Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In-stream turbines for rethinking hydropower development in the Amazon basin

Abstract

Given growing energy demands and continued interest in hydropower development, it is important that we rethink hydropower to avoid detrimental socioenvironmental consequences of large dams planned in regions such as the Amazon River basin. Here, we show that ~63% of total energy planned to be generated from conventional hydropower in the Brazilian Amazon could be harnessed using in-stream turbines that use kinetic energy of water without requiring storage. At five of the nine selected planned dam sites, the entirety of energy from planned hydropower could be generated using in-stream turbines by using only a fraction of the river stretch that large dams would affect. We find the cost (US$ kWh−1) for in-stream turbines to be ~50% of the conventional hydropower cost. Our results have important implications for sustainable hydropower development in the Amazon and worldwide through transition to power generation methods that meet energy needs while minimizing the negative socioenvironment impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydropower potential in the Amazon.
Fig. 2: Suitability indices for in-stream turbines in the Brazilian Amazon.
Fig. 3: Comparison of costs for conventional hydropower and in-stream turbines.

Similar content being viewed by others

Data availability

All input datasets used in the analyses are publicly available from the cited references. Processed data required to reproduce the figures in the main text are available on CUAHSI HydroShare and Figshare (https://doi.org/10.6084/m9.figshare.13366118).

Code availability

All figures were produced using the freely available visualization libraries in Python 3.5 (such as Matplotlib). The relevant portions of the computer code used to process the results and develop the figures are available at https://doi.org/10.5281/zenodo.4382186.

References

  1. Renewable Capacity Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf

  2. Renewable Energy Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_Renewable_energy_highlights_July_2019.pdf

  3. Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 201809426 (2018).

    Article  CAS  Google Scholar 

  4. Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Article  Google Scholar 

  5. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  6. Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767 (2018).

    Article  CAS  Google Scholar 

  7. Pokhrel, Y. et al. A review of the integrated effects of changing climate, land use, and dams on Mekong River Hydrology. Water 10, 266 (2018).

    Article  Google Scholar 

  8. Stone, R. Dam-building threatens Mekong fisheries. Science 354, 1084–1085 (2016).

    Article  CAS  Google Scholar 

  9. Fearnside, P. M. & Pueyo, S. Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2, 382 (2012).

    Article  CAS  Google Scholar 

  10. O’Connor, J. E., Duda, J. J. & Grant, G. E. 1000 dams down and counting. Science 348, 496–497 (2015).

    Article  Google Scholar 

  11. Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).

    Article  Google Scholar 

  12. Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    Article  CAS  Google Scholar 

  13. Forsberg, B. R. et al. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).

    Article  CAS  Google Scholar 

  14. Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).

    Article  CAS  Google Scholar 

  15. Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Article  Google Scholar 

  16. Pokhrel, Y. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article  CAS  Google Scholar 

  17. Eiriksdottir, E. S., Oelkers, E. H., Hardardottir, J. & Gislason, S. R. The impact of damming on riverine fluxes to the ocean: a case study from Eastern Iceland. Water Res. 113, 124–138 (2017).

    Article  CAS  Google Scholar 

  18. Yang, H. F. et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Sci. Rep. 7, 10535 (2017).

    Article  CAS  Google Scholar 

  19. Cochrane, S. M. V., Matricardi, E. A. T., Numata, I. & Lefebvre, P. A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: upper Madeira River example 2006–2015. Remote Sens. Appl. Soc. Environ. 7, 1–8 (2017).

    Google Scholar 

  20. Fearnside, P. M. Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy 38, 164–172 (2014).

    Article  Google Scholar 

  21. VanZwieten, J. et al. In-stream hydrokinetic power: review and appraisal. J. Energy Eng. 141, 04014024 (2014).

    Article  Google Scholar 

  22. Pokhrel, Y. N., Oki, T. & Kanae, S. A grid based assessment of global theoretical hydropower potential. Annu. J. Hydraul. Eng. 52, 7–12 (2008).

    Article  Google Scholar 

  23. Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).

    Article  Google Scholar 

  24. Hoes, O. A. C., Meijer, L. J. J., Van Der Ent, R. J. & Van De Giesen, N. C. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 12, e0171844 (2017).

    Article  CAS  Google Scholar 

  25. Bryden, I. G. & Couch, S. J. ME1—marine energy extraction: tidal resource analysis. Renew. Energy 31, 133–139 (2006).

    Article  Google Scholar 

  26. Karsten, R., Swan, A. & Culina, J. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos. Trans. R. Soc. A 371, 20120189 (2013).

    Article  Google Scholar 

  27. Malki, R., Masters, I., Williams, A. J. & Nick Croft, T. Planning tidal stream turbine array layouts using a coupled blade element momentum—computational fluid dynamics model. Renew. Energy 63, 46–54 (2014).

    Article  Google Scholar 

  28. Vennell, R., Funke, S. W., Draper, S., Stevens, C. & Divett, T. Designing large arrays of tidal turbines: a synthesis and review. Renew. Sustain. Energy Rev. 41, 454–472 (2015).

    Article  Google Scholar 

  29. Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States Report No. 1026880 (Electrical Power Research Institute, 2012).

  30. Ortega-Achury, S., McAnally, W., Davis, T. & Martin, J. Hydrokinetic Power Review (Mississippi State Univ., 2010).

  31. Garrett, C. & Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007).

    Article  Google Scholar 

  32. Garrett, C. & Cummins, P. Limits to tidal current power. Renew. Energy 33, 2485–2490 (2008).

    Article  Google Scholar 

  33. Miller, G., Franceschi, J., Lese, W. & Rico, J. The Allocation of Kinetic Hydro Energy Conversion Systems (KHECS) in USA Drainage Basins: Regional Resource and Potential Power (USDA,1986).

  34. Chaudhari, S., Pokhrel, Y., Moran, E. F. & Miguez-Macho, G. Multi-decadal hydrologic change and variability in the Amazon River Basin: understanding terrestrial water storage variations and drought characteristics. Hydrol. Earth Syst. Sci. 23, 2841–2862 (2019).

    Article  Google Scholar 

  35. Pokhrel, Y. N., Fan, Y., Miguez-Macho, G., Yeh, P. J. F. & Han, S. C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 118, 3233–3244 (2013).

    Article  Google Scholar 

  36. Ten-Year Energy Expansion Plan 2029 (Ministry of Mines and Energy, 2019).

  37. Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).

    Article  Google Scholar 

  38. Petheram, C. & McMahon, T. A. Dams, dam costs and damnable cost overruns. J. Hydrol. X 3, 100026 (2019).

    Article  Google Scholar 

  39. Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).

    Article  Google Scholar 

  40. Previsic, M., Bedard, R. & Polagye, B. System Level Design, Performance, Cost and Economic Assessment—Alaska River In-stream Power Plants (EPRI, 2008).

  41. Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World (USDOE, 2020); https://doi.org/10.2172/1632878

  42. Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article  CAS  Google Scholar 

  43. Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

  44. Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    Article  CAS  Google Scholar 

  45. Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017539 (2012).

  46. Shin, S., Pokhrel, Y. & Miguez-Macho, G. High resolution modeling of reservoir release and storage dynamics at the continental scale. Water Resour. Res. 55, 787–810 (2019).

    Article  Google Scholar 

  47. Pokhrel, Y. et al. Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeorol. 13, 255–269 (2012).

    Article  Google Scholar 

  48. Pokhrel, Y. N., Fan, Y. & Miguez-Macho, G. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environ. Res. Lett. 9, 084004 (2014).

    Article  Google Scholar 

  49. Yamazaki, D., Oki, T. & Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 13, 2241–2251 (2009).

    Article  Google Scholar 

  50. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    Article  Google Scholar 

  51. Coe, M. T., Costa, M. H. & Howard, E. A. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol. Process. 22, 2542–2553 (2008).

    Article  Google Scholar 

  52. Mulligan, M., Saenz-Cruz, L., van Soesbergen, A., Smith, V. T. & Zurita, L. Global Dams Database and Geowiki Version 1 (Geodata, 2009); http://geodata.policysupport.org/dams

  53. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  54. Guney, M. S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 15, 3669–3675 (2011).

    Article  Google Scholar 

  55. Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449 (2020).

    Article  Google Scholar 

  56. Previsic, M. Cost Breakdown Structure for River Current Device (Sandia National Laboratory, 2012).

  57. Renewable Power Generation Costs in 2019 (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf

  58. Gridded Population of the World v.4 (CIESIN, 2016); https://doi.org/10.7927/H4SF2T42

Download references

Acknowledgements

We acknowledge the funding from the National Science Foundation (INFEWS, award no. 1639115 and CAREER, award no. 1752729) and the Environmental Science and Policy Program (ESPP) at Michigan State University. Model simulations were conducted at Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory sponsored by the National Science Foundation. None of these agencies or funding sources should be held responsible for the views herein. They are the sole responsibility of the authors.

Author information

Authors and Affiliations

Authors

Contributions

Y.P. and S.C. designed the research framework. S.C. conducted numerical simulations and S.C. and Y.P. analysed the results. S.C., E.B., R.Q.-A., Y.P. and N.M. developed the mathematical framework for the estimation of in-stream hydropower potential and cost comparison. E.M. contributed intellectually to the implementation of the project. S.C. prepared all graphics. All authors discussed and interpreted the results. S.C. and Y.P. wrote the manuscript. All authors discussed, commented on and edited the manuscript.

Corresponding author

Correspondence to Yadu Pokhrel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Simone Athayde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–3 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, S., Brown, E., Quispe-Abad, R. et al. In-stream turbines for rethinking hydropower development in the Amazon basin. Nat Sustain 4, 680–687 (2021). https://doi.org/10.1038/s41893-021-00712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00712-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene