, 1219–1224 (2018).

    Article  CAS  Google Scholar 

  52. Abghoui, Y. et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 17, 4909–4918 (2015).

    Article  CAS  Google Scholar 

  53. Du, H.-L., Gengenbach, T., Hodgetts, R., MacFarlane, D. R. & Simonov, A. N. Critical assessment of the electrocatalytic activity of vanadium and niobium nitrides for the reduction of dinitrogen to ammonia. ACS Sust. Chem. Eng. https://doi.org/10.1021/acssuschemeng.8b06163 (2019).

    Article  Google Scholar 

  54. Final report for a study on composition and drivers of energy prices and costs in energy intensive industries: The case of the chemical industry-ammonia (Centre for European Policy Studies, 2014).

  55. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    Article  CAS  Google Scholar 

  56. Wilkinson, I. Green Ammonia (Siemens, 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. MacFarlane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanto, B.H.R., Du, HL., Wang, D. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal 2, 290–296 (2019). https://doi.org/10.1038/s41929-019-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0252-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing