Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An anomalous Hall effect in altermagnetic ruthenium dioxide

A Publisher Correction to this article was published on 29 November 2022

This article has been updated

Abstract

The anomalous Hall effect is a time-reversal symmetry-breaking magneto-electronic phenomenon originally discovered in ferromagnets. Recently, ruthenium dioxide (RuO2) with a compensated antiparallel magnetic order has been predicted to generate an anomalous Hall effect of comparable strength to ferromagnets. The phenomenon arises from an altermagnetic phase of RuO2 with a characteristic alternating spin polarization in both real-space crystal structure and momentum-space band structure. Here we report an anomalous Hall effect in RuO2 with an anomalous Hall conductivity exceeding 1,000 Ω−1 cm−1. We combine the vector magnetometry and magneto-transport measurements of epitaxial RuO2 films of different crystallographic orientations. We show that the anomalous Hall effect dominates over an ordinary Hall contribution, and a contribution due to a weak field-induced magnetization. Our results could lead to the exploration of topological Berry phases and dissipationless quantum transport in crystals of abundant elements and with a compensated antiparallel magnetic order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental method for detecting AHE in RuO2.
Fig. 2: Magnetization and magneto-transport measurements.
Fig. 3: Measurements of magnetization M components transverse to the applied magnetic field.
Fig. 4: Anomalous Hall resistivity from symmetry breaking by the antiparallel magnetic order on rutile crystal (ρL-AHE).

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  2. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  Google Scholar 

  3. Néel, L. Some new results on antiferromagnetism and ferromagnetism. Rev. Mod. Phys. 25, 58–63 (1953).

    Article  Google Scholar 

  4. Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).

    Article  Google Scholar 

  5. Kurti, N. Selected Works of Louis Néel 1st edn (CRC Press, 1988).

  6. Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article  Google Scholar 

  7. Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).

    Article  Google Scholar 

  8. Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).

    Article  Google Scholar 

  9. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  Google Scholar 

  10. Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  Google Scholar 

  11. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. EPL 108, 67001 (2014).

    Article  Google Scholar 

  12. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  Google Scholar 

  13. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article  Google Scholar 

  14. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article  Google Scholar 

  15. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  Google Scholar 

  16. Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).

    Article  Google Scholar 

  17. Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article  Google Scholar 

  18. González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article  Google Scholar 

  19. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet RuO2. Nat. Electron. 5, 267–274 (2022).

    Article  Google Scholar 

  20. Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article  Google Scholar 

  21. Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article  Google Scholar 

  22. Šmejkal, L. et al. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).

    Google Scholar 

  23. Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article  Google Scholar 

  24. Ahn, K.-H. et al. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    Article  Google Scholar 

  25. Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019).

    Article  Google Scholar 

  26. Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  27. Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X (in the press).

  28. Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article  Google Scholar 

  29. Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and non-collinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article  Google Scholar 

  30. Bazhan, A. N. & Bazan, C. Weak ferromagnetism in CoF2 and NiF2. Sov. Phys. JETP 42, 898–904 (1976).

    Google Scholar 

  31. Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics 2nd edn (Pergamon Press, 1965).

  32. Ryden, W., Lawson, A. & Sartain, C. Temperature dependence of the resistivity of RuO2 and IrO2. Phys. Lett. A 26, 209–210 (1968).

    Article  Google Scholar 

  33. Weischenberg, J., Freimuth, F., Sinova, J., Blügel, S. & Mokrousov, Y. Ab initio theory of the scattering-independent anomalous Hall effect. Phys. Rev. Lett. 107, 106601 (2011).

    Article  Google Scholar 

  34. Samanta, K. et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).

    Article  Google Scholar 

  35. Hayami, S., Yanagi, Y. & Kusunose, H. Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin-orbit coupling: procedure on the basis of augmented multipoles. Phys. Rev. B 102, 144441 (2020).

    Article  Google Scholar 

  36. Reichlova, H. et al. Macroscopic time reversal symmetry breaking arising from antiferromagnetic Zeeman effect. Preprint at https://arxiv.org/abs/2012.15651 (2020).

  37. Egorov, S. A. & Evarestov, R. A. Colossal spin splitting in the monolayer of the collinear antiferromagnet MnF2. J. Phys. Chem. Lett. 12, 2363–2369 (2021).

    Article  Google Scholar 

  38. Shao, D. F., Ding, J., Gurung, G., Zhang, S. H. & Tsymbal, E. Y. Interfacial crystal Hall effect reversible by ferroelectric polarization. Phys. Rev. Appl. 15, 024057 (2021).

    Article  Google Scholar 

  39. Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    Article  Google Scholar 

  40. Naka, M. et al. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 102, 075112 (2020).

    Article  Google Scholar 

  41. Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl. Acad. Sci. U. S. A. 118, e2108924118 (2021).

    Article  Google Scholar 

  42. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  43. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  45. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  47. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  MATH  Google Scholar 

  48. Liang, Q. et al. Anti-ferromagnetic RuO2: a stable and robust OER catalyst over a large range of surface terminations. J. Phys. Chem. C 126, 1337–1345 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. M. D. Coey at Trinity College, Dublin, and C. Jiang at Beihang University for enlightening and helpful discussion during the preparation of the relevant early versions of this manuscript. Z.L. acknowledges financial support from the National Natural Science Foundation of China (NSFC; grant nos. 52271235 and 52121001). Z.L. and Z.Z. acknowledge financial support from the NSFC on the Science Foundation Ireland (SFI)–NSFC Partnership Programme (NSFC grant no. 51861135104). L.Š., J.S. and T.J. were supported in part by the Ministry of Education of the Czech Republic Grants LM2018110 and LNSM-LNSpin, by the Grant Agency of the Czech Republic grant no. 19-28375X and by the EU FET Open RIA grant no. 766566. L.Š. and R.G.-H. acknowledge the use of the supercomputer Mogon at Johannes Gutenberg Universität (https://hpc.uni-mainz.de/), the computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme Projects of Large Research, Development, and Innovations Infrastructures (CESNET LM2015042). L.Š. and J.S. acknowledge support from the Alexander von Humboldt Foundation and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—TRR 173-268565370 (project A03).

Author information

Authors and Affiliations

Authors

Contributions

Z.F. and X.Zhou performed the sample growth, electrical, structural and magnetic measurements with assistance from L.W., Z.Z., H.G., X.W., H.Y., P.Q., X.Zhang, H.W., H.C., Z.M., L.L. and Z.X. The theoretical calculations were performed by L.Š., R.G.-H., J.S. and T.J. Data analysis was conducted by Z.L., Z.F., X.Zhou, L.Š., R.G.-H., J.S. and T.J. The manuscript was written by Z.L., Z.F., X. Zhou, L.Š., J.S. and T.J. All the authors commented on manuscript. This project was conceived and led by Z.L.

Corresponding author

Correspondence to Zhiqi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Hanno Weitering and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Supporting DFT calculations.

a, Strongly momentum-dependent spin-split Fermi surface calculated without spin-orbit interaction and with Hubbard U = 1.6 eV. b, Strong crystal-momentum resolved Berry curvature in RuO2 calculated with spin-orbit interaction included and magnetic moments along [110] corresponding to the intrinsic anomalous Hall conductivity vector along [110]. The black contours mark Fermi surface. c, Anomalous Hall conductivity vs. energy calculated for the Néel vector along [110] crystal axis. Zero energy corresponds to the Fermi level position in stoichiometric RuO2. d, Magnetocrystalline anisotropy energy (MAE) E[110]-E[001] vs. energy. e, Anomalous Hall conductivity dependence on Hubbard U. f, Corresponding dependence of the magnitude of the sublattice magnetic moment Hubbard U.

Extended Data Fig. 2 Conductivity phase diagram of RuO2 thin films.

Conductivity phase diagram of RuO2 thin films fabricated on MgO substrates versus the deposition oxygen partial pressure and the substrate temperature. Each data point represents the mean conductivity value derived from the measurements of three repeating samples.

Extended Data Fig. 3 Exchange bias experiments.

The exchange bias measurements were performed after field cooling from 400 K by a + 500 mT field applied in plane. a. Coercivity fields of a Pt(2 nm)/CoFe(5 nm)/RuO2(27 nm)/TiO2(110) sample and a Pt(2 nm)/CoFe(5 nm)/TiO2(110) sample as a function of temperature. b. Normalized magnetization of the Pt(2 nm)/CoFe(5 nm)/RuO2(27 nm)/TiO2(110) sample at 50 K. c. Exchange bias field of the CoFe/RuO2 system versus temperature. d. Normalized magnetization of the post-annealed Pt(2 nm)/CoFe(5 nm)/RuO2(27 nm)/TiO2(110) sample at 200 K. e. Exchange bias field of the post-annealed sample as a function of temperature. The sample was annealed at 250 °C for 1 h in a vacuum furnace under an in-plane magnetic field of 500 mT.

Extended Data Fig. 4 Structural characterization of a RuO2/TiO2(100) heterostructure.

a. X-ray diffraction data. b. Cross-section transmission electron microscopy image of the RuO2 film.

Extended Data Fig. 5 Structural characterization of a RuO2/TiO2(001) heterostructure.

a. X-ray diffraction data. b. Cross-section transmission electron microscopy image of the RuO2 film.

Extended Data Fig. 6 Structure and exchange bias of a (110)-oriented RuO2/MgO thin film.

a, X-ray diffraction spectrum. Inset: Schematic of the RuO2/MgO heterostructure. b, Normalized in-plane magnetization of the Pt/CoFe/RuO2/MgO stack as a function of magnetic field at 50 K. c, Comparison of the in-plane coercivity field of Co90Fe10 (CoFe) films in a Pt/CoFe/RuO2/MgO heterostructure and a Pt/CoFe/MgO heterostructure. Inset: Schematic of a RuO2/MgO heterostructure capped by a 5-nm-thick CoFe layer and a 2-nm-thick Pt top layer. d, In-plane exchange bias field of the Pt/CoFe/RuO2/MgO heterostructure versus temperature.

Extended Data Fig. 7 X-ray diffraction of a RuO2/SrTiO3(001) heterostructure.

X-ray diffraction of a RuO2/SrTiO3(001) heterostructure.

Extended Data Fig. 8 Electrical transport of the (100)-oriented RuO2/SrTiO3 and the (110)-oriented RuO2/MgO sample.

a. Temperature-dependent resistivity. b. Hall resistivity as a function of pulsed magnetic fields for the (110)-oriented RuO2/MgO sample. c. Hall resistivity as a function of pulsed magnetic fields for the (100)-oriented RuO2/SrTiO3 sample.

Extended Data Fig. 9 High-field moments of substrates and substrates plus films.

High-field moments of substrates and substrates plus films.

Extended Data Fig. 10 Supporting DFT calculations in magnetic field.

a, Band structure calculated with moments along [110] crystal direction and without/with applied magnetic field along [110] direction implemented via a Zeeman term in the ELK code. b, Momentum resolved Berry curvature calculated in Wannier90 from the bands obtained in VASP code in zero magnetic field.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zhou, X., Šmejkal, L. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat Electron 5, 735–743 (2022). https://doi.org/10.1038/s41928-022-00866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00866-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing