Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Food system resilience to phosphorus shortages on a telecoupled planet

Abstract

Agricultural trade and globalization pose new challenges for resource management and governance. In particular, many countries are dependent on imports of non-renewable mineral phosphorus (P) fertilizers for their agriculture. We propose a framework to assess the possible impacts of future disruptions in P resource availability by comparing countries’ P fertilizer use for export production (virtual P) to their existing domestic P resources (labile soil P stocks and phosphate rock reserves). We find that up to 26% of global P fertilizer use is linked to exported crop and livestock commodities, creating complex resource interdependencies across countries. Vulnerabilities to P resource shortage may be moderated by existing domestic P resources in some countries, which could mitigate either short- or long-term impacts of fertilizer trade disruptions. However, greater coordination among trade partners that acknowledges and manages multiple forms of mineral P interdependencies is needed to provide resilient access to P inputs for national food supplies globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework illustrating P telecoupling in the global food supply chain.
Fig. 2: Global virtual P use related to trade flows among countries.
Fig. 3: Representative examples of countries’ vulnerability to PR shortages based on their virtual P use for exports, domestic soil P stocks and current domestic PR extraction.
Fig. 4: Trends in fertilizers, food prices and total agricultural import and export (in monetary value) indexes from 1990 to 2020.

Similar content being viewed by others

Data availability

Data are available in the respective Supplementary Data files. The R code used for computing all calculations is available at http://github.com/Pie90/SYSRISK/.

References

  1. Nesme, T., Metson, G. S. & Bennett, E. M. Global phosphorus flows through agricultural trade. Glob. Environ. Change 50, 133–141 (2018).

    Article  Google Scholar 

  2. Kastner, T., Erb, K. H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9, 034015 (2014).

  3. Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10, 024007 (2015).

  4. Bernard de Raymond, A. et al. Systemic risk and food security. Emerging trends and future avenues for research. Glob. Food Sec. 29, 100547 (2021).

  5. Nesme, T., Roques, S., Metson, G. S. & Bennett, E. M. The surprisingly small but increasing role of international agricultural trade on the European Union’s dependence on mineral phosphorus fertiliser. Environ. Res. Lett. 11, 025003 (2016).

  6. Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

  7. Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab4bfc (2019).

  8. D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Article  Google Scholar 

  9. Marchand, P. et al. Reserves and trade jointly determine exposure to food supply shocks. Environ. Res. Lett. 11, 095009 (2016).

    Article  Google Scholar 

  10. Tu, C., Suweis, S. & D’Odorico, P. Impact of globalization on the resilience and sustainability of natural resources. Nat. Sustain 2, 283–289 (2019).

    Article  Google Scholar 

  11. Mineral Commodity Summaries 2019 (USGS, 2019); https://doi.org/10.3133/70202434

  12. Lun, F. et al. Influences of international agricultural trade on the global phosphorus cycle and its associated issues. Glob. Environ. Change 69, 102282 (2021).

    Article  Google Scholar 

  13. Schipanski, M. E. & Bennett, E. M. The influence of agricultural trade and livestock production on the global phosphorus cycle. Ecosystems 15, 256–268 (2012).

    Article  CAS  Google Scholar 

  14. Cordell, D. & Neset, T. S. S. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob. Environ. Change 24, 108–122 (2014).

    Article  Google Scholar 

  15. Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Article  Google Scholar 

  16. Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).

    Article  Google Scholar 

  17. Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article  CAS  Google Scholar 

  18. Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Article  Google Scholar 

  19. FAOSTAT Statistics Database (FAO, 2019); http://www.fao.org/faostat/en/#data

  20. Heffer, P., Gruère, A. & Roberts, T. Assessment of Fertilizer Use by Crop at the Global Level (IFA, 2017).

  21. Ringeval, B. et al. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Glob. Change Biol. 23, 3418–3432 (2017).

    Article  Google Scholar 

  22. MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. BioScience 65, 275–289 (2015).

    Article  Google Scholar 

  23. Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

  24. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article  Google Scholar 

  25. Zeev, M. Preferential attachment, homophily, and the structure of international networks, 1816–2003. Confl. Manage. Peace Sci. 29, 341–369 (2012).

    Article  Google Scholar 

  26. Le Noe, J. et al. The phosphorus legacy offers opportunities for agro ecological transition (France 1850-2075). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab82cc (2020).

  27. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  28. Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data https://doi.org/10.5194/essd-10-1-2018 (2018).

  29. Van Vuuren, D. P., Bouwman, A. F. & Beusen, A. H. W. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob. Environ. Change 20, 428–439 (2010).

    Article  Google Scholar 

  30. Elser, J. J., Elser, T. J., Carpenter, S. R. & Brock, W. A. Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 9, e93998 (2014).

    Article  Google Scholar 

  31. Headey, D. Rethinking the global food crisis: the role of trade shocks. Food Policy 36, 136–146 (2011).

    Article  Google Scholar 

  32. Rosen, J. Humanity is flushing away one of life’s essential elements. The Atlantic (8 February 2021).

  33. Risks and Opportunities in the Global Phosphate Rock Market (The Hague Centre for Strategic Studies, 2012).

  34. The Global Fertiliser Crises and Africa (Future Agricultures, 2008).

  35. Tamea, S., Laio, F. & Ridolfi, L. Global effects of local food-production crises: a virtual water perspective. Sci. Rep. 6, 18803 (2016).

    Article  CAS  Google Scholar 

  36. Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).

    Article  CAS  Google Scholar 

  37. Menezes-Blackburn, D. et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 427, 5–16 (2018).

    Article  CAS  Google Scholar 

  38. Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    Article  CAS  Google Scholar 

  39. Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

    Article  Google Scholar 

  40. Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).

    Article  CAS  Google Scholar 

  41. Sharpley, A., Kleinman, P., Jarvie, H. & Flaten, D. Distant views and local realities: the limits of global assessments to restore the fragmented phosphorus cycle. Agric. Environ. Lett. 1, 160024 (2016).

    Article  Google Scholar 

  42. Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles 23, GB0A03 (2009).

    Article  Google Scholar 

  43. Tonini, D., Saveyn, H. G. M. & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. Sustain. 2, 1051–1061 (2019).

    Article  Google Scholar 

  44. Nesme, T., Senthilkumar, K., Mollier, A. & Pellerin, S. Effects of crop and livestock segregation on phosphorus resource use: a systematic, regional analysis. Eur. J. Agron. 71, 88–95 (2015).

    Article  CAS  Google Scholar 

  45. Grote, U., Craswell, E. & Vlek, P. Nutrient flows in international trade: ecology and policy issues. Environ. Sci. Policy 8, 439–451 (2005).

    Article  Google Scholar 

  46. Hamilton, H. A. et al. Trade and the role of non-food commodities for global eutrophication. Nat. Sustain. 1, 314–321 (2018).

    Article  Google Scholar 

  47. Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).

    Article  Google Scholar 

  48. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  49. Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosyst. 66, 119–131 (2003).

    Article  Google Scholar 

  50. Yunju, L. et al. Fertilizer use patterns in Yunnan Province, China: implications for agricultural and environmental policy. Agric. Syst. 110, 78–89 (2012).

    Article  Google Scholar 

  51. Nesme, T., Bellon, S., Lescourret, F., Senoussi, R. & Habib, R. Are agronomic models useful for studying farmers’ fertilisation practices? Agric. Syst. 83, 297–314 (2005).

    Article  Google Scholar 

  52. Yang, Y. & Suh, S. Changes in environmental impacts of major crops in the US. Environ. Res. Lett. 10, 094016 (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.B., T.N. and A.B.d.R. conceived the study. G.K.M and P.B developed the conceptual framework and the country classification. P.B. conducted all data analysis and calculations. All authors were involved in the interpretation of the results and contributed in writing and revising the manuscript.

Corresponding author

Correspondence to Pietro Barbieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Thomas Kastner, Kazuyo Matsubae and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–7, Methods and references.

Reporting Summary

Supplementary Data 1

This dataset contains the list of the 138 items retained for the analyses as well as all coefficients used in the calculations.

Supplementary Data 2

This dataset contains the share of grain-based feed necessary for one animal based on the use of eight main crop species.

Supplementary Data 3

This dataset contains the fertilization rates for each of the 163 countries considered in the paper and for each crop species or crop category.

Supplementary Data 4

This dataset contains the virtual P exports, soil P stocks and PR reserves for each of the 163 countries considered in this study.

Supplementary Data 5

This dataset contains (1) the raw IFA data on P fertilizer application for all available countries and crops, (2) the harvested area as retrieved from FAOSTAT in July 2019, and (3) the respective calculation of P fertilizer rate per hectare of cropland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbieri, P., MacDonald, G.K., Bernard de Raymond, A. et al. Food system resilience to phosphorus shortages on a telecoupled planet. Nat Sustain 5, 114–122 (2022). https://doi.org/10.1038/s41893-021-00816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00816-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology