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The wider the gap between rich and poor the 
higher the flood mortality

Sara Lindersson    1  , Elena Raffetti    1,2,3,4, Maria Rusca    5, 
Luigia Brandimarte    6, Johanna Mård    1 & Giuliano Di Baldassarre    1

Economic inequality is rising within many countries globally, and this 
can significantly influence the social vulnerability to natural hazards. 
We analysed income inequality and flood disasters in 67 middle- and 
high-income countries between 1990 and 2018 and found that unequal 
countries tend to suffer more flood fatalities. This study integrates 
geocoded mortality records from 573 major flood disasters with population 
and economic data to perform generalized linear mixed regression 
modelling. Our results show that the significant association between 
income inequality and flood mortality persists after accounting for the 
per-capita real gross domestic product, population size in flood-affected 
regions and other potentially confounding variables. The protective effect 
of increasing gross domestic product disappeared when accounting for 
income inequality and population size in flood-affected regions. On the basis 
of our results, we argue that the increasingly uneven distribution of wealth 
deserves more attention within international disaster-risk research and 
policy arenas.

“When there is rain or snow, you can make more money”, explained a 
food-delivery worker who had been wading through knee-deep flood-
water amid the extreme rainfall of Hurricane Ida in New York City1. 
Despite New York being one of the richest cities in the world, many like 
him could not afford to miss even one shift. The storm caused a number 
of fatalities, particularly in illegal basement apartments2, highlighting 
the intersection of poverty and inadequate housing conditions. Time 
and again, disasters expose existing inequalities in a ruthless way3. 
We think that this is alarming since the gap between rich and poor is 
widening in many countries across the world4, whilst climate change 
is also intensifying extreme rainfall patterns and, thus, increasing the 
magnitude of major flood events5.

Economic inequality refers to the uneven distribution of income 
and wealth within and across societies. Within many countries, the 
widening gap between rich and poor that has developed since the 1980s 
has overthrown the previously widespread theory of Kuznets6, which 

puts forward that market forces will ultimately reduce inequalities 
as economies develop7,8. Furthermore, research has shown that high 
levels of income inequality within countries can exacerbate human 
losses from natural hazards9–11.

A number of factors can contribute to the relationship between 
income inequality and mortality from natural hazards, and these relate 
to both poverty and the disproportionality per se9–13. First, a high level 
of income inequality signals that a large share of the population is living 
in poverty, which can increase the vulnerability during and after a dis-
aster. For instance, individuals living in poverty may lack the resources 
needed to prepare or evacuate in the face of a flood9 (Box 1 presents 
the case of New Orleans, USA, in 2005). Second, power asymmetries 
may also generate spatial marginalization, which can exacerbate 
disaster risk through the concentration of services, resources and 
flood-protection infrastructure in high-income neighbourhoods13. 
For instance, historical analysis has shown that adaptation efforts are 
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economic inequality with the distribution of income, however, since 
data on the distribution of capital are still limited for many countries. 
For this purpose we use the Gini index of disposable income, which 
ranges from zero (perfect equality) to 100% (complete inequality). 
The Gini index is the most commonly used indicator for measuring 
income inequality, despite its limitations such as being most sensitive 
to changes in the middle part of the distribution and different income 
distributions resulting in similar index values19. Alternative metrics 
for measuring income inequality, such as the Atkinson index and the 
Palmer ratio, are also available but we choose to use Gini for the purpose 
of international coverage and comparability20.

Here, we link income inequality to flood mortality in MHICs by 
combining mortality records from 573 major flood disasters that 
occurred between 1990 and 2018 with settlement maps and socio-
economic indicators (Fig. 1). Initially, we explore these data to highlight 
patterns of flood mortality across space, time and economic condi-
tions. We then test if there is an association between flood mortality and 
income inequality after accounting for potentially confounding vari-
ables, such as average living standards and the level of flood exposure. 
Throughout the article we represent flood exposure with the number 
of individuals living in the flood-affected administrative regions in the 
year of the event. Specifically, we ask the following questions. (1) How 
have income inequality, average living standards and flood mortality 
changed over the study period? (2) How do flood mortality levels vary 
across continents, levels of inequality, levels of average living standards 
and degree of urbanity? (3) Is income inequality associated with flood 
mortality after accounting for potentially confounding variables such 
as average living standards and flood exposure? We emphasize that 
we cannot infer causality with our data, but our findings aim to shed 
light on the relative importance of various independent variables and 
thus enhance our understanding of how the distribution of wealth may 
influence disaster outcomes in advanced economies.

Results
We found that a majority (49 out of 67) of the flood-affected MHICs in 
our sample experienced a rise in income inequality between 1990 and 
2018, with 21 of these countries being OECD nations (Fig. 2). All coun-
tries except for Venezuela saw an increase in average living standards 
over the same period, in terms of the per-capita real gross domestic 
product (GDP). The sample as a whole experienced slightly larger 
changes in the Gini index in absolute terms (3.7 percentage points 
(pp)) compared with the OECD-nation subgroup (3.3 pp) (Supplemen-
tary Table 3).

All 573 records from the MHICs have a median mortality rate of 2.9 
fatalities per million potentially exposed people, while the 372 fatal 
records have a median mortality rate of 13.4. The 265 records from the 
OECD subgroup have a median mortality rate of 0.8 fatalities per mil-
lion potentially exposed, of which the 158 fatal records have a median 
mortality rate of 6.7. Across the continents, we found flood mortality 
to be the highest in Africa, Asia and the Americas, both in terms of the 
mortality rates and the absolute fatality numbers (Extended Data Fig. 1). 
The records from Europe and Oceania report significantly lower flood 
mortality levels. We also found that only Asia experienced significantly 
decreasing trends in mortality levels over the study period in terms of 
the mortality rates (Fig. 3) and absolute fatality numbers (Supplemen-
tary Fig. 2). The other continents do not show significant trends in flood 
mortality, nor does the sample as a whole (Supplementary Table 4). Spe-
cifically, we did not find a reduction in flood mortality in member states 
of the European Union (EU) when comparing the periods before and 
after publication of Directive 2007/60/EC of the European Parliament  
on flood risks in 200721 (referred to as the Directive throughout this 
article). The period following the Directive holds fewer records of 
major flood events in the EU member states, but these also report 
significantly higher mortality levels in terms of the mortality rates  
(Fig. 3) and absolute fatalities (Supplementary Fig. 2).

more likely to take place when the interests of those with power and 
resources are impacted directly14.

Despite this, there has been limited empirical research on the 
relationship between economic inequality and the human losses 
from floods, primarily due to a lack of data14–16. Previous studies have 
limitations in scope, using either single-case studies (see, for instance,  
ref. 17) or coarse and ageing datasets (see, for instance, ref. 9). However, 
with increasing data availability on floods, their impacts, human set-
tlements and socioeconomic indicators, there is now an opportunity 
to investigate this topic in more detail.

In this study, we investigate the extent to which unequal countries 
also suffer higher flood mortalities. We conduct a global analysis of 
the relationship between income inequality and flood mortality in 67 
middle- and high-income countries (MHICs) over the past 29 years. We 
limit the study to MHICs for the sake of comparability, as the baseline 
capacity to mitigate disasters varies considerably between developing 
and advanced economies. More specifically, our working hypothesis of 
how income inequality may affect disaster vulnerability, through power 
asymmetries and spatial marginalization, relates closely to the concept 
of relative poverty. This is not generalizable to low-income countries 
(LICs), however, in which the level of absolute poverty and the lack of 
countrywide resources tend to be the dominant drivers of human vul-
nerability18. While acknowledging the importance of studying disaster 
risk in LICs, who are burdened with the highest mortality rates globally5, 
our study aims to highlight the role of economic inequality in advanced 
economies since they have, in theory, the financial resources needed 
to prevent flood fatalities. To highlight further the role of income 
inequality in the wealthiest countries, and to corroborate the results 
with a different sample, we also conduct a complementary analysis on 
28 member nations of the Organization for Economic Cooperation and 
Development (OECD).

The level of inequality within an economy depends on the dis-
tribution of both income (a flow) and capital (a stock). We represent 

Box 1

The role of inequalities in 
explaining flood fatalities: the 
case of Hurricane Katrina in 
New Orleans in 2005
To illustrate some key mechanisms that explain the relationship 
between inequalities and flood fatalities, we refer to the flooding 
of New Orleans in 2005 during the occurrence of Hurricane 
Katrina32. This is a case in point of social and racial segregation 
resulting in low-income neighbourhoods, which are significantly 
more vulnerable to flooding58. Flood fatalities, in particular, 
were aggravated in New Orleans for various reasons. First, the 
levee failures that caused the most severe flooding occurred in 
low-income neighbourhoods, including the Lower Ninth Ward 
in the St Bernard bowl area59. Second, people in low-income 
neighbourhoods had limited or no access to cars or other forms 
of transportation, and consequently many of them were unable to 
evacuate in time60. Third, most people in these areas lived in mobile 
or stick-built houses, which were highly susceptible to flooding61. 
Last, severe contamination of the air occurred after the flooding in 
these areas, as most of the industrial and toxic sites of New Orleans 
were located in low-income neighbourhoods62.
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Our initial data screening also revealed a significant correlation 
between disposable income distribution and flood mortality rates, with 
countries in the low-Gini group recording a 26-fold lower mortality 
rate compared with countries in the high-Gini group (Fig. 4). In addi-
tion, countries with higher average living standards, as measured by 
the per-capita real GDP, exhibited significantly lower flood mortality 
rates, with a 22-fold lower mortality rate in the high-GDP group com-
pared with the low-GDP group (Fig. 4). We also identified that flood 
disasters affecting at least one major urban centre had significantly 
higher fatality numbers compared with more rural disasters, although 
the urban mortality rates were lower due to larger exposure estimates 
(Extended Data Fig. 2). We found similar results when grouping the 
disasters according to the share of potentially exposed individuals 
living in high-density clusters (Extended Data Fig. 2).

In a negative binomial mixed-effect model of flood fatalities in 
MHICs, for a 3 pp increase in the Gini index we found a 16% increase 
in fatalities (that is, the risk ratio (RR)), with a 95% confidence interval 
(CI) of 1–33% (Fig. 5 and Supplementary Table 5). This effect was even 
stronger for the OECD nations, for which we found a 25% increase in 
fatalities (RR) with a 3 pp increase in the Gini index (95% CI, 1–54%) 
(Supplementary Table 6). Unlike the Gini index, the per-capita real 
GDP was not significantly related to flood fatalities when controlling 
for other variables (Supplementary Tables 5 and 6). We also found that 
the level of exposure was the most important variable when model-
ling flood fatalities in MHICs (Supplementary Table 7), although we 
did not detect a significant effect of exposure on fatalities in OECD 
nations (Supplementary Table 8). Other variables, such as the share of 
exposed individuals living in high-density clusters, were not found to be 
significantly related to flood fatalities (Supplementary Tables 5 and 6).

Discussion
We show that the MHICs who suffered the highest human flood losses 
between 1990 and 2018 are also burdened by high levels of income 
inequality. Our regression results show that the association between 

income inequality and flood mortality persists after accounting for the 
per-capita real GDP, the level of flood exposure and other confounding 
variables. Simultaneously, although most MHICs in the sample have 
seen an improvement in average living standards since 1990, a major-
ity has also become more unequal in terms of income distribution.

Our initial data screening showed that flood mortality tends to 
be higher in countries that have lower average living standards in 
terms of the per-capita real GDP. However, this effect did not persist 
in the regression analysis when accounting for income inequality and 
the level of flood exposure. We think that these results underline the 
importance of the current discussion about the shortcomings of the 
GDP to measure human wealth and progress, as highlighted recently by 
the United Nations secretary-general António Guterres22. Disaster-risk 
research and policy arenas arguably need to give more attention to this, 
and ensure that both exposure levels and inequality are accounted for 
in quantitative vulnerability assessments.

Room for improvement in vulnerability assessments
Economic inequality is often missing in quantitative vulnerability 
assessments by the disaster-research community. One example of how 
the research community is missing the role of inequality is the tendency 
to use national economic development levels, such as the per-capita 
GDP, as a proxy for vulnerability in cross-national disaster-risk stud-
ies15,23–26. These types of study often correlate human loss rates with 
such indicators of economic development, and conclude how vulner-
ability is decreasing with increased country wealth. Indeed, there is 
often a negative relationship between mortality rates and economic 
development (Fig. 4), although this relationship is also highly disputed 
within the literature15. Our regression results (Fig. 5 and Supplementary 
Table 7), in agreement with previous empirical studies9,11, show that 
income inequality has a significantly larger effect on disaster mortality 
in MHICs, and we question why this relationship is repeatedly left out 
from the analysis and conversation. We attribute this to the dominance 
of GDP and growth narratives in international disaster-risk research and 

Fatalities per flood

101–900
11–100 1–100

Gini index (%)

30 35 45

Fig. 1 | Income inequality and flood fatalities in 67 MHICs. This map displays 
573 major flood disasters (dots) that occurred between 1990 and 2018, with the 
size of the dots indicating the number of reported flood fatalities, and the colour 
of the countries indicating their average level of income inequality across the 

sample. The flood disasters are reports from the Emergency Events Database 
(EM-DAT31) that have been georeferenced to districts (or smaller subdivisions) 
using the Geocoded Disasters dataset (GDIS)44. Basemap from Natural Earth 
(https://www.naturalearthdata.com/).
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Fig. 2 | Changes in income inequality and average living standards among 
67 MHICs. This dumbbell plot shows the income inequality and average living 
standards in 2018 (large dots) compared with 1990 (small dots) for countries that 
also experienced at least one major flood disaster during the same period. All 
countries apart from Venezuela experienced a rise in average living standards, 

but a majority also experienced a rise in income inequality since 1990. The 
colours indicate the direction of change. In the case of a missing yearly value, 
we used the closest available yearly value. In the source data table we have 
highlighted the instances in which the available yearly value was more than three 
years apart from 1990 (n = 7) or 2018 (n = 9).
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policy arenas. Today it is well known that economic growth does not 
benefit everyone4. Using an average value thus conceals the uneven vul-
nerability across and within societies, and might not be the optimal way 
to represent vulnerable parts of the population, as our findings expose.

By contrast, quantitative disaster-risk studies on national, regional 
or urban levels frequently use social vulnerability indices as a proxy for 
human vulnerability. These indices often combine demographic data 
with socioeconomic data (such as the absolute income level, employ-
ment level and education level)27,28 and can be used for mapping vulner-
ability hotspots and their overlap with hazard zones or disaster losses. 
This can be a very valuable approach, which unfortunately is difficult to 
conduct on larger scales due to data limitations. Our results highlight 
the importance of considering underlying drivers, such as economic 
inequality, when interpreting these regional maps of vulnerability gra-
dients (see, for instance, ref. 29). This becomes particularly important 
when forming policy recommendations. For example, floodplain regula-
tions aimed at decreasing flood exposure may not benefit individuals 
living in illegal housing conditions due to a lack of affordable housing.

Data gaps in cross-national disaster research
As anticipated, our estimated median mortality rate across the MHICs 
is lower than a previously reported global mortality rate of 40 fatalities 
per million exposed people, as exposed in ref. 26. Our sample does 
not consider LICs, who generally suffer higher mortality rates than 
MHICs5. Methodological differences in deriving the exposure estimates 
will also affect the resulting rates. It is likely that our exposure estima-
tions are systematically overestimated as we consider the number of 
potentially exposed individuals, that is, the total number of people 
living in the affected regions during the year of the event. This rather 
rough exposure proxy is not ideal, and even if we would have been 
able to distinguish between flooded and dry areas within the affected 
regions, we would still not have been able to account for the number of 
evacuated individuals. Taken together, limitations like these pinpoint 
the persisting difficulty of collecting data on human flood exposure 
for cross-national research.

Our MHIC data from major flood events between 1990 and 2018 
conveyed limited temporal variations in flood mortality levels; we could 
not detect any significant trends, except for Asia. We should, however, 
sound a note of caution with regard to these findings, given limitations 
in the study period length and sample size. Over the past century, the 
world has seen a significant decline in flood mortality rates, particularly 
in LICs (see, for instance, refs. 26,30). In addition, our sample includes 
only major disasters recorded in the international EM-DAT database31 
and does not consider smaller flood disasters or instances where a 
flood hazard did not result in a disaster.

The role of institutional adaptation
Previous research has suggested that the relationship between income 
inequality and flood management may be related to institutional adap-
tation14. This is one potentially important factor that our observational 
dataset misses being able to capture. Thus, it is crucial to conduct more 
research in this field to further understand the underlying mechanisms 
and potential confounding factors. Our study was able to provide some 
insight on one important milestone of institutional adaptation, the 
European Directive of 200721. Our analysis of data from EU member 
states revealed that while the number of flood disasters decreased 
after the Directive’s implementation, the floods that did occur were 
more fatal compared with the period before the Directive.

However, it is important to note that these findings are based 
on a limited number of years and should be treated with caution. In 
addition, it is possible that the Directive has positively contributed 
to preventing multiple disasters, which would not be captured by this 
analysis. Despite this, our findings suggest that major flood disasters 
were more fatal in the period following the Directive compared with 
the period before it—both in terms of absolute fatality numbers and 
mortality rates. Further examination is needed to determine whether 
this is a coincidence or due to other factors such as climate change, 
socioeconomic development in flood-prone areas (despite the Direc-
tive) or even to the unintended consequences of flood management 
in the form of a safe development paradox32.

0

10

100

1,000

10,000

1990 1995 2000 2005 2010 2015

Fa
ta

lit
ie

s 
pe

r m
ill

io
n 

po
te

nt
ia

lly
 e

xp
os

ed

MD = 0.16

MD = 1.96

P = 0.0014

0

10

100

1,000

Fa
ta

lit
ie

s 
pe

r m
ill

io
n 

po
te

nt
ia

lly
 e

xp
os

ed

AfricaYear Americas Asia Europe Oceania

Years 1998−2007
199 fatalities

from 56 floods

Years 2008−2017
230 fatalities

from 40 floods

Directive 2007/60/EC of the European Parliament on flood risksa b

All continents

Fig. 3 | Major flood disasters in MHICs have generally not become less fatal 
since since 1990. a, Scatter plot of mortality rates for 573 flood disasters (dots) 
over time, with the black trend line referring to all continents. Only Asia has a 
significant trend of decreasing mortality rate according to a two-sided  
Mann–Kendall test (P = 0.003). Supplementary Table 4 provides P values  
across all continents. The trend lines are fitted using local polynomial regression. 
b, Box plot showing disasters (dots) in EU states, ten years before and after the 

Directive of 2007. The period following the Directive had fewer flood disasters 
compared with the period before, although more flood fatalities were also 
reported. The dots indicate individual observations; the box hinges indicate the 
25th and 75th percentiles, the centre line indicates the median value (MD) and the 
whiskers indicate the interquartile range multiplied by a factor of 1.5. The P value 
refers to a two-sided Wilcoxon test comparing group means.
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We also emphasize that the relationship between economic con-
ditions and disaster impacts is complex and bidirectional. Economic 
conditions before a disaster, which are referred to as ex ante conditions, 
may influence the outcome of the disaster, while the disaster itself can 
also have an impact on post-disaster economic conditions, referred to 
as ex post conditions. Previous ex post studies have focused primarily 
on the effects of disasters on GDP15. However, case studies also suggest 
that disasters can increase economic inequality, such as in Germany33 
and Brazil34. Our study focuses on the association between ex ante 
national levels of income inequality and disaster outcomes. It is pos-
sible that the disasters in turn can exacerbate existing inequalities and 
affect economic conditions. Through the use of yearly estimates of the 
economic indicators, our analysis considers the potential influence of 
previous disasters. However, we hypothesize that the impact of local 
flood events on the national income distribution would be limited.

Closing the income gap as disaster-risk reduction
As inequalities tend to increase flood vulnerability, closing the income 
gap holds great potential as a strategy for disaster-risk reduction. It 
enables risks across multiple hazards to be reduced simultaneously, 
that is, more unequal societies are not only more vulnerable to floods, 
but also to pandemics35, droughts36 and other disasters. It should be 
noted that these types of positive synergies are more difficult to achieve 
with traditional strategies of disaster-risk reduction. Flood-protection 
structures, for example, such as levees or flood-control reservoirs, can 
(1) deteriorate ecological values37, (2) have negative side effects with 
respect to other hazards38 or (3) generate unintended consequences, 
including the safe development paradox32. The positive synergies from 
reducing economic inequality also spill over into other Sustainable 
Development Goals (SDGs)39. Recent research has, for instance, showed 
that diminishing income inequality has a larger impact on reducing 
global poverty compared with economic growth40.

In conclusion, we show that MHICs burdened by income inequality 
have suffered the largest human losses from major flood disasters dur-
ing the past 29 years. Simultaneously, a majority of these countries have 

become more unequal. These findings raise several important ques-
tions that require further investigation. Specifically, the mechanisms 
by which income inequality affects flood mortality are not yet fully dis-
entangled. How our findings transcend across geographical locations 
and hazard types also need further examination. Thus, we urge disaster 
researchers to continue to explore the connections between the SDGs 
for eradicating poverty (SDG 1), reducing inequalities (SDG 10) and 
reducing disaster mortality through climate action (SDG 13). Closing 
the income gap can save lives in the face of climate change, and this is 
achievable through public policy choices.

Methods
We tested the association between income inequality and flood mortal-
ity at the country level by collecting and statistically analysing data on 
disaster impacts, human flood exposure and socioeconomic conditions 
from a number of international databases. The explorative and statisti-
cal analyses were performed using R v.4.1.3 (ref. 41), while the popula-
tion and settlement data were analysed using Google Earth Engine42. 
All our statistical analyses uses a significance level of 5%.

Study extent
Owing to data reliability and comparability reasons, only floods occur-
ring in MHICs between 1990 and 2018 were included in the study: 573 
events in 67 countries. We also analysed records from the OECD nations 
separately, 265 events in 28 countries, to highlight the role of income 
inequality in the wealthiest countries. As stated in the introduction, 
we limited the study to MHICs primarily due to comparability reasons 
and because we aim to shed light on the role of inequality in advanced 
economies. We use the income class according to the World Bank Atlas 
method43, based on the per-capita GNI (gross national income).

Flood disaster records
The number of fatalities per flood disaster is the outcome variable in our 
analysis, as reported in the international disaster database EM-DAT31. 
EM-DAT records disasters that fulfil at least one of the following criteria: 
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interquartile range multiplied by a factor of 1.5. The P values refer to pairwise two-
sided Wilcoxon tests comparing group means.
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≥10 fatalities, ≥100 affected people, emergency state declaration and/
or an international assistance call. We included EM-DAT records classi-
fied as riverine floods, coastal floods, flash floods and tropical cyclones 
(database accessed 7 December 2022).

To control for human flood exposure, we only included records 
from EM-DAT that were also geocoded by the GDIS database44. The 
developers of GDIS geocoded EM-DAT records by matching the loca-
tion description with one or more administrative subdivisions in the 
GADM database of Global Administrative Areas (v.3.6; https://gadm.
org/). GADM includes administrative subdivisions at various levels, 
including state and province boundaries (level 1), county and district 
boundaries (level 2) and smaller administrative boundaries (level 3). 
Each disaster record has been geocoded to administrative regions 
at level 1, 2 and/or 3, depending on the location description text in 
EM-DAT44. The subdivision level to which a record is geocoded depends 
on the specificity of the location description in EM-DAT and does not 
necessarily reflect the extent of the actual disaster44. Therefore, we 
included only records geocoded to level 2 and/or 3. Level 1 subdivisions 
are typically five times larger than level 2 subdivisions and around ten 
times larger than level 3 subdivisions. Including records geocoded to 
level 1 would have resulted in considerably larger exposure estimates, 
potentially biasing the analysis.

Population and settlement data
To estimate the number of potentially exposed people and the degree 
of urbanity per flood, we utilized three Global Human Settlement (GHS) 
products: population grids (GHS-POP) at 250 m spatial resolution45, 
settlement grids (GHS-SMOD) at 1,000 m spatial resolution46 and the 
urban centre database (GHS-UCD)47. GHS-SMOD provide settlement 
maps categorized by degree of urbanization: rural, low-density clusters 
and high-density clusters. GHS-UCD offers the location and attributes 
of urban centres around the world.

We calculated the total number of potentially exposed individuals 

for each record using the population data from GHS-POP. The degree 
of urbanity was determined by calculating the percentage of the 
potentially exposed population living in high-density clusters using 
GHS-SMOD. Both GHS-POP and GHS-SMOD are available as global 
seamless raster files for the years 1990, 2000 and 2015. We derived 
yearly estimates through linear interpolation. For the years 2016, 2017 
and 2018, we assigned the same values as in 2015. We also calculated the 
total settlement area for each record using GHS-SMOD. One record was 
excluded from the analysis as it did not contain any inhabitants accord-
ing to GHS-POP, which we deemed unrealistic. We also used GHS-UCD 
to identify the records whose affected regions contain at least one 
urban centre. We considered the degree of urbanization as a potential 
confounding variable, since a previous cross-country literature report 
has identified disparities between urban and rural areas as a significant 
contributor to overall inequality within countries48.

Economic and demographic data
We obtained country–year observations of income inequality from 
the Standardized World Income Inequality Database v.9.1 (SWIID)20,49 
as the Gini index of disposable (post-tax, post-transfer) household 
income. We chose the SWIID as the data source since it provides data on 
disposable income, and the data-collection protocol aims to maximize 
both coverage and comparability20. Nonetheless, some country–year 
records were missing. When possible, we assigned missing values with 
the closest available value, at most three years before or after. As men-
tioned in the introduction, there are alternative metrics to represent 
economic inequality. However, the global databases that offer these 
alternative metrics do not provide data on disposable income, nor do 
they typically have the same coverage as the SWIID. Nonetheless, the 
choice of inequality metric is particularly influential for ex post studies 
that investigate mechanisms behind changes in economic inequality. 
However, for ex ante analyses that investigate the relationship between 
pre-disaster levels of economic inequality and disaster impacts, such 
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Fig. 5 | Model estimations of flood mortality, income inequality and average 
living standards. a,b, Scatter plots of 573 flood disasters (dots) that occurred 
between 1990 and 2018 in 67 MHICs (blue), of which 265 occurred in 28 OECD 
countries (orange). a, Unequal countries tend to experience a higher flood 
mortality. b, Higher average living standards show a limited effect on flood 

mortality in MHICs and OECD nations; this variable was not significantly related 
to flood fatalities when controlling for other variables. The lines represent 
the mean estimations of the negative binomial model (all covariate variables 
included, unstandardized) with 95% CIs denoted by the shaded areas.
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as in this study, the choice of metric does not influence the results 
considerably, since the inherent ranking of countries is similar across 
inequality metrics.

To compare relative living standards across countries and over 
time, we used the expenditure-side real GDP at constant 2017 prices in 
US dollars from the Penn World Table v.10.0 (refs. 50,51). This measure 
is adjusted to price changes, such as inflation50. We converted the GDP 
variable to per-capita terms using national population totals from the 
same database.

To control for the potential effect of the population age structure 
on income distribution, we used country–year observations of the 
proportion of individuals in the country aged 65 or older from the 
World Development Indicators database of the World Bank52. This 
demographic variable was deemed crucial as an ageing population has 
previously been shown to impact economic inequality53,54.

Initial data exploration
We calculated mortality rates for all records by dividing the reported 
fatality numbers with the number of individuals living in the 
flood-affected region in the year of the event. We examined if and 
how the rates varied across space, time and levels of income inequality 
and economic development. We used non-parametric Wilcoxon tests 
to compare the group means. We then analysed whether or not the 
flood mortality levels had changed over the study period, in terms of 
the absolute fatality numbers and mortality rates. For this purpose, we 
used non-parametric Mann–Kendall tests to detect trends. Specifically, 
we compared mortality levels in EU member states ten years before and 
after the European Directive of 2007.

We also explored if and how flood mortality varied across degrees 
of urbanity, represented using two metrics. First, we grouped the 
records according to the binary variable that identified the records 
whose affected region contained at least one major urban centre 
according to GHS-UCD data. In addition, we grouped the records 
based on the share of potentially exposed people living in high-density 
clusters.

Regression analyses
In this study, we used an unbalanced panel structure model to analyse 
the relationship between flood fatalities and socioeconomic factors, 
with the unit of analysis being an individual flood event i occurring in 
country j during year t. The model specification is outlined in equa-
tion (1):

FATALITIESi = (β0 + b0,j) + β1GINIjt

+β2GDPjt + β3 ln (POT_EXPit)

+β4 ln (SETTL_AREAit) + β5HDCit

+β6POP_65jt + β7YEARi + ε

(1)

A mixed-effects approach was used, with a random intercept term 
(b0,j) per country to account for variations in the baseline risk across 
countries. The random effect thus takes into account the lack of inde-
pendence of records coming from the same country, for instance due to 
differences that we are not representing with our data, including flood 
propensity. The response variable, FATALITIESi, represents the number 
of reported fatalities from each flood event. The covariate variables 
included the Gini index of disposable income (GINIjt), the per-capita 
real GDP (GDPjt), the number of individuals potentially exposed to the 
flood event (POT_EXPit), the area of settlements in the affected regions 
(SETTL_AREAit), the proportion of potentially exposed individuals liv-
ing in high-density clusters (HDCit), the proportion of individuals aged 

65 or older in the country (POP_65jt) and a time dummy variable (YEARi) 
to control for temporal changes. β0 is the average model intercept, β1–7 
are the regression coefficients for each covariate variable and ε is the 
error term.

To assess the significance of various variables in relation to flood 
fatalities, we used a negative binomial generalized linear regression 
model. This method was chosen due to its appropriateness for count 
data with an overdispersion of error, and the models were fitted using 
maximum likelihood estimation with the R package glmmTMB55. 
To support our analysis, we provide summary statistics of the vari-
ables at the sample and group level in Supplementary Tables 1 and 2, 
respectively.

We designed two versions of the regression models, varying the 
degree of transformation of the covariate variables as seen in Sup-
plementary Fig. 1. In the first main version, we aimed to estimate the 
effect of changes in the Gini index and per-capita real GDP on the flood 
mortality. Using data from 1990 to 2018, we scaled these variables to the 
units of 3 pp and US$10,000, reflecting the changes experienced by the 
study sample (Supplementary Table 3). All variables were centred and 
two highly skewed variables (potentially exposed individuals and the 
total settlement area) were log-transformed. In the second (standard-
ized) version, we aimed to evaluate the relative importance among the 
independent variables. To this end, we standardized all covariate vari-
ables. Before this, we log-transformed the two highly skewed variables.

Model diagnostics
To evaluate the linearity assumption of the negative binomial regres-
sion, we conducted spline regression on the Gini index and per-capita 
real GDP variables (Supplementary Fig. 3). Each variable was replaced 
with a natural cubic spline with three knots. The linearity assumption 
holds well for the main model that includes observations from all 65 
MHICs. Limiting the sample to records from the OECD nations, how-
ever, gives more variable and uncertain model estimates due to the 
smaller sample size.

In addition to the linearity assessment, we performed residual 
diagnostics for the models using the R package DHARMa56 with 1,000 
iterations. The negative binomial model structure generally fits the 
data well. The Kolmogorov–Smirnov test of the main statistical model 
using observations from MHICs indicates a significant deviation from 
the expected negative binomial distribution. However, the correspond-
ing quantile–quantile plot (or qq plot) does not show a large deviation 
from the straight line (Supplementary Fig. 4). Using observations from 
the OECD nations resulted in slightly less problematic residuals (Sup-
plementary Fig. 5). Standardizing all covariate variables also improved 
the model fit (Supplementary Fig. 6). Dropping the random effect, 
however, resulted in more problematic residuals (Supplementary  
Fig. 7) and a lower model quality in terms of the Akaike information 
criterion (Supplementary Tables 5–8). On the basis of this, we chose to 
include the random intercept term in the full model specification, even 
though 65 out of 67 country estimates were not significantly different 
from the model estimation (Supplementary Fig. 8).

Methodological limitations
It is important to note the limitations of the present study, which is an 
observational study performed at the country level, using measures 
of association to quantify the relationship between flood mortality 
and income inequality. Although the results suggest a correlation 
between income inequality and fatality numbers, other methods are 
needed to indicate causality. In addition, the Gini index is an aggregate 
metric, which may obscure underlying variables, and here we control 
for only a few.

Furthermore, the relationship between disaster outcomes and 
socioeconomic factors is highly context-specific and complex, both 
across and within countries. The top-down approach of cross-national 
research simplifies this complexity. We acknowledge that the scale 
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matters, and a local study would have more potential for disentangling 
complex processes. Cross-national studies also have their own benefits, 
and we think it is important that research is conducted on a variety 
of scales. In addition, the limited number of data points per country 
prevented the inclusion of a random slope term, which would have 
provided further information about how the relationship between the 
variables varies across groups. The level of significance should also be 
interpreted with a certain amount of caution in the OECD models due 
to the smaller sample.

Data from global databases have limitations. For instance, we proxy 
flood exposure for the number of individuals living in the flood-affected 
administrative regions in the year of the event. This is a rough proxy 
which does not distinguish between flooded and non-flooded areas 
within these regions. Moreover, the intensity of the flood events is 
not taken into account. The disaster database EM-DAT records only 
major disasters, meaning that smaller disasters and instances where a 
flood hazard did not result in a disaster (that is, ‘success stories’) will be 
missed. The number of fatalities is a relatively straightforward disaster 
outcome to measure compared with, for example, economic damages 
and the number of affected individuals, although the accuracy will 
nonetheless vary across records57.

Finally, it is important to note that our sampling scheme affects 
the distribution of sample sizes across continents. A majority of the 
records in the final sample occurred in the Americas (33%), followed 
by Europe (29%), Asia (23%), Africa (9%) and Oceania (6%). However, 
this distribution does not necessarily reflect the true flood frequency 
for each continent. One reason for this is that the study considered 
floods only from MHICs. In addition, records that were geocoded to 
administrative regions at level 1 were excluded from the final sample. 
This affected some countries more than others. For example, a major-
ity of the records from China in the GDIS database were geocoded  
to administrative regions at level 1 and were thus excluded from the 
final sample.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this analysis come from publicly available sources. The 
compiled datasheets that support the findings of this study are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.7547323. Source 
data are provided with this paper.

Code availability
Custom codes to replicate all tables, figures and results of this study 
are available via Zenodo at https://doi.org/10.5281/zenodo.7547323.
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Extended Data Fig. 1 | Flood mortality across continents. This figure presents 
box plots showing 573 flood disasters (dots) occurring between 1990 and 
2018 in middle- and high-income countries. Africa, the Americas and Asia have 
significantly higher flood mortality compared to Europe and Oceania, both in 
terms of absolute fatality numbers (a) and mortality rates (b). The dots indicate 

individual observations, the box hinges indicate the 25th and 75th percentiles, 
the centre lines indicate the median value (MD), and the whiskers indicate the 
interquartile range multiplied by a factor of 1.5. The P values refer to pairwise 
two-sided Wilcoxon tests comparing group means, using Europe as the reference 
group.
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Extended Data Fig. 2 | Flood mortality and urbanity. This figure shows that 
flood disasters that affect regions with at least one major urban center generally 
result in higher absolute numbers of fatalities (a), but these urban events also 
result in lower mortality rates due to higher exposure estimates (b). The same 
pattern is visible when events are grouped according to the share of potentially 
exposed individuals living in high-density clusters (c, d), with each group 

containing a third of the sample. The dots indicate individual observations, the 
box hinges indicate the 25th and 75th percentiles, the centre lines indicate the 
median value (MD), and the whiskers indicate the interquartile range multiplied 
by a factor of 1.5. The P values refer to pairwise two-sided Wilcoxon tests 
comparing group means.
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection All data used in this analysis come from publicly available sources. The custom codes for the data collection, and the compiled datasheets, 
supporting the findings of this study are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.7547323

Data analysis Custom codes to replicate all tables, figures and results of this study are available in Zenodo with the identifier https://doi.org/10.5281/
zenodo.7547323
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Flood fatalities from EM-DAT (www.emdat.be, accessed 2022-12-07). 
Geocoded disasters from GDIS (https://doi.org/10.7927/zz3b-8y61). 
Administrative region boundaries from GADM v. 3.6 (www.gadm.org). 
Gini index of disposable income from the Standardized World Income Inequality Database v. 9.1 (https://doi.org/10.7910/DVN/LM4OWF). 
Expenditure-side real GDP at chained PPPs and country population totals from the Penn World Table v. 10.0 (https://doi.org/10.15141/S5Q94M). 
Income class and share of population aged 65 or more from the World Bank Development Indicators (https://data.worldbank.org/). 
GHS-POP P2016 (accessed via Google Earth Engine snippet "JRC/GHSL/P2016/POP_GPW_GLOBE_V1"). 
GHS-SMOD P2016 (accessed via Google Earth Engine snippet "JRC/GHSL/P2016/SMOD_POP_GLOBE_V1) 
GHS-UCD R2019A (http://data.europa.eu/89h/53473144-b88c-44bc-b4a3-4583ed1f547e)
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study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We conduct quantitative statistical analyses on country level to evaluate if countries with high income inequality also tend to suffer 
more flood fatalities, compared to countries with low income inequality. We tested the association between income inequality and 
flood mortality at country level by combining data on disaster losses, human exposure and socioeconomic indicators from a number 
of international databases. 

Research sample The flood disaster reports and socioeconomic data are derived from existing datasets, as described in the paper. We only included 
records that had been geocoded on, at least, county or district level (or finer) by the database GDIS. This enabled usy to estimate the 
number of potentially exposed individuals for each record.

Sampling strategy We included all samples that were available in the global and publicaly available databases. 

Data collection S.L. collected the data in 2022 from already published data sources, and compiled the variables of interest into one datasheet using R 
and Google Earth Engine. 

Timing and spatial scale Major floods occurring in middle- and high-income countries (MHICs) between 1990 and 2018 were included. As stated in the 
introduction, we limit the study to MHICs primarily due to comparability reasons and because we aim to shed light on the role of 
inequality in advanced economies.

Data exclusions Only flood records geocoded to at least district level was included in the study, we thus exluded records geocoded to state level. The  
state level subdivisions are typically five times larger than the district subdivisions, which would have resulted in larger exposure 
estimates and hence potentially biasing the analysis. We also excluded one record as it did not contain any inhabitants according to 
the global population map, which we deemed unrealistic. 
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Reproducibility Custom codes to replicate all tables, figures and results of this study are available in Zenodo with the identifier https://

doi.org/10.5281/zenodo.7547323

Randomization Randomization is not applicable for this study.

Blinding Blinding is not applicable for this study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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