Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoelectromechanical resonators for gigahertz frequency control based on hafnia–zirconia–alumina superlattices

Abstract

Many electronic systems depend on microelectromechanical system and nanoelectromechanical system resonators for frequency control applications such as clock signal generation and wireless communication. Hundreds of resonators with frequencies from 32 kHz to 6 GHz can be heterogeneously integrated with complementary metal–oxide–semiconductor circuits. However, heterogeneous integration creates large overheads—such as system size and power consumption—limiting the potential for dynamic spectrum use and frequency extension to centimetre- and millimetre-wave regimes. Here we report switchable nanoelectromechanical system resonators with wide spectrum coverage, which are based on hafnia–zirconia–alumina (Hf0.5Zr0.5O2–Al2O3) superlattice transducers. The superlattice structure, together with pulsed-poling-induced ferroelastic reorientation, enables large linear electromechanical coupling and high quality factor in lateral- and thickness-oriented bulk acoustic wave modes. The monolithic nanoelectromechanical system resonators offer frequencies of 0.4–17.3 GHz, frequency–quality products up to 4.04 × 1012 Hz and electromechanical couplings of 2.5%. Using a d.c. bias voltage to depolarize the transducers, we also show that the resonators can be switched off to their electromechanical noise floor, creating an on/off isolation of 37 dB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superlattice Hf0.5Zr0.5O2–Al2O3 transducer structure and morphology.
Fig. 2: Evolution of piezoelectric and ferroelectric properties in superlattice Hf0.5Zr0.5O2–Al2O3 transducers over pulsed poling.
Fig. 3: Evolution of linear and quadratic piezoelectric constants in superlattice Hf0.5Zr0.5O2–Al2O3 transducer over pulsed poling.
Fig. 4: Superlattice Hf0.5Zr0.5O2–Al2O3 L-BAW resonator image and characterization.
Fig. 5: Superlattice Hf0.5Zr0.5O2–Al2O3 T-BAW resonator image and characterization.
Fig. 6: Intrinsic switchability in superlattice Hf0.5Zr0.5O2–Al2O3 NEMS resonators.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bereyhi, M. J. et al. Hierarchical tensile structures with ultralow mechanical dissipation. Nat. Commun. 13, 3097 (2022).

    Article  Google Scholar 

  2. Kang, J. et al. On-chip intercalated-graphene inductors for next-generation radio frequency electronics. Nat. Electron. 1, 46–51 (2020).

    Article  Google Scholar 

  3. Villanueva, L. G. et al. A nanoscale parametric feedback oscillator. Nano Lett. 11, 5054–5059 (2011).

    Article  Google Scholar 

  4. Cha, J. & Daraio, C. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13, 6–11 (2018).

    Article  Google Scholar 

  5. Chen, C. et al. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013).

    Article  Google Scholar 

  6. Ruby, R. A snapshot in time: the future in filters for cell phones. IEEE Microw. Mag. 16, 46–59 (2015).

    Article  Google Scholar 

  7. Nguyen, C. T. C. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 251–270 (2007).

    Article  Google Scholar 

  8. Pourkamali, S., Ho, G. K. & Ayazi, F. Low-impedance VHF and UHF capacitive silicon bulk acoustic-wave resonators—part II: measurement and characterization. IEEE Trans. Electron Devices 54, 2024–2030 (2007).

    Article  Google Scholar 

  9. Bhugra, H. & Piazza, G. Piezoelectric MEMS Resonators (Springer, 2017).

  10. Trolier-Mckinstry, S. & Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7–17 (2004).

    Article  Google Scholar 

  11. Dubois, M. A. & Muralt, P. Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl. Phys. Lett. 74, 3032–3034 (1999).

    Article  Google Scholar 

  12. Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010).

    Article  Google Scholar 

  13. Mahon, S. The 5G effect on RF filter technologies. IEEE Trans. Semicond. Manuf. 30, 494–499 (2017).

    Article  Google Scholar 

  14. Nathanson, H. C. & Wickstrom, R. A. A resonant-gate silicon surface transistor with high-Q band-pass properties. Appl. Phys. Lett. 84, 84–86 (1965).

    Article  Google Scholar 

  15. Anderson, J., He, Y., Bahr, B. & Weinstein, D. Integrated acoustic resonators in commercial fin field-effect transistor technology. Nat. Electron. 5, 611–619 (2022).

    Article  Google Scholar 

  16. Rawat, U., Bahr, B. & Weinstein, D. Analysis and modeling of an 11.8 GHz fin resonant body transistor in a 14 nm FinFET CMOS process. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69, 1399–1412 (2022).

    Article  Google Scholar 

  17. Chen, H.-Y., Shih, P.-I., Li, M.-H. & Li, S.-S. 5V-bias CMOS-MEMS capacitive resonator with RM<5KΩ based on metal-insulator-metal (Mim) capacitor. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) 1042–1045 (IEEE, 2022).

  18. Ledesma, E., Zamora, I., Yanez, J., Uranga, A. & Barniol, N. Single-cell system using monolithic PMUTs-on-CMOS to monitor fluid hydrodynamic properties. Microsyst. Nanoeng. 8, 76 (2022).

    Article  Google Scholar 

  19. Hudeczek, R., Hager, E., Baumgartner, P. & Pretl, H. Performance analysis of resonant-fin transistors and their application in RF-circuit design. IEEE Access 10, 64388–64407 (2022).

    Article  Google Scholar 

  20. Tian, D., Chen, P., Yang, X. & Chu, B. Thickness dependence of dielectric and piezoelectric properties from the surface layer effect of BaTiO3-based ceramics. Ceram. Int. 47, 17262–17267 (2021).

    Article  Google Scholar 

  21. Martin, F., Muralt, P., Dubois, M.-A. & Pezous, A. Thickness dependence of the properties of highly c-axis textured AlN thin films. J. Vac. Sci. Technol. A 22, 361–365 (2004).

    Article  Google Scholar 

  22. Nguyen, M. D., Dekkers, M., Vu, H. N. & Rijnders, G. Film-thickness and composition dependence of epitaxial thin-film PZT-based mass-sensors. Sens. Actuators A. Phys. 199, 98–105 (2013).

    Article  Google Scholar 

  23. Yandrapalli, S. et al. Thin film devices for 5G communications. In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) 450–453 (IEEE, 2021).

  24. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

  25. Ghatge, M., Walters, G., Nishida, T. & Tabrizian, R. An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide. Nat. Electron. 2, 506–512 (2019).

    Article  Google Scholar 

  26. Cheema, S. S. et al. One nanometer HfO2-based ferroelectric tunnel junctions on silicon. Adv. Electron. Mater. 8, 2100499 (2022).

    Article  Google Scholar 

  27. Hakim, F., Ghatge, M. & Tabrizian, R. Excitation of high-frequency in-plane bulk acoustic resonance modes in geometrically engineered hafnium zirconium oxide nano-electro-mechanical membrane. Appl. Phys. Lett. 117, 063502 (2020).

    Article  Google Scholar 

  28. Hakim, F., Tharpe, T. & Tabrizian, R. Ferroelectric-on-Si super-high-frequency fin bulk acoustic resonators with Hf0.5Zr0.5O2 nanolaminated transducers. IEEE Microw. Wireless Compon. Lett. 31, 701–704 (2021).

    Article  Google Scholar 

  29. Shiraishi, T. et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 108, 262904 (2016).

    Article  Google Scholar 

  30. Park, M. H. et al. Study on the degradation mechanism of the ferroelectric properties of thin Hf0.50.52Zr0.50.52O0.50.52 films on TiN and Ir electrodes. Appl. Phys. Lett. 105, 072902 (2014).

    Article  Google Scholar 

  31. Park, M. H. et al. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale 10, 716–725 (2018).

    Article  Google Scholar 

  32. Kim, H. J. et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).

    Article  Google Scholar 

  33. Starschich, S. & Boettger, U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J. Mater. Chem. C 5, 333–338 (2017).

    Article  Google Scholar 

  34. Walters, G., Shekhawat, A., Moghaddam, S., Jones, J. L. & Nishida, T. Effect of in situ hydrogen plasma on the ferroelectricity of hafnium zirconium oxide films. Appl. Phys. Lett. 116, 032901 (2020).

  35. Batra, R., Huan, T. D., Jones, J. L., Rossetti, G. & Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C 121, 4139–4145 (2017).

    Article  Google Scholar 

  36. Lederer, M. et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys. Status Solidi Rapid Res. Lett. 15, 2100086 (2021).

  37. Riedel, S., Polakowski, P. & Müller, J. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide. AIP Adv. 6, 095123 (2016).

    Article  Google Scholar 

  38. Tharpe, T., Zheng, X., Feng, P. X. & Tabrizian, R. Resolving mechanical properties and morphology evolution of free-standing ferroelectric Hf0.5Zr0.5O2. Adv. Eng. Mater. 23, 2101221 (2021).

    Article  Google Scholar 

  39. Zheng, X. Q. et al. High quality factors in superlattice ferroelectric Hf0.5Zr0.5O2 nanoelectromechanical resonators. ACS Appl. Mater. Interfaces 14, 36807–36814 (2022).

    Article  Google Scholar 

  40. Jiang, Q., Lee, H. J., Kim, G. H. & Hwang, C. S. The inlaid AI2O3 tunnel switch for ultrathin ferroelectric films. Adv. Mater. 21, 2870–2875 (2009).

    Article  Google Scholar 

  41. Kirbach, S., Kühnel, K. & Weinreich, W. Piezoelectric hafnium oxide thin films for energy-harvesting applications. In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) 1–4 (IEEE, 2019).

  42. Mart, C. et al. Piezoelectric response of polycrystalline silicon-doped hafnium oxide thin films determined by rapid temperature cycles. Adv. Electron. Mater. 6, 1901015 (2020).

    Article  Google Scholar 

  43. Starschich, S., Schenk, T., Schroeder, U. & Boettger, U. Ferroelectric and piezoelectric properties of Hf1–xZrxO2 and pure ZrO2 films. Appl. Phys. Lett. 110, 182905 (2017).

    Article  Google Scholar 

  44. Xu, F. et al. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336–1348 (2001).

    Article  Google Scholar 

  45. Damjanovic, D. in The Science of Hysteresis Vol. 3 (eds. Mayergoyz, I. & Bertotti, G.) 337–465 (Elsevier, 2005).

  46. Liu, J., Liu, S., Yang, J. Y. & Liu, L. Electric auxetic effect in piezoelectrics. Phys. Rev. Lett. 125, 197601 (2020).

    Article  Google Scholar 

  47. Dutta, S. et al. Piezoelectricity in hafnia. Nat. Commun. 12, 7301 (2021).

    Article  Google Scholar 

  48. Rawat, U., Anderson, J. & Weinstein, D. Large-signal behavior of ferroelectric micro-electromechanical transducers. Preprint at https://arxiv.org/abs/2304.05975 (2023).

  49. Guo, Q., Cao, G. Z. & Shen, I. Y. Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer. J. Vib. Acoust. 135, 011003 (2013).

    Article  Google Scholar 

  50. Giovannini, M., Yazici, S., Kuo, N. K. & Piazza, G. Apodization technique for spurious mode suppression in AlN contour-mode resonators. Sens. Actuators A Phys. 206, 42–50 (2014).

    Article  Google Scholar 

  51. Ghatge, M. & Tabrizian, R. Dispersion-engineered guided-wave resonators in anisotropic single-crystal substrates—part I: concept and analytical design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1140–1148 (2019).

    Article  Google Scholar 

  52. Ghatge, M., Ramezani, M. & Tabrizian, R. Dispersion-engineered guided-wave resonators in anisotropic single-crystal substrates—part II: numerical and experimental characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1149–1154 (2019).

    Article  Google Scholar 

  53. Martin, F. et al. Shear mode coupling and tilted grain growth of A1N thin films in BAW resonators. In IEEE Ultrasonics Symposium 1, 333–336 (IEEE, 2005).

  54. Dragoman, M. et al. HfO2-based ferroelectrics applications in nanoelectronics. Phys. Status Solidi Rapid Res. Lett. 15, 2000521 (2021).

    Article  Google Scholar 

  55. Aldrigo, M. et al. Microwave applications of zirconium-doped hafnium oxide ferroelectrics: from nanoscale calculations up to experimental results. In 2020 IEEE/MTT-S International Microwave Symposium (IMS) 520–523 (IEEE, 2020).

  56. Aldrigo, M. et al. Low-voltage permittivity control of coplanar lines based on hafnium oxide ferroelectrics grown on silicon. IEEE Access 7, 136686–136693 (2019).

    Article  Google Scholar 

  57. Mart, C. et al. Piezoelectric response of polycrystalline silicon-doped hafnium oxide thin films determined by rapid temperature cycles. Adv. Electron. Mater. 6, 1901015 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Florida Nanoscale Research Facility cleanroom staff for fabrication support and T. Hancock for supporting this project and helpful technical discussions. T.T., F.H. and R.T. acknowledge financial support from the Defense Advanced Research Projects Agency (DARPA) through the Young Faculty Award (grant D19AP00044) and National Science Foundation (NSF) through the CAREER award (grant ECCS-1752206). E.H. and H.K. acknowledge financial support from the University of Florida through the Research Opportunity Seed Fund (ROSF).

Author information

Authors and Affiliations

Authors

Contributions

T.T. designed, fabricated and measured the NEMS resonators. T.T. and F.H. fabricated and characterized the superlattice transducer. E.H. performed the TEM characterization of the superlattice. H.K. and R.T. supervised the project and provided guidance throughout the process. All authors participated in analysing the results and contributed to writing the paper. All authors have given approval to the final version of the paper.

Corresponding author

Correspondence to Roozbeh Tabrizian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Ming-Huang Li, Mina Rais-Zadeh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Figs. 1–15 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharpe, T., Hershkovitz, E., Hakim, F. et al. Nanoelectromechanical resonators for gigahertz frequency control based on hafnia–zirconia–alumina superlattices. Nat Electron 6, 599–609 (2023). https://doi.org/10.1038/s41928-023-00999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00999-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing