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Challenges and prospects of visual contactless physiological
monitoring in clinical study
Bin Huang 1,2✉, Shen Hu3,4, Zimeng Liu 2, Chun-Liang Lin5✉, Junfeng Su 6,7, Changchen Zhao 1, Li Wang8 and Wenjin Wang9✉

The monitoring of physiological parameters is a crucial topic in promoting human health and an indispensable approach for
assessing physiological status and diagnosing diseases. Particularly, it holds significant value for patients who require long-term
monitoring or with underlying cardiovascular disease. To this end, Visual Contactless Physiological Monitoring (VCPM) is capable of
using videos recorded by a consumer camera to monitor blood volume pulse (BVP) signal, heart rate (HR), respiratory rate (RR),
oxygen saturation (SpO2) and blood pressure (BP). Recently, deep learning-based pipelines have attracted numerous scholars and
achieved unprecedented development. Although VCPM is still an emerging digital medical technology and presents many
challenges and opportunities, it has the potential to revolutionize clinical medicine, digital health, telemedicine as well as other
areas. The VCPM technology presents a viable solution that can be integrated into these systems for measuring vital parameters
during video consultation, owing to its merits of contactless measurement, cost-effectiveness, user-friendly passive monitoring and
the sole requirement of an off-the-shelf camera. In fact, the studies of VCPM technologies have been rocketing recently, particularly
AI-based approaches, but few are employed in clinical settings. Here we provide a comprehensive overview of the applications,
challenges, and prospects of VCPM from the perspective of clinical settings and AI technologies for the first time. The thorough
exploration and analysis of clinical scenarios will provide profound guidance for the research and development of VCPM
technologies in clinical settings.
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INTRODUCTION
Visual Contactless Physiological Monitoring (VCPM) is an emerging
technology that can measure the vital signs based on videos. It
has been proven that VCPM is highly effective in monitoring blood
volume pulse (BVP) signal, heart rate (HR), respiratory rate (RR),
oxygen saturation (SpO2), and blood pressure (BP)1–4. More
significantly, VCPM’s contactless characteristic offers clinical
benefits such as user-friendliness, full automation, long-term
monitoring, zero skin damage, improved clinical workflow
efficiency and the greatly reduced risk of cross-infection.
Particularly, VCPM can also play a critical role in combating
cardiovascular diseases (CVDs) and offer full-cycle personal health
management5,6.
As illustrated in Fig. 1, the basic physiological principles of

VCPM are established on the cardiopulmonary and circulatory
systems. As shown in Fig. 1a, the cardiopulmonary system
facilitates the transportation of blood between the heart and
lungs, whereas the blood moves from the aorta through the
systemic arteries. In blood circulation theory, blood is ejected out
of the heart and propagates along the arterial tree, and the BVP
waveform takes on typical morphological components corre-
sponding to landmark events (e.g., the contraction of left ventricle
and the dicrotic notch) in the cardiac cycle7. Since blood flow is
regulated by cardiac and respiratory interactions, it is theoretically

possible to extract various physiological parameters through the
analysis of a photoplethysmography (PPG) signal7.
Figure 1 illustrates remote PPG (rPPG) technology, approaches

of physiological parameter measurement, and the solution of
cardiopulmonary status assessment, which is broadly defined as
VCPM technologies in this paper. As shown in Fig. 1b, owing to the
fact that BVP waveform can be detected by the camera, rPPG
technology is capable of extracting PPG signals from videos of the
skin. Furthermore, PPG signals are employed to infer HR, RR, SpO2

and BP (Fig. 1c–e). SpO2 monitoring requires the measurement of
at least two PPG wavelengths for SpO2 calibration. Additionally, BP
can be measured by multi-site pulse transit time (PTT) (inferred
from PPG waveforms from two distinct body sites), multi-
wavelength PTT (from different skin layers), and morphological
features. Moreover, in Fig. 1f, the vital signs can be employed to
assess the wellness of cardiopulmonary system.
In 2000, Wu et al. proposed the first prototype of PPG imaging

that uses an NIR light and black/white camera8. In 2007,
researchers discovered that consumer RGB cameras can detect
PPG waveforms in ambient light.9,10. After a decade, various
camera-based rPPG algorithms, which were developed based on
conventional computer vision and signal processing technology,
have made a vigorous progress. Classic and popular algorithms
include but are not limited to: CHROM11, PBV12, POS13, S2R14. In
2017, which can be called “the first year of deep learning for rPPG
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technology", scholars from University of Oxford and Taipei
University of Science and Technology respectively presented their
research achievements on newborn and adult subjects at the
International Conference on Automatic Face and Gesture Recogni-
tion and the International Joint Conference on Biometric
Recognition15,16. From 2021 to 2023, a variety of VCPM algorithms
have emerged for the continuous monitoring of premature
infants, babies, ICU patients, elderly people, etc17–20. Meanwhile,
the number of the studies based on AI technologies with healthy
subjects/laboratory environments has increased exponentially.
Furthermore, PPG waveforms, derived from videos20–22, can be
employed to infer HR23,24, SpO2

25,26, RR18,27, BP28,29 and disease
analysis30–32.
The COVID-19 pandemic over the past three years (2020–2022)

has expedited the revolution of digital medicine33–37. The
utilization of telemedicine systems experienced an exponential
growth in numerous countries in the Organization for Economic
Co-operation and Development (OECD) throughout 202038.
Compared to 2019, the number of Medicare fee-for-service
beneficiary telehealth visits increased 63-fold in 2020, reaching
nearly 52.7 million in the United States39. Similarly, in Germany,
there were almost 1.4 million video consultations conducted
during the first half of 202040. In the second quarter of 2020 alone,
patients consulted with doctors or psychotherapists via video
almost 1.2 million times40.
Most importantly, COVID-19 has changed the context of

digital medicine, and promoted the development of telemedi-
cine and Primary Health Care (PHC) system34,35,37,38,41. Govern-
ments paid increasing attention to digital medicine and
telemedicine systems, and patients gradually accepted this
treatment approach37,38,42. During the COVID-19 outbreak, we

have noticed that many countries and regions were suffering
from a shortage of essential vital-sign monitoring equipment,
particularly blood oxygen level monitors. Given that blood
saturation is a critical biomarker that can be utilized to infer the
likelihood of being infected with the COVID-19 disease, patients
under home quarantine can judge whether they are developing
lung infections or experiencing severe illness by these para-
meters35,43–45. Because of the utilization of off-the-shelf devices
such as webcams or smartphone cameras for measuring vital
signals, VCPM technologies can potentially solve the aforemen-
tioned challenges of medical equipment shortages. Based on
these factors, VCPM technologies offer a natural and cost-
effective approach to establishing digital medicine or PHC
systems.
VCPM technologies based on deep learning have made

tremendous progress in recent years, but the majority of these
studies are limited to laboratory settings or healthy subjects. To
apply these technologies to clinical medicine, there is a large
space of improvement. Therefore, the motivation of this review
paper is to re-examine the application of VCPM technologies in
clinical healthcare monitoring, summarize the encountered
challenges and issues, and enhance the fundamental theory of
VCPM in clinical settings. Moreover, the prospect of developing a
VCPM algorithm based on the state-of-the-art (SOTA) artificial
intelligence technologies is depicted. Overall, this review offers
the guidelines for the future development of VCPM algorithms
toward clinical-grade applications.
The rest of the paper is structured as four sections. First, the

search results of existing relevant works and study characteristics
will be elaborated. Then, we will discuss the revolution of digital
medicine, the merits of VCPM technology and the necessity of
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Fig. 1 An overview of physiological principle of VCPM technologies of multiple physiological parameters monitoring. a A schematic
representation of the cardiopulmonary circulation system. Due to the interaction of oxygen between the heart and lungs, respiratory rate
information is implicitly reflected in hemodynamics. b The skin reflection model of the blood volume pulse (BVP) signal monitoring and the
hemodynamics varying with the heartbeat. c Different body sites employed to extract PPG signals. d PPG signals from various body sites with
RGB channels. e The vital signs derived from PPG waveforms. f The AI model for cardiopulmonary status assessment, and disease diagnosis.
Subgraphs (a–c and e) are designed by Freepik.
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clinical settings in general. Next, the main challenges in clinical
study will be illustrated in detail. Finally, the future directions and
prospects of VCPM will be presented at length.

RESULTS
In this section, the future directions of VCPM will be summarized
from three perspectives: the adoption of SOTA deep learning
technologies and the breakthrough in the current limitations and
clinical application challenges. The framework of this section is
organized as Fig. 2. The establishment of a national and
international standard of VCPM system is of top importance, and
other parts can be divided into AI technology, clinical application
and other aspects.

Unsupervised learning
The unsupervised learning technique can be employed to
establish AI models for the VCPM task without relying on ground
truth vital signs during the training stage. Furthermore, unsuper-
vised learning methods are typically more robust to noise and
variations in data, making them ideal for real-world applications. In
fact, not only the vital signs hidden in the skin video are weak, but
the spatio-temporal features are intertwined46. Hence, it is a
significant challenge to explicitly design neural network structures
or loss functions to effectively decouple these spatio-temporal
vital-sign features. Nevertheless, it is feasible to construct a
reasonable strategy of unsupervised learning that enables the
model to learn on its own and disentangle the intertwined
features. For instance, recent research has demonstrated that
unsupervised learning technologies are capable of extracting rPPG
signals from unlabeled video data47–53. Moreover, the perfor-
mance of those algorithms48–51,54 is comparable to or even better
than that of supervised approaches.

Federated learning
Federated Learning (FL) is a distributed machine learning
paradigm or framework, and it is proposed to solve the data
island problem of privacy protection. FL is capable of joint

modeling without sharing participants’ data. The training dataset
is stored in the local storage of participants, ensuring user privacy
and complying with data usage standards55,56. In addition, FL
technologies have arguably become the most widely used privacy
preservation technique in AI-based medical applications56–62.
Overall, FL technology is a promising solution to privacy
protection, which can promote the R&D of VCPM for multi-
centric clinical application studies. For instance, Liu et al. firstly
developed a mobile FL camera-based PPG signal monitoring
system with non-clinical public databases and showed that it can
perform competitively with traditional state-of-the-art supervised
learning methods63.

Skin segmentation and temporal consistency
Due to the common occurrence of face occlusion and lateral face
orientation in clinical settings, skin segmentation is a suitable
solution that can effectively alleviate these unfavorable condi-
tions. ROI extraction or skin segmentation is a critical preproces-
sing step for the VCPM task as only the skin surface can offer
information of blood volume changes. In the earlier studies,
various facial landmark detectors64–66 have been utilized to locate
the ROI67. Nevertheless, it proves that these methods are
ineffective in scenarios involving head movement or face
occlusion, etc17,68,69. Additionally, Ouzar et al. demonstrated that
face detectors64–66 might fail to detect ROI in the MMSE-HR
dataset70, whereas this issue can be resolved by adopting a face
segmentation algorithm69,71.
It is important to accurately segment the skin ROI to extract vital

signs effectively. Furthermore, skin segmentation has the ability to
reduce noise and variation in original data, thereby improving the
accuracy of VCPM algorithms and enabling vital signs extraction
even under non-ideal conditions. In particular, skin segmentation
is greatly crucial in clinical settings where the occlusion of the face
of ICU patients is more prevalent. As shown in Fig. 3a, in the real-
world scenario in ICU, face occlusion not only introduces
additional noise, but also may cause failure in locating the
patient’s face ROI if existing feature point detection algorithms are
used. Therefore, by utilizing the SOTA semantic segmentation
algorithms, we can obtain skin segmentation input at the pixel
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level, effectively mitigating interference from non-skin regions and
enhancing the accuracy and robustness of the VCPM algorithm.
The skin segmentation results, generated by the segment
anything model (SAM) online demo (https://segment-
anything.com/demo), on simulated clinical dataset are presented
in Fig. 3.
Despite the introduction of segmentation algorithms by current

pioneering researchers, the temporal consistency of continuous
frames across video has not been taken into consideration22,69.
Unlike single-image segmentation, temporal consistency is a
critical metric that can significantly improve the performance of
VCPM algorithms. Temporal consistency guarantees that the
segmentation of each frame remains consistent with that of
previous frames, which is crucial for accurate tracking of skin
regions in videos over time. If the temporal consistency of the skin
segmentation approach is suboptimal, the segmentation algo-
rithm may introduce extra noise, ultimately leading to a decline in
the performance of the VCPM algorithm. The AI-based optical flow
is a potential research direction that can improve temporal
consistency of video skin segmentation.
In 2023, various revolutionary segmentation tools72,73 were

published, which provided great prospects for further improve-
ment of VCPM algorithm performance. In Fig. 3, the results of
facial skin segmentation using SAM72 in ICU patients under
various complicated clinical conditions are presented. The
segmentation results demonstrate that the background area is
completely eliminated and the skin area is well preserved at a
pixel-level precision. Thus, with the aid of advanced segmentation
tools, the clinical VCPM algorithm can be trained with less
background noise and more effective data, thereby increasing the
feasibility of practical application.

Establishment of the national and international standard of
the VCPM system
VCPM technology is an accessible, comfortable, and convenient
approach for physiological monitoring. To prevent the potential
abuse or misuse of VCPM, it is essential to establish national and

international standards and guidelines for its use in digital
medicine. In terms of algorithm performance and data security,
the standards should at least encompass the following aspects.
Additionally, the recommended settings for the clinical application
of VCPM technologies are listed in Table 1.

● Video capture software and hardware settings. The coded
format of recording video is a crucial parameter for VCPM
algorithm to extract vital signs. If the compression ratio of the
collected video is too high, it may result in the loss of weak
physiological signals implied in the video. The vital signs are
time-domain information, therefore a stable and consistent
sampling rate of the video is required. In addition, the
resolution of the video is a crucial factor that ensures video
quality and minimizes white noise. Hence, it is imperative to
develop specialized video recording software to configure
camera settings that can ensure the optimal performance of
the VCPM algorithm.

● Standard operating procedure (SOP). The SOP includes the
lowest ambient light intensity, allowable subject motion
magnitude, the shortest video duration and other considera-
tions.

● Data privacy protection. Due to the fact that video data
commonly cover both facial information and vital signs of
subjects, protecting privacy is a crucial issue and a primary
requirement. Formulate the criteria for video data accessibility
based on the purposes and occupational categories. The
related occupations include public individuals, physicians,
researchers, pertinent government staffs and policy makers.

Disease analysis, diagnosis and cardiopulmonary status
assessment
With the aid of the AI technology boom, PPG, HR and heart rate
variability can serve as biomarkers for disease analysis, diagnosis,
and assessment of cardiopulmonary status30–32,74–76. Recently,
numerous studies have demonstrated the high sensitivity and
specificity of VCPM technologies in detecting atrial

Fig. 3 The skin segmentation results of SAM online demo on clinical scenarios. a The facial region of our ICU patients' recording image.
b Full image automatic segmentation. c The results of automatic segmentation solution. d The interactive manual segmentation process. The
rectangle box denotes the selected region, and dots represent the areas to be removed or retained. e The results of interactive segmentation.
The source images are designed by Freepik.
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fibrillation75,77–81. Additionally, in literature32, a novel AI algorithm,
which leverages PPG and ECG generated by PPG, has been
successfully developed for CVD detection, including coronary
artery disease, congestive heart failure, myocardial infarction (MI),
and hypotension (HOTN). It can be seen that the utilization of
VCPM technologies for monitoring vital signs and capturing their
variations over days and weeks holds great potential in enabling
early disease prediction and diagnosis35,82.

Multiple vital-sign measurement
Despite the verification of VCPM technology in measuring HR, RR,
SpO2, and BP, a multi-task AI model proficient in simultaneous
detection of the four vital signs has not emerged. However, in
clinical settings, it is imperative to concurrently monitor multiple
vital signs to ensure comprehensive monitoring of the patient’s
physiological status. In clinical patient monitoring, HR, RR, SpO2

and BP are the four essential parameters that comprehensively
reflect the cardiopulmonary status of patients, and they are the
fundamental indicators of the traditional multi-parameter patient
monitors. If the VCPM framework can monitor multiple vital
parameters simultaneously, it will be closer to the application of
fully non-contact monitoring of patients in highly acute settings.
Therefore, the study of multi-parametric measurement of AI
models will make a crucial breakthrough in real-world clinical
applications. Currently, the majority of researchers are primarily
focused on developing contactless measurement algorithms for a
single physiological parameter or two parameters with strong
correlation, such as HR and RR. For instance, Villarroel and Jorge et
al. have developed two AI models capable of monitoring HR and
RR in clinical conditions18,68.
Fortunately, the VCPM technology has demonstrated the ability

to simultaneously measure vital signs including HR, RR, SpO2 and
BP3,83–85. Firstly, HR and RR can be derived from PPG
signals17,18,23,27,68,86–89; Secondly, by analyzing two distinct PPG
waveforms at the same measurement site, SpO2 can be
computed25,26,90–94; Finally, utilizing two different PPG waveforms
extracted from separate body sites enables the inference of both
diastolic and systolic BP1,2,4,95–99. Therefore, the development of a
large-scale and multi-task AI model, which has the capacity to
simultaneously measure multiple physiological signals, holds
significant clinical application potential and represents a promis-
ing direction for future research. In conclusion, it is greatly
promising to establish a unified AI model incorporating multiple
physiological parameters in clinical scenarios.

Establishment of public health early warning and decision
system based on VCPM
As illustrated in Fig. 4, the VCPM-based telemedicine system will
not only be used for personal health monitoring and disease
diagnosis, but also serves as an AI tool in response to public health
issues, such as CVD in the elderly and the COVID-19 pandemic.
Firstly, The vital signs of individuals measured by the VCPM-based
telemedicine system can be utilized for personalized healthcare
and disease diagnosis. Moreover, during an epidemic, the large-
scale basic data of the public collected by the VCPM telemedicine
system can be employed to establish a public health decision-
making system, and offer crucial technical support for the
government in formulating timely response strategies. For
instance, numerous AI prediction models have been developed
to predict the infected population and the mortality100–102.

Integration into telemedicine system for clinical application
In telemedicine or telehealth system, video consultation is one of
the must-have functions, which is a subjective approach of disease
counseling. After the COVID-19 pandemic from 2020 to 2022,
many telemedicine/telehealth systems have implemented this
method to mitigate cross-infection risks between healthcare
providers and patients during treatment for COVID-19 or other
illnesses103–106. Therefore, VCPM can be easily integrated into
those existing medical systems to support objective physiological
information during video consultations with physicians. The
implementation of this measure will further enhance the
functionality of the telemedicine system and provide an excep-
tional user experience for those utilizing the remote system.

Other recent research directions
Database synthesis method. It is a significantly challenging task to
collect a large-scale and multi-centric database representing a
range of environments, body movements, illumination conditions
and physiological states. However, establishing a simulation video
database integrated with physiological signals is a feasible
solution for VCPM tasks84,107,108. For instance, in 2022, Daniel et
al. released a synthetic database, named SCAMPS, which
comprised 2,800 videos featuring synchronized cardiac and
respiratory signals as well as facial action intensities109. Moreover,
the synthetic data have the merits of noiselessness and precise
synchronization. SCAMPS was successfully utilized to train AI
models to develop the VCPM algorithms for healthy subjects52,110.
Thus, developing a simulation database for clinical settings would
be an invaluable future direction as it can mitigate the challenges
of collecting extensive clinical data while safeguarding medical
data privacy. It should be noted that the mathematical modeling

Table 1. Recommended settings for the clinical application of VCPM technologies.

Clinical settings / Parameters Recommendation and announcement

Subjects’ state Static or slight motion during measurement.

Illumination If using RGB camera, illumination greater than 50 lux186, or normal ambient illumination and non-dark.

Camera selection The embedded processing chips in some cameras may eliminate or weaken BVP signals. We have validated that
Logitech C920/C922, HIKVISION DS-U102D/DS-65DC0403 and Intel RealSense D455 can be used to detect BVP
signals.

Video resolution Not lower than 640 × 480 px; recommend setting to 1080 × 720 px.

Video sampling rate 30 fps, the common used and supported by consumer camera

Video compression ratio Generally, the lower the video compression rate, the easier it is used to observe BVP signals hidden in skin videos.

Measurement distance According to the focal length of the camera, ensure the image of the skin region is clear, and the skin area is greater
than 128 × 128 px (The input image size of AI-based methods is usually set as 128 × 128 px).

Measurement duration HR: 5–10 s; RR: 15–30 s; SpO2: 2–10 s; BP: 5–20 s.

Measurement of BP and SpO2 Comprehensive and systematic verification is required to verify the feasibility in clinical practice. The tested BP and
SpO2 database needs cover the range of 40–240mmHg and 70–100% respectively.
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of hemodynamics and oxygen saturation is a challenging task,
which currently precludes the incorporation of oxygen and blood
pressure information into simulation data.

Domain adaptive. Due to the bias (e.g., illumination, the bias of
distinct clinical centers) between the training source and testing
target domain, the generalization ability of deep learning-based
methods should be introduced. To improve the generalization
ability of rPPG models, Du et al. proposed a domain adaptive
method that aligns intermediate domains and synthesizes target
noise in the source domain to achieve superior noise reduction by
reducing domain discrepancy110. We deem that the adaptive
domain approach can be extended to effectively mitigate the
disparity between laboratory scenario data and clinical data.

Transformer-based VCPM technologies. Transformer was first
proposed in the field of Natural Language Processing
(NLP)111,112. Then, another milestone event is the successful
adaptation of Transformer for computer vision (CV) tasks, known
as Vision Transformer (ViT)113. Nowadays, the Transformer module
is renowned for achieving a unified architecture that utilizes self-
attention mechanism to extract spatial (e.g., CV task) and temporal
(e.g., NLP task) features simultaneously. Another characteristic of
Transformer is its ability to handle various forms of input data fed
into an embedded encoder. Overall, it is a promising direction to
explore a Transformer-based VCPM framework which can extract
spatial-temporal features and monitor multiple vital parameters in
clinical settings. For instance, Wang et al. proposed a Transformer-
based unsupervised learning model for remote HR
measurement53.

GAN-based VCPM technologies. Generative adversarial network
(GAN) is an unsupervised learning framework for estimating
generative models via adversarial training114. GANs are widely
utilized in the fields of data generation, data augmentation, style
transfer, etc. Recently, GAN has been introduced to improve the

performance and generalization of VCPM technologies110,115–117.
Particularly, GAN is used to generate adversarial noise to improve
the generalization ability of PPG signals’ prediction models110,115.
Although some achievements have been made in studies on
healthy subjects and laboratory settings, it also has significant
value in clinical scenarios. Owing to the complex clinical scenarios
and its distinction in different clinical centres, the generalization
performance of AI-based VCPM algorithms might be degraded
when applied to other clinical scenarios. Therefore, GAN-based
VCPM technology is a potential approach to alleviating the
generalization difficulty in multiple centres.

DISCUSSION
In the section, we will discuss the topics on (A) digital medicine
revolution; (B) the merits of VCPM technologies; (C) The necessity
of clinical settings; and (D) Main challenges in clinical study.

(A) Digital medicine revolution
Key information

● Digital Medicine. Digital medicine is a comprehensive concept
that encompasses the use of digital technologies, such as
biotechnology, health technology, and biomedical engineer-
ing, to enhance healthcare delivery and improve patient
outcomes through signal processing, artificial intelligence,
machine learning, and big data analysis.

● Telehealth. Telehealth encompasses remote clinical health-
care, patient professional health education, as well as public
health and healthcare administration. Usually, telehealth
covers a significant proportion of digital health solutions.

● Telemedicine. Currently, there is no universally accepted
definition of telemedicine. Generally, it is the utilization of
telecommunications to remotely provide healthcare services,
encompassing a wide range of applications such as video
consultations, diagnosis and patient monitoring. It can be
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implemented through video conferencing, photo calling or
special telemedicine software. Telemedicine is a component
of the broader field of telehealth.

● Remote Patient Monitoring (RPM). RPM, a comprehensive
technology solution, involves the utilization of sensors and
other devices to remotely gather data on a patient’s health
status, which can then be transmitted to healthcare providers
for analysis and intervention. VCPM can be considered as one
of the RPM techniques. This technology is applicable to
monitor various conditions such as heart failure, diabetes,
COVID-1935, and interstitial lung disease33.

● Self-monitoring and home-based monitoring. Self-monitoring
refers to the utilization of digital tools and devices by patients
to track their own health data, such as blood pressure
monitors, glucose meters, and fitness trackers. This practice
enables patients to proactively manage their health and
detect potential diseases at an early stage. Home-based
monitoring involves leveraging digital technologies to deliver
healthcare services directly to patients in their residences.

The measurement physiological signals is a fundamental
procedure for monitoring the body’s status, which is widely
employed in clinical settings and daily health surveillance. VCPM,
as a contactless measurement method, offers the benefits of user-
friendly monitoring, passive monitoring and cost-effectiveness etc.

Therefore, it has the significant potential for application in clinical
settings or home-based monitoring, and is poised to revolutionize
traditional medical devices, telemedicine, intelligent monitoring,
and medicine industry.
As illustrated in Fig. 5, the current trend in the development of

neonatal physiological signal monitoring instruments is shifting
from wired contact to wireless contact monitoring118–120, and
ultimately towards contactless measurement. In 2022, an AI-based
contactless physiological monitoring algorithm was developed for
post-operative patients in ICU settings. In the study, the VCPM
algorithm measured the HR with a mean absolute error (MAE) of
2.5 beats/min in comparison to two reference HR sensors, and
measured the RR with a MAE of 2.4 breaths/min against the
reference value computed from the chest impedance
pneumogram18.

(B) The merits of VCPM technologies
Firstly, VCPM possesses a greater number of inherent and
potential advantages. As illustrated in Fig. 6a, the approach of
VCPM presents numerous merits, including contactless and non-
invasive monitoring, passive measurement, user-friendliness,
comfort and convenience, as well as suitability for long-term
monitoring. Then, it leverages the ubiquitous devices and internet
infrastructure at hand, including smartphones, webcams, and

a b

Contact 

electrode 

slice

Wireless

sensors

Fig. 5 The development trend of the vital-sign monitoring of neonates or preterm infants. a The conventional contact monitoring
approach with hard-wired devices and rigid sensors that adhere to neonatal skin. b The wireless, non-invasive soft biosensors employed to
monitor physiological signals in NICU or pediatric ICU (PICU) settings, e.g., the research of literature120. c The video-based non-contact vital-
sign monitoring solution utilized in the NICU, such as the study of Oxford University68.

Digital Medicine

Telehealth

Contactless Passive monitoring

Camera readily 

available

Mature and seamless 

telecommunication system

User-friendly

Prevent cross-

infection

Cost-

effective

Promote equity of 

medical resources

Features & 

Advantages

Devices & 

Software

Social 

benefits

More disease 

information
Horizontal 

relationships

Multinational 

data modeling

Policy 

guidelines

icidemlatigiddesab-MPCVMPCVfoscitsiretcarahcdnastiremehT ne

Remote patient 

monitoring

Home monitoring / 

Self-monitoring

Telemedicine

a b

Fig. 6 The digital medicine and telemedicine systems based on VCPM technologies. a The hierarchical advantages and characteristics of
the VCPM methodology. b The relationships of concepts of digital medicine, telehealth, telemedicine, RPM, home-based monitoring or self-
monitoring. The VCPM technology is a fundamental and suitable tool to support telemedicine, particularly in home-based monitoring.
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telecommunications systems. Therefore, the VCPM is a more
natural method to establish telemedicine or home-based mon-
itoring systems, and has the potential to yield significant
economic and social benefits, including but not limited to
preventing cross-infection among individuals/patients, reducing
patients’ costs121, and promoting equitable distribution of medical
resources.

The merits of clinical applications
Due to the prevalence of camera devices and the convenient
monitoring manner, the VCPM technologies have the potential
to flexibly record public large-scale disease data and an
individual’s physiological information. Meanwhile, big data
and AI technologies have played a significant role in studying
and recognizing brand-new diseases (e.g., predict infection rate
and mortality) by utilizing large-scale vital signs from the
public41. On one hand, VCPM establishes horizontal

relationships between patients and providers, and makes
multinational collaborations more feasible41. Moreover, as
illustrated in Fig. 7, VCPM technologies have broad applications
in various clinical scenarios, such as elderly care, newborn
monitoring, ICU patient healthcare, rehabilitation training, and
so on.
On the other hand, in terms of individuals, VCPM can be easily

implemented on a large scale to track longitudinal changes, which
are crucial medical indicators of their physiological status.
Individuals undergo their own daily, weekly, and seasonal
fluctuations in a variety of physiological parameters and activities.
The earliest deviations from the norm can be detected only by
establishing an individual’s baseline when they are healthy44.
Therefore, owing to its flexible and passive manner, VCPM is
significant for monitoring the physiological parameters of patients
whether they are at home or in the hospital. For example, patients
can transmit their skin video to the AI physiological signal
monitoring system, and a physician can work remotely based on

Fig. 7 Application scenarios of VCPM. Sub-figure (a) is designed by our team, and (b–i) are designed by Freepik.
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the vital signs. These advancements may encourage patients and
their families to take greater ownership of their own healthcare.
This system has the ability to reduce medical costs, decrease
reliance on specialized equipment and physicians, promote equal
distribution of medical resources, and improve the quality of
healthcare services.

The advantages of AI-based VCPM approaches
Firstly, it is an undisputed trend that utilizes SOTA AI technologies
to develop VCPM algorithms. According to incomplete statistics,
the vast majority of SOTA VCPM algorithms that were released
from 2020 to 2023 are based on AI techniques. What’s more, the
performance of deep learning methods has far exceeded that of
signal processing methods. Secondly, AI technologies can not only
be employed to develop the approaches of estimating multiple
vital parameters, but also are capable of advancing post-process
solutions, such as disease diagnosis with individual longitudinal
analysis and other similar patient horizontal comparison44. In
addition, the AI-based VCPM solution with the power of privacy
protection presents a highly appealing option for clinical
applications, such as utilizing AI-based approaches for protecting
privacy55,57,58. Generally, the AI-based VCPM solution holds
immense potential and offers significant advantages in the fields
of clinical applications and digital medicine.

The opportunities of VCPM-based digital medicine system
The VCPM will significantly expand the application range and
scenarios of telemedicine and telehealth systems. A telemedicine/
telehealth system typically encompasses the fundamental cap-
abilities of biosignal measurement and video consultation. As
illustrated in Fig. 6a, the VCPM approach utilizes existing
infrastructures, such as webcams and the Internet, to establish a
telemedicine/telehealth system without specialized medical
equipment. Therefore, as shown in Fig. 6b, VCPM is particularly
well-suited for establishing a telemedicine system that integrates
remote patient monitoring, home-based monitoring, and video
consultation simultaneously. It can be regarded as one of the
essential underlying technologies for telemedicine systems,
especially in supporting remote patient monitoring and home-
based healthcare.
Ultimately, VCPM technology offers an unprecedented oppor-

tunity to self-health monitoring, PHC41 and telemedicine system
due to the distinctive merits of VCPM, which include contactless
operation, user-friendly interface, low cost and non-requirement
for medical professionals. VCPM can be applied across the entire
spectrum of prevention, diagnosis, and treatment. It is competent
method to facilitate self-physiological signal monitoring and
health status assessment in the stage of disease prevention.
Furthermore, it can be integrated into PHC and telemedicine
systems with fundamental physiological data for diagnosis. It
serves as a tool to monitor the body’s physiological state, and can
be applied widely as illustrated in Fig. 7.

(C) The necessity of clinical settings
Firstly, multi-parameter monitoring is a necessary approach to
maintaining the life and health of preterm / newborn infants. In
2020, World Health Organization reported that approximately 35%
of all under-5 deaths occurred within the first week of birth122. For
newborn or preterm infants, vital-sign monitoring is a funda-
mental clinical requirement because the fetal-to-neonatal transi-
tion after birth is a complex physiological process that affects all
organ systems123–126. Moreover, it is also an indispensable
procedure in the neonatal intensive care unit (NICU) environment.
However, traditional contact-based methods are uncomfortable
even harmful over the long-term contact of sensors. Thus, the
visual contactless pipeline provides a notable competitive

advantage in vital-sign monitoring by providing a convenient
and contactless approach17. For instance, some pioneering studies
have been conducted on hospitalized neonates based on deep
learning17,68,127,128.
Furthermore, the majority of clinical patients require vital-sign

monitoring, particularly those who are critically ill, have had
surgery or suffered from CVD129 or hypertension. For patients who
require long-term monitoring, traditional contact monitors have
obvious clinical disadvantages. If the sensor probe is too tight, it
can cause skin damage during extended use. Conversely, if the
probe is too loose, it may easily detach due to the patient’s
movement and necessitate professional reattachment. The
primary unmet need being addressed by non-contact monitoring
solutions is the mitigation of patient discomfort caused by contact
or wearable monitoring technology130. For instance, wearable
sensors are difficult to use in some patients with cognitive
impairment (e.g., Alzheimer’s disease)75.

(D) Main challenges in clinical study
Compared with the studies based on healthy subjects or
laboratory scenarios, the clinical application of VCPM faces a
multitude of unique challenges and the number of clinical studies
is extremely limited. Therefore, the study of VCPM techniques is
highly valuable in addressing digital healthcare challenges in real-
world clinical scenarios131. Certainly, the following disadvantages
of the VCPM technologies must be taken into consideration when
applied in clinical settings: (1) Privacy protection; (2) Requiring
substantial clinical validation; (3) Not suitable for dark environ-
ment unless using an infrared camera; (4) The performance
susceptible to disturbance, such as head movement. In addition to
the aforementioned issues, the primary obstacles that VCPM faces
in clinical study are drawn out in this section.

I. A shortage of public clinical database
The primary challenge lies in the absence of a publicly available
database of clinical scenarios. To date, some pioneering studies
have been conducted on clinical patients, but none of those data
is available due to the patients’ privacy protection. Villarroel et al.
conducted research on the application of VCPM algorithms in
post-operative patients18 and preterm infants68 in the intensive
care unit (ICU) respectively. However, those corresponding
database are not publicly accessible. Moreover, there are only
15 ICU patients and 30 preterm infants recruited in literature68

and18 respectively. The limited amount of clinical data from a
single center are insufficient to support further research and
optimization of AI algorithms, as well as the clinical application of
VCPM algorithms.
The scarcity of a clinical public database seriously impedes the

algorithmic and application innovation in the VCPM research
community. First, due to the unavailability of clinical data, the
barriers to the clinical research of VCPM are increased. Thus, a
significant proportion of scholars fail to carry out research
smoothly. Next, there is no unified benchmark for comparing
algorithms developed by various researchers. Last, it would hinder
the healthy and sustainable development of the research
community. Overall, it is imperative and opportune to establish
a public database on its clinical scenarios.
The main deterrent to releasing clinical data results from

safeguarding patients’ privacy132,133. Generally, the data recorder
for VCPM includes the facial video of patients and multiple
physiological information. Hence, providing access to the data for
researchers in need while ensuring privacy presents a tricky issue.
To this end, it is necessary to establish new standards for privacy
and disclosure of clinical databases by collaborating with the
government, academia, and medical community. These guidelines
will revolutionize the development and application of AI
technologies in digital medicine. From the perspective of
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technology, there are at least two potential solutions to achieve
this objective: establish an AI-based privacy protection system or
simulated database for clinical studies.
On the one hand, the primary concept behind federated

learning systems is to construct machine learning models utilizing
database that are distributed across multiple devices, while
simultaneously preventing any potential data leakage134,135.
Recently, federated learning have been widely applied in
healthcare and clinical systems57,58,136–138, and just one VCPM
study leverages federated learning at present63. On the other
hand, simulation dataset leverages the concept of digital twins,
utilizing both the original clinical video and corresponding
physiological signal data to construct a simulation database. Thus,
some researchers just need to access the simulation dataset to
develop their AI algorithms, and then adopt the transfer learning
to optimize the model trained on simulated data.

II. Complex clinical scenarios
Due to the extremely weak vital signs hidden in facial videos, they
are susceptible to interference from subjects’ status and
surroundings. For instance, face occlusion and lateral face videos
can weaken physiological signals, while head motion and
illumination changes will enhance disturbances. Ultimately, these
negative factors increase the challenges in developing a robust
VCPM algorithm.

Face occlusion and lateral face orientation
Oxygen therapy is commonly applied to ICU patients, but it will
obscure parts of the face due to the presence of oxygen tubes and
fixed coated fabric. Moreover, the oxygen tubes are situated in
various regions of the face. Thus, it is a time-consuming and
laborious task to segment them from each frame of the facial
videos. In addition, unlike healthy subjects in laboratory settings,
clinical patients can not be instructed to face the camera and are
typically confined to their sickbeds with a lateral orientation.
Moreover, to minimize background interference and maximize the
retention of skin that contains physiological signal information, it
is necessary to eliminate non-skin region as much as possible
before we feed the skin regions into a VCPM algorithm. For videos
of the healthy subjects’ face, a facial landmark tool is commonly
utilized to extract face ROI, but the tool is not usually applicable to
subjects with occluded or laterally oriented face139,140.

Head motion and illumination changes
Furthermore, the current bottleneck of VCPM solution lies in their
algorithmic performance, which fails to meet clinical measure-
ment accuracy requirements when subjects experience head
motion or surrounding illumination changes. The essential reason
is that the amplitude of weak vital signs concealed in facial videos
is significantly lower than the noise caused by head motion and
illumination changes. There have been a few pioneering scholars
attempting to tackle these hot-potato issues, yet much work
remains for VCPM technologies to attain their full potential,
particularly in medical field.

III. Confidence evaluation of algorithms
Due to head movements or illumination changes, the perfor-
mance of VCPM algorithms may become worse. Therefore, it is
reasonable to introduce a confidence evaluation to assess results.
The real-time presentation of the confidence coefficient indicates
the level of confidence in the measured vital signs. The confidence
level can be regarded as a metric of evaluating the algorithm’s
adaptability to clinical scenarios. Furthermore, it will not only
facilitate physicians in assessing patients’ conditions, but also
provide guidance for further algorithmic improvement to
researchers.

IV. Pathological feasibility analysis
In clinical practice, there is a high prevalence of hypertension and
CVDs among the elderly population, resulting in various abnormal
PPG signals. As shown in Fig. 8, the morphological characteristics
of abnormal PPG signals are greatly different from that of normal
PPG waveforms. As illustrated in Fig. 1, the fundamental principle
of VCPM algorithm is based on the current normal PPG signal.
Therefore, it is a tough task to develop a clinical VCPM algorithm
that can adapt to abnormal PPG signals and further infer HR, RR,
BP, and SpO2, which is also urgently needed validation in clinical
studies.
However, there has been no study investigating the impact of

abnormal pathological PPG signals on the performance of VCPM
algorithms so far. All studies assume that subjects have normal
PPG waveforms. Hence, comprehensive research guarantee that
the effectiveness and robustness of VCPM algorithm is applicable
to abnormal PPG signals in clinical situations, which is a
challenging task and an innovative future direction to develop
an effective VCPM pipeline. Furthermore, VCPM-based technolo-
gies can be developed for the diagnosis of CVDs.
Figure 8 displays five PPG waveforms, including four commonly

seen abnormal PPG signals in clinical settings. Similarly, the
abnormal PPG waveforms were detected in our clinical studies
uses a finger-clip sensor. The waterhammer PPG is characterized
by a sudden increase in the amplitude of the PPG signal, followed
by a gradual decrease. The slow-rising PPG is identified by a
prolonged rise time, which refers to the duration from the onset of
the blood volume change to the peak of the signal. Specifically,
the slow-rising PPG has a longer rise time compared with normal
signals.
Pulsus bisferiens, meaning “beating twice", is a type of arterial

pulse characterized by two distinct systolic peaks resulting from a
rapid rise in blood pressure during systole, followed by a brief fall
and then a second rise. This phenomenon is most commonly
associated with aortic regurgitation, which stems from the
incomplete closure of the aortic valve during diastole, leading to
retrograde blood flow into the left ventricle, causing an increase in
stroke volume consequently.
Pulsus alternans is a condition distinguished by alternating

strength of the arterial pulse between beats due to variations in
stroke volume. A decrease in stroke volume leads to weaker
pulses, while an increase results in stronger ones. This phenom-
enon is most commonly related to the left ventricular dysfunction
like that observed in heart failure.

METHODS
Search results
We retrieved a total of 381, 1279 and 1243 records from three
databases (Pubmed, Web of Science (WOS), and IEEE) respectively
(Fig. 9). Initially, we applied time filters due to the commencement

Normal

Waterhammer

Slow-rising

Pulsus bisfiriens

Pulsus alternans

Fig. 8 The distinct types of abnormal PPG waveforms.
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of VCPM research in 2007, which resulted in a remaining total of
345, 1026, and 1139 records respectively. Subsequently, specific
built-in filter tools of the three databases were employed: (1)
Exclude 28 records with not full text filter in Pubmed; (2) After
filtering out literature types that include review papers, unspeci-
fied material, books, abstracts only and letter, 730 papers remain
in the search results of WOS; (3) Utilizing the filter of publication
topics (patient monitoring, medical image processing, medical
signal processing, cardiology, diseases, health care, biomedical
optical imaging, telemedicine, medical signal detection or
cardiovascular system) and 993 records remain in the search
results of IEEE. Next, after eliminating the duplicates, there were
1943 items remaining. Finally, after screening by title, abstract or
full text, studies conducted in laboratory settings or using radar
sensors (e.g., MMW radar) were excluded. Only research papers
related to clinical settings, digital medicine, telemedicine or
healthcare were selected for final analysis, resulting in a total of 43
papers.

Study characteristics
The 43 research papers are listed in reverse chronological order in
Table 2. There were 24 papers in which studies were based on
neonates or premature infants, the subjects of another 18 papers
were adult patients, and the subjects of the last one included
newborns and children141. Besides, Batbayar et al. developed a
rapid preliminary COVID-19 screening system integrated with a

stereo depth, an RGB and a thermal camera to measure RR, HR,
and body temperature (BT) respectively142. The six studies
(Villarroel et al., 2020, 2019, 2014; Chaichulee et al. 2019, 2018;
Jorge et al., 2022)18,68,143–146 were from the same team at Oxford
University. Among these studies, four papers focused on neonates
while the remaining two were for adult patients.
In terms of the implemented algorithm, there were 29 research

papers (29/43, 67.4%) that conducted classical methods, and only
nine studies (10/43, 23.3%) implemented AI-based methods.
Besides, the remaining four articles (4/43, 9.3%) did not explicitly
state the used methods. Among the ten AI-based papers, five
studies were from the team of Oxford University
(UK)18,68,143,145,146, two from Beihang University (China)17,147, and
the remaining three from RWTH Aachen University (Germany)148,
Indian Institute of Technology Madras (India)127, Institute of
Computer Science FORTH (Greece)149 respectively.
Additionally, the relationship between the number of subjects

and total videos’ length are presented in Fig. 10 based on the data
resources shown in Table 2. Despite the 23 pairs of data may not
be entirely statistically significant, Fig. 10 presents that the data
scale (video total length or number of subject) of AI-based
methods are commonly larger than non-AI approaches when
excluding studies inside the blue ellipse from the same team.
Generally, the performance of AI-based approaches is dependent
on the scale of database, while classical methods only require
fewer data samples. In fact, no matter AI-based approaches or
classical ones, a large-scale and diverse database is indispensable

Pubmed

N=381

2007-2023

(N = 345) 

remaining

N = 317

Web of science

N=1279

2007-2023

(N = 1026) 

remaining

N = 730

IEEE

N=1243

N = 993

2007-2023

(N = 1139) 

remaining

Not full text

Exclude n = 28

Literature type

Exclude n = 296

Publication topics

Exclude n = 146

Total number: 2040

After duplicates removed: N = 1943

Papers included in analysis

N = 43

Screen title/abstract/full text

Exclude n = 1839
Add one paper

N = 1
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Fig. 9 Flowchart for literature search and screening.
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to assess the comprehensive performance of VCPM approach
toward complex real-world clinical settings.
In addition, although contactless studies in clinical scenarios

have been emerging, some critical physiological indicators such as
SpO2 and BP have not been researched so far. The research
contrast of physiological parameters between laboratories and
clinical scenarios is illustrated in Table 3. Depending on the
selected clinical studies and the SOTA research trends of VCPM,
our findings are summarized below:

● All clinical studies are based on their own database. The vast
majority of these studies focus on the assessment of clinical
applications, rather than dealing with real-world clinical
scenarios, researching novel paradigm or analyzing clinico-
pathology.

● As shown in Tables 2 and 3, all clinical studies concentrate on
the measurement of HR or RR. Even though AI-based research
developed for SpO2 or BP measurement on healthy subjects
has been growing explosively from 202190,96, none of them
are intended for monitoring SpO2 or BP in clinical settings.

● The VCPM algorithms, developed for clinical settings, are
increasingly favored by researchers at present. In particular,
the research on VCPM algorithms showed an exponential
growth in 2022.

● There is a great gap between healthy/laboratory scenarios and
clinical settings on the research of AI-based methods. A great
many SOTA AI-based methods have been developed on
healthy/laboratory settings20, but none of them has been
applied in clinical settings.

Phenomenon: the gap between the laboratory and clinical
settings

(1) The studies of AI-based VCPM algorithm have been growing
exponentially on healthy subjects/laboratory settings from
2021 to 2023. As shown in Table 3, the SOTA algorithms
have demonstrated outstanding performance, but have
rarely been generalized to clinical application.

(2) The studies of VCPM algorithms have been soaring on
patients/clinical settings from 2021 to 2023, yet only a
limited number of studies have incorporated AI-based
algorithms. In Table 1, only 6 papers (6/21, 28.6%) utilized
AI technologies (2021–2023).

(3) From the perspective of the novelty of approaches based on
AI technologies, unsupervised learning47,48,51, Transfor-
mer49,150–152, GANs115–117, meta-learning153, and Graph
Neural Networks154,155 have been developed for non-
clinical scenarios. However, these technologies are rarely
utilized for clinical settings.

(4) As illustrated in Table 3, although the AI-based study about
contactless SpO2 and BP estimation has become a hot topic
in recent two years, all the studies concentrated on healthy
people rather than the patients in the hospital.

Reason: thinking and inference

(1) The SOTA AI-based VCPM algorithms developed in labora-
tory settings still face significant challenges in clinical
application. Further verification is required to confirm the
performance of these algorithms when generalized to
clinical scenarios.

(2) Because of the privacy protection of patients, there is still a
shortage of large-scale and accessible clinical databases for
the researchers of computer vision and AI. This seriously
hinders the development and application of AI-based VCPM
algorithms in the clinical environment.

(3) Particularly, the performance of SpO2 and BP measurement
algorithm in clinical settings is urgently need to be
validated. It has crucial guiding significance for subsequent
clinical studies of VCPM technologies. The performance
evaluation of measuring SpO2 should cover the range of
blood oxygen levels from 70% to 100%. To comprehensively

Fig. 10 The relationship between the number of subjects and
videos’ length.

Table 3. The quantitative contrast of physiological parameters between laboratories and clinical scenes.

Parameters Healthy people / Laboratories Patients / Clinical scenes (ME ± SD)

HR (bpm) MAE= 0.6, RMSE= 1.83 (UBFC); MAE= 0.6, RMSE= 1.84 (PURE)187 0.05 ± 1.4156

MAE= 0.16, RMSE= 0.6 (UBFC); MAE= 0.85, RMSE= 2.1 (MMSE-HR)110 −0.1 ± 4.1158

RMSE= 0.765 (OBF)188 −0.2 ± 2.3142

RR (brpm) MAE= 1.28, SD= 2.33189 MAE= 2.8, SD= 3.0147

MAE= 1.62, SD= 2.123 −0.7 ± 3.518,159

MAE= 1.76, RMSE= 2.6 (The mean values of the four modes)190 MAE= 2.418

SpO2 (%) MAE= 1.19, RMSE= 1.3625 ×

MAE= 0.88, RMSE= 1.2293 ×

MAE= 1.2694 ×

BP (mmHg) SBP: MAE= 2.4, RMSE= 4.2; DBP: MAE= 2.0, RMSE= 3.5191 ×

SBP: MAE= 8.7, SD= 9.9; DBP: MAE= 5.5, SD= 6.997 ×

SBP: MAE= 9.1, SD= 8.2; DBP: MAE= 8.8, SD= 6.1116 ×

All reference studies were published from 2022 to 2023.
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evaluate the performance of the BP measurement algo-
rithm, it is necessary to recruit sufficient hypertensive and
hypotensive patients respectively.

Prospect: possible solutions

(1) It will represent a significant milestone to establish a large-
scale publicly accessible clinical database and usage
standard for VCPM researchers. The database includes
video, PPG, HR, RR, SpO2, and BP information. The greatest
obstacle to achieving public access to the clinical database
is privacy protection. Therefore, the exploration of a publicly
available clinical database that protects privacy is one of the
crucial future research directions.

(2) The database will promote the study of VCPM algorithms in
clinical settings, achieve a fair comparison of algorithm
performance, and facilitate the sustainable development of
the VCPM community.

(3) Moreover, the database will attract plenty of excellent
researchers in the field of computer vision and AI to join the
clinical VCPM community. Ultimately, it will bridge the current
great research gap between laboratory and clinical settings,
and accelerate the clinical applications of VCPM technologies.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Received: 2 July 2023; Accepted: 21 November 2023;
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