Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hybrid multimodal wearable sensors for comprehensive health monitoring

Abstract

Wearable bioelectronic sensors are often used for health monitoring but are typically limited to a few physical or chemical parameters, which hinders their ability to provide a complete health assessment. Recently, wearable sensor platforms have been developed that can simultaneously and continuously record multiple biophysical and biochemical signals. These devices take advantage of advances in electronic device fabrication and miniaturization, bioelectronic sensors, and flexible materials. However, compared with existing wearable systems, which mostly contain either biochemical or biophysical sensors, hybrid multimodal wearable patches present a number of distinct challenges for further advancement. Here, we examine the development of such hybrid multimodal wearable sensors and explore their potential applications in tracking the health and disease status of different users. We highlight the key biomarkers and vital signs (related to various pathophysiological conditions) that hybrid bioelectronic sensor systems must be designed around. We also explore how artificial intelligence could be integrated with these hybrid multimodal sensors to offer wearers the ability to assess their health status in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid multimodal sensors for comprehensive health monitoring.
Fig. 2: Biomarkers and vitals for clinical settings.
Fig. 3: Current systems for health and wellness monitoring.
Fig. 4: The future of hybrid sensors.
Fig. 5: Roadmap for hybrid multimodal systems.

Similar content being viewed by others

References

  1. Wilson, T., Holt, T. & Greenhalgh, T. Complexity science: complexity and clinical care. BMJ 323, 685–688 (2001).

    Article  Google Scholar 

  2. Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article  Google Scholar 

  3. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  4. Ricotti, V. et al. Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy. Nat. Med. 29, 95–103 (2023).

    Article  Google Scholar 

  5. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  Google Scholar 

  6. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2023).

    Article  Google Scholar 

  7. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  MathSciNet  Google Scholar 

  8. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    Article  Google Scholar 

  9. King, R. C. et al. Application of data fusion techniques and technologies for wearable health monitoring. Med. Eng. Phys. 42, 1–12 (2017).

    Article  Google Scholar 

  10. Muzammal, M., Talat, R., Sodhro, A. H. & Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion 53, 155–164 (2020).

    Article  Google Scholar 

  11. Vargas, E., Nandhakumar, P., Ding, S., Saha, T. & Wang, J. Insulin detection in diabetes mellitus: challenges and new prospects. Nat. Rev. Endocrinol. 19, 487–495 (2023).

    Article  Google Scholar 

  12. Saha, T. et al. Wearable electrochemical glucose sensors in diabetes 2 management: a comprehensive review. Chem. Rev. 123, 7854–7889 (2023).

    Article  Google Scholar 

  13. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Article  Google Scholar 

  14. Almalki, Z. S. et al. Prevalence, risk factors, and management of uncontrolled hypertension among patients with diabetes: a hospital-based cross-sectional study. Prim. Care Diabetes 14, 610–615 (2020).

    Article  Google Scholar 

  15. Mancia, G. & Parati, G. The role of blood pressure variability in end-organ damage. J. Hypertens. 21, S17–S23 (2003).

    Article  Google Scholar 

  16. Gao, W., Ota, H., Kiriya, D., Takei, K. & Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 52, 523–533 (2019).

    Article  Google Scholar 

  17. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  Google Scholar 

  18. Hozumi, S., Honda, S., Arie, T., Akita, S. & Takei, K. Multimodal wearable sensor sheet for health-related chemical and physical monitoring. ACS Sens. 6, 1918–1924 (2021).

    Article  Google Scholar 

  19. Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 2022 188 18, 497–507 (2022).

    Google Scholar 

  20. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  Google Scholar 

  21. Teymourian, H., Tehrani, F., Mahato, K. & Wang, J. Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 10, 2002255 (2021).

    Article  Google Scholar 

  22. Choi, J.-Y. et al. Health-related indicators measured using earable devices: systematic review. JMIR mHealth uHealth 10, e36696 (2022).

    Article  Google Scholar 

  23. Sempionatto, J. R. et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17, 1834–1842 (2017).

    Article  Google Scholar 

  24. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  25. Mishra, R. K. et al. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta 211, 120757 (2020).

    Article  Google Scholar 

  26. Zeng, K., Shi, X., Tang, C., Liu, T. & Peng, H. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat. Rev. Mater. 8, 552–561 (2023).

    Article  Google Scholar 

  27. Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2021).

    Article  Google Scholar 

  28. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  Google Scholar 

  29. Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    Article  Google Scholar 

  30. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  31. Yin, L., Lv, J. & Wang, J. Structural innovations in printed, flexible, and stretchable electronics. Adv. Mater. Technol. 5, 2000694 (2020).

    Article  Google Scholar 

  32. Fujiwara, H. et al. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017).

    Article  Google Scholar 

  33. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  34. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  Google Scholar 

  35. Yin, L. et al. From all‐printed 2D patterns to free‐standing 3D structures: controlled buckling and selective bonding. Adv. Mater. Technol. 3, 1800013 (2018).

    Article  Google Scholar 

  36. Tehrani, F. et al. Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 4, 1900162 (2019).

    Article  Google Scholar 

  37. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  38. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  Google Scholar 

  39. Forkan, A. R. M., Forkan, A. R. M., Khalil, I. & Atiquzzaman, M. ViSiBiD: a learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Comput. Netw. 113, 244–257 (2017).

    Article  Google Scholar 

  40. Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).

    Article  Google Scholar 

  41. Cao, R., Tang, Z., Liu, C. & Veeravalli, B. A scalable multicloud storage architecture for cloud-supported medical Internet of Things. IEEE Internet Things J. 7, 1641–1654 (2020).

    Article  Google Scholar 

  42. Shan, G., Li, X., Huang, W., Huang, W. & Huang, W. AI-enabled wearable and flexible electronics for assessing full personal exposures. Innov. Eur. J. Soc. Sci. Res. 1, 100031 (2020).

    Google Scholar 

  43. Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  Google Scholar 

  44. Huang, J.-D. et al. Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: a review. Sensors 22, 8002 (2022).

    Article  Google Scholar 

  45. Sitaula, C. et al. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 2: artificial intelligence. Pediatr. Res. 93, 426–436 (2023).

    Article  Google Scholar 

  46. Grooby, E. et al. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 1 wearable technology. Pediatr. Res. 93, 413–425 (2023).

    Article  Google Scholar 

  47. Xie, Y. et al. Integration of artificial intelligence, blockchain, and wearable technology for chronic disease management: a new paradigm in smart healthcare. Curr. Med. Sci. 41, 1123–1133 (2021).

    Article  Google Scholar 

  48. Tsafaras, G. P., Ntontsi, P. & Xanthou, G. Advantages and limitations of the neonatal immune system. Front. Pediatr. 8, 5 (2020).

    Article  Google Scholar 

  49. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  Google Scholar 

  50. Milton, R. et al. Neonatal sepsis and mortality in low-income and middle-income countries from a facility-based birth cohort: an international multisite prospective observational study. Lancet Glob. Health 10, e661–e672 (2022).

    Article  Google Scholar 

  51. Shane, A. L., Sánchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

    Article  Google Scholar 

  52. Pan, D. H. & Rivas, Y. Jaundice: newborn to age 2 months. Pediatr. Rev. 38, 499–510 (2017).

    Article  Google Scholar 

  53. Olusanya, B. O., Kaplan, M. & Hansen, T. W. R. Neonatal hyperbilirubinaemia: a global perspective. Lancet Child Adolesc. Health 2, 610–620 (2018).

    Article  Google Scholar 

  54. Inamori, G. et al. Neonatal wearable device for colorimetry-based real-time detection of jaundice with simultaneous sensing of vitals. Sci. Adv. 7, eabe3793 (2021).

    Article  Google Scholar 

  55. Jayanthi, N. et al. Risk of injuries associated with sport specialization and intense training patterns in young athletes: a longitudinal clinical case-control study. Orthop. J. Sport. Med. 8, 2325967120922764 (2020).

    Google Scholar 

  56. Raghuveer, G. et al. Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American Heart Association. Circulation 142, e101–e118 (2020).

    Article  Google Scholar 

  57. Lee, H. & Thap, T. A wearable watch-type reflectance-based blood-oxygen saturation (SpO2) level estimation. In Proc. Korea Information Processing Society Conference 578–579 (Korea Information Processing Society, 2015).

  58. Tipton, M. J., Harper, A., Paton, J. F. R. & Costello, J. T. The human ventilatory response to stress: rate or depth? J. Physiol. 595, 5729–5752 (2017).

    Article  Google Scholar 

  59. Gleeson, M. Biochemical and immunological markers of overtraining. J. Sport. Sci. Med. 1, 31–41 (2002).

    Google Scholar 

  60. Löffler, M. et al. Stress-induced hyperalgesia instead of analgesia in patients with chronic musculoskeletal pain. Neurobiol. Pain. 13, 100110 (2023).

    Article  Google Scholar 

  61. Kellezi, B. et al. The impact of psychological factors on recovery from injury: a multicentre cohort study. Soc. Psychiatry Psychiatr. Epidemiol. 52, 855–866 (2017).

    Article  Google Scholar 

  62. Gaidai, O., Cao, Y. & Loginov, S. Global cardiovascular diseases death rate prediction. Curr. Probl. Cardiol. 48, 101622 (2023).

    Article  Google Scholar 

  63. Xintarakou, A., Sousonis, V., Asvestas, D., Vardas, P. E. & Tzeis, S. Remote cardiac rhythm monitoring in the era of smart wearables: present assets and future perspectives. Front. Cardiovasc. Med. 5, 853614 (2022).

    Article  Google Scholar 

  64. Rizas, K. D. et al. Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial. Nat. Med. 28, 1823–1830 (2022).

    Article  Google Scholar 

  65. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).

    Article  Google Scholar 

  66. Kenzaka, T. et al. Importance of vital signs to the early diagnosis and severity of sepsis: association between vital signs and sequential organ failure assessment score in patients with sepsis. Intern. Med. 51, 871–876 (2012).

    Article  Google Scholar 

  67. Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012).

    Article  Google Scholar 

  68. Kukkar, D., Zhang, D., Jeon, B. H., Yoshimura, M. & Kim, K.-H. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: performance evaluation and future challenges. Trends Anal. Chem. 150, 116570 (2022).

    Article  Google Scholar 

  69. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  Google Scholar 

  70. Kuusik, A., Alam, M. M., Kask, T. & Gross-Paju, K. Wearable m-assessment system for neurological disease patients. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) 201–206 (IEEE, 2018); https://doi.org/10.1109/WF-IoT.2018.8355165

  71. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  Google Scholar 

  72. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  Google Scholar 

  73. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article  Google Scholar 

  74. Hong, Y. J. et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 28, 1805754 (2018).

    Article  Google Scholar 

  75. Li, T. et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical–electrophysiological signals. Biosens. Bioelectron. 198, 113855 (2022).

    Article  Google Scholar 

  76. Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  Google Scholar 

  77. Zahed, M. A. et al. Microfluidic-integrated multimodal wearable hybrid patch for wireless and continuous physiological monitoring. ACS Sens. 8, 2960–2974 (2023).

    Article  Google Scholar 

  78. Yokus, M. A., Songkakul, T., Pozdin, V. A., Bozkurt, A. & Daniele, M. A. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens. Bioelectron. 153, 112038 (2020).

    Article  Google Scholar 

  79. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  Google Scholar 

  80. Yin, L. et al. Highly stable battery pack via insulated, reinforced, buckling-enabled interconnect array. Small 14, 1800938 (2018).

    Article  Google Scholar 

  81. Yin, L., Kim, K. N., Trifonov, A., Podhajny, T. & Wang, J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ. Sci. 15, 82–101 (2022).

    Article  Google Scholar 

  82. Winokur, E. S., Delano, M. K. & Sodini, C. G. A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans. Biomed. Eng. 60, 189–192 (2013).

    Article  Google Scholar 

  83. Gong, X. et al. High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Front. Mater. 6, 3 (2019).

    Article  Google Scholar 

  84. Sivarajah, U., Kamal, M. M., Irani, Z. & Weerakkody, V. Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017).

    Article  Google Scholar 

  85. Ngiam, K. Y., Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20, e262–e273 (2019).

    Article  Google Scholar 

  86. Mohindru, G., Mondal, K. & Banka, H. Internet of Things and data analytics: a current review. WIREs Data Min. Knowl. Discov. 10, e1341 (2020).

    Article  Google Scholar 

  87. Lee, H., Park, K., Lee, B., Choi, J. & Elmasri, R. Issues in data fusion for healthcare monitoring. In Proc. 1st International Conference on Pervasive Technologies Related to Assistive Environments 1–8 (ACM, 2008); https://doi.org/10.1145/1389586.1389590

  88. Stahlschmidt, S. R., Ulfenborg, B. & Synnergren, J. Multimodal deep learning for biomedical data fusion: a review. Brief. Bioinform. 23, bbab569 (2022).

    Article  Google Scholar 

  89. Tyler, J., Choi, S. W. & Tewari, M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: a new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 20, 17–25 (2020).

    Article  Google Scholar 

  90. Pong, M. H., Wu, X., Lee, C. M. & Qian, Z. Reduction of crosstalk on printed circuit board using genetic algorithm in switching power supply. IEEE Trans. Ind. Electron. 48, 235–238 (2001).

    Article  Google Scholar 

  91. Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

    Article  Google Scholar 

  92. Lu, L. et al. Wearable health devices in health care: narrative systematic review. JMIR mHealth uHealth 8, e18907 (2020).

    Article  Google Scholar 

  93. Saha, T., Del Caño, R., la De Paz, E., Sandhu, S. S. & Wang, J. Access and management of sweat for non‐invasive biomarker monitoring: a comprehensive review. Small 19, 2206064 (2022).

    Article  Google Scholar 

  94. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  Google Scholar 

  95. Yin, L. et al. Wearable e‐skin microgrid with battery‐based, self‐regulated bioenergy module for epidermal sweat sensing. Adv. Energy Mater. 13, 2203418 (2022).

    Article  Google Scholar 

  96. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article  Google Scholar 

  97. Dassanayaka, D. G., Alves, T. M., Wanasekara, N. D., Dharmasena, I. G. & Ventura, J. Recent progresses in wearable triboelectric nanogenerators. Adv. Funct. Mater. 32, 2205438 (2022).

    Article  Google Scholar 

  98. Liaw, D.-J. et al. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37, 907–974 (2012).

    Article  Google Scholar 

  99. Yin, L. et al. A self-sustainable wearable multi-modular e-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2020).

    Article  Google Scholar 

  100. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  Google Scholar 

  101. Witt, D. R. et al. Windows into human health through wearables data analytics. Curr. Opin. Biomed. Eng. 9, 28–46 (2019).

    Article  Google Scholar 

  102. Hwang, D.-K. et al. Smartphone-based diabetic macula edema screening with an offline artificial intelligence. J. Chin. Med. Assoc. 83, 1102–1106 (2020).

    Article  Google Scholar 

  103. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020).

    Article  Google Scholar 

  104. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  Google Scholar 

  105. List of Fitbit products. Wikipedia https://en.wikipedia.org/wiki/List_of_Fitbit_products#Fitbit_Ultra (2016).

Download references

Acknowledgements

We acknowledge the support of the Center for Wearable Sensors, University of California, San Diego for this work.

Author information

Authors and Affiliations

Authors

Contributions

K.M. and J.W. conceived the idea of the paper. K.M. performed the literature analysis and collected data. K.M., T.S., S.D., S.S.S., A.-Y.C. and J.W. discussed, wrote and commented on the paper. J.W. supervised the work.

Corresponding author

Correspondence to Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Sen Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, K., Saha, T., Ding, S. et al. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat Electron 7, 735–750 (2024). https://doi.org/10.1038/s41928-024-01247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01247-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing