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A deep learning model for molecular label transfer that enables
cancer cell identification from histopathology images
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Deep-learning classification systems have the potential to improve cancer diagnosis. However, development of these
computational approaches so far depends on prior pathological annotations and large training datasets. The manual annotation is
low-resolution, time-consuming, highly variable and subject to observer variance. To address this issue, we developed a method,
H&E Molecular neural network (HEMnet). HEMnet utilizes immunohistochemistry as an initial molecular label for cancer cells on a
H&E image and trains a cancer classifier on the overlapping clinical histopathological images. Using this molecular transfer method,
HEMnet successfully generated and labeled 21,939 tumor and 8782 normal tiles from ten whole-slide images for model training.
After building the model, HEMnet accurately identified colorectal cancer regions, which achieved 0.84 and 0.73 of ROC AUC values
compared to p53 staining and pathological annotations, respectively. Our validation study using histopathology images from TCGA
samples accurately estimated tumor purity, which showed a significant correlation (regression coefficient of 0.8) with the estimation
based on genomic sequencing data. Thus, HEMnet contributes to addressing two main challenges in cancer deep-learning analysis,
namely the need to have a large number of images for training and the dependence on manual labeling by a pathologist.
HEMnet also predicts cancer cells at a much higher resolution compared to manual histopathologic evaluation. Overall, our method
provides a path towards a fully automated delineation of any type of tumor so long as there is a cancer-oriented molecular stain

available for subsequent learning. Software, tutorials and interactive tools are available at:https://github.com/

BiomedicalMachineLearning/HEMnet
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BACKGROUND

Histopathological examination of tissue is indispensable for the
accurate diagnosis and treatment of cancer'. Frequently,
pathologic diagnosis of cancer and different subtypes dictate
the use of specific treatment regimens®. One of the current
standards of cancer diagnosis is microscopic examination of tumor
tissue sections jointly stained with hematoxylin and eosin (H&E)
dyes®3. Based on the H&E-stained image of a biopsy section,
pathologists can qualitatively assess cancer types, stages and
estimates of tumor purity®. Furthermore, histopathologic exam-
ination frequently reports different types of cells, organic states,
and/or cellular localization inside complex tissues® although
diagnosis concordance among pathologists remains low®. The
visual inspection of histopathologic sections of biopsies is a time-
consuming task and lacks quantitative measurements for cellular
features®.

Recently, the emerging area of digital pathology has been
developed as a way to digitize, store and distribute cancer whole-
slide images (WSIs). This approach significantly improves the
speed and access to cancer anatomical pathology. The increasing
production of WSIs requires advanced computational approaches
to be developed to analyze these medical images in a fast, robust
and accurate manner, ultimately leading to applications in
automated cancer diagnosis’~'°.

Deep learning is the method of choice for analysis of digital
histology images and many methods have been developed for
tumor classification®. However, a key challenge for deep learning
is the need for a very large number of accurately labeled data'’.

For this approach, many methods require WSIs that are manually
annotated by a pathologist'>. Thus, generating the training
dataset becomes a time-consuming manual process, which still
has the limitation in the high variation between pathologists'>.
This adds to the cost and makes it more expensive to obtain these
training datasets'®. Another challenge is that these slide images
are large; an image at x10 magnification can contain hundreds of
millions of pixels. However, a pathologist’s annotations are often
not at the pixel level and rely on much cruder methods of
demarcation. As a result, training occurs at a lower image
resolution that lacks cellular granularity’®>. We aim to address
three key challenges, namely the dependence on the variable
pathologist annotation for model training, the need to have a
large number of images for training, and the demand to achieve a
high-resolution and quantitative prediction of cancer cells.
Herein, we describe a new automated approach in which we
use prior staining that demarcates tumors from normal cells at
much higher image resolution. Immunohistochemistry (IHC) has
been a useful tool in both research and clinical diagnosis—the
classical histopathology method locates and visualizes specific
cells or antigens based on antigen-antibody binding. Importantly,
IHC is widely used for formalin fixed paraffin embedded (FFPE)
tissue, the most common tissue archival method'®. The manual
coupling of H&E and molecular marker staining images for
detection (by H&E) and further confirmation (by IHC) is increas-
ingly being applied for histopathological diagnosis®. This also
creates a valuable opportunity for digital data integration between
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tissue morphology and molecular profiles, an area that has not
been utilized?'”"®,

We developed a method, referred to as H&E molecular neural
network (HEMnet), which automatically aligns every pixel in the
IHC image to the corresponding pixel in the same location on H&E
image. Our approach labels each H&E pixel as biomarker positive
or negative. For this proof-of-concept study, we used an IHC
marker for cancer to delineate tumor cells. We used p53 staining,
an important tumor suppressor gene (TP53), which is prone to a
high frequency of genetic alterations across many different
malignancies'®2°. Most TP53 mutations are of the missense class
that change the p53 protein structure, making them more stable
and has a much longer half-life than the wild-type form. TP53
mutations result in the stabilization and subsequently accumula-
tion of p53 in malignant cells?', allowing it to be readily detected
by IHC. Wild-type p53 is unstable and has a short half-life, and thus
p53 in normal cells is usually undetectable by IHC?2. Up to 74% of
colorectal cancer samples show abnormally high positive staining
(i.e., a brown color) for p53, which provides specific IHC marker for
cancer cells in colorectal cancer'®2%2?3, By mapping/registering
p53 IHC image to H&E image, we improved the model training
and testing dataset as described below.

Our study leveraged innovative molecular label transferring to
generate tens of thousands of H&E tiles extracted from the WSls,
without manual inspection or with a minimal effort to confirm the
automated labels. Here, HEMnet was trained on a set of p53-
stained and H&E WSI images from colon cancer. We used aberrant
p53 staining patterns to annotate colorectal cancer cells in H&E
slides by aligning these images. With thousands of labeled tiles, a
convolutional neural network classifier was trained based on an
in-house colorectal cancer dataset. With this training and testing
approach, we achieved a high performance on an independent
set of histopathologic sections and images. HEMnet was
extended to testing the Cancer Image Archive (TCIA), which has
an extensive repository of colorectal cancer histopathology
imaging data. By comparing with other genomics-based meth-
ods, we demonstrated a high performance with a significant
positively correlation®*?>, For generalization, so long as the
molecular label is relatively specific to the tumor cells, this
process should enable one to conduct streamlined and high-
resolution molecular annotation of cancer versus normal cells.
The HEMnet approach can be easily implemented with other
interesting biomarkers such as HER2 and for other types of
cancer. Recent developments of multiplex marker assays, like
mass cytometry imaging, would enable label transferring of more
than one markers to H&E images to allow for the analysis of
cancer complexity to a greater extent. Given its success, this
method has potential clinical application. One can use common
histopathological images to enable the discovery of cancer
cellular geometric patterns within the tissue and our software is
capable of automatic detection of these patterns as part of
developing computer aided diagnosis tool.

RESULTS
Molecular information for H&E images annotation

We developed an approach which leverages molecular annota-
tions and deep-learning methods to improve the identification of
cancer cells (Fig. 1). The HEMnet development pipeline comprises
four major steps: (1) data generation of paired P53 and H&E
images, (2) preprocessing images and transferring of molecular
label, (3) training neutral network, and (4) evaluating the
performance of HEMnet (Fig. 1). The HEMnet pipeline was
designed for applicability to any staining type or cancer type.
For this study, we developed HEMnet to identify tumor cells in
H&E images of colorectal cancers. For step 1, we obtained 32 high-
resolution H&E images and corresponding p53 IHC images from
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27 cancer samples and 5 non-cancer samples. This was achieved
by staining adjacent tissue sections with H&E and p53 to generate
a matched paired WSIs for each tissue block. Step 2 is the novel
contribution of HEMnet to transfer molecular labels to the H&E
image. HEMnet takes advantage of molecular information, instead
of manual pathologist annotations. We accomplished this by
alignment of p53 molecular stained images to the corresponding
H&E images at the pixel level (Fig. 3). The p53 stain pattern was,
thereby, used to label cancer regions on the paired H&E images in
an automated fashion, without the need for pathologist interven-
tion. For step 3, each labeled H&E image was split into thousands
of small tiles 224 x 224px so that from a small sample of 10 WSlIs
we can generate tens of thousands of training samples (Fig. 3d).
We used these image tiles to train a deep-transfer-learning
classifier to identify cancer regions in clinical H&E images using
only tissue morphology features. Step 4 provides stringent
validation criteria with independent datasets, comparing HEMnet
with pathological annotation and with seven computational
genomics methods.

H&E stain normalization reduces color variation

Besides realizing the concept of using molecular labels in deep-
learning model, the technical contribution of the HEMnet pipeline
lies in the seamless pipeline, comprising a step to combine
multiple images into a model training and testing dataset by
normalizing different images, followed by fast and accurate label
mapping, before training a neural network. Initially, WSIs with
similar tissue structures stain different colors due to differences in
slide processing (e.g., staining time, microscopy exposure). We
address this issue with stain normalization, which caused these
WSiIs to take on the stain color profile of the template slide and
increased the luminance to produce a white background
(Fig. 2a—c and Fig. S2). This method changed the mean R, G and
B channel intensities of the normalized slide to closely resemble
the template slide whilst retaining the R, G and B color
distributions within the image. Across the 32 H&E WSIs, stain
normalization reduced the variation in mean R, G, and B channel
intensities (Fig. 2d). In addition, it adjusted the median of the
median channel intensities to move closer to the mean channel
intensities of the template image. By normalizing all images
before input into the model, we ensure the model can generalize
to new slides stained differently to the training slides.

Transferring p53 molecular labeling to corresponding H&E
images

The WSIs from corresponding p53 and H&E-stained slides often
were misaligned (Fig. 3a). For the p53-positive cells to accurately
map to cancer cells on the H&E images, we realigned p53 images
to their corresponding H&E images though HEMnet automated
image registration (Fig. 3c). Our intensity-based registration
approach was fast and accurate as we optimized mutual
information (Fig. 3b, c). Next, we labeled the H&E image based
on the p53 staining pattern where p53-positive regions are labeled
as cancer, vice versa. To counteract limitations of p53 staining in
marking cancer cells, only p53-positive tiles from cancer slides and
only p53-negative tiles from non-cancer slides were used for
training. All the other tiles were labeled as uncertain and excluded
from any additional processing. At x10 magpnification, a single WSI
can generate thousands of tiles for training (Fig. 3c). We generated
224 % 224 pixel tiles from the molecular labeled H&E images to
train a VGG16 deep-learning model (Fig. 3d).

Molecular annotation quality-control produces a high-
confidence dataset

The TP53 tumor suppressor gene is the most commonly mutated
gene in human cancers (50%) and disproportionately has
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Fig. 1

H&E Molecular neural network (HEMnet) workflow overview. a Matched p53 IHC stained and H&E-stained WSI derived from two

adjacent tissue sections. b Training was performed on paired normal and cancer slides (five pairs). Test slides were held-back and are unseen
by the model training. ¢ Preprocessing to account for technical variations in slide preparation through stain normalization and image
registration. d Molecular labels were transferred from p53 to H&E images. Post label transferring, each image was tiled to generate thousands
of small samples (224 x 224 pixels) to train a CNN. e Application of HEMnet to predict cancer from new clinical H&E images.

mutations and other genetic alterations for up to 70%-80% of
colon cancers?%?7. As a result of its general prevalence, it provides
a highly generalizable way to molecular annotate a broad range of
cancers. Similar to other IHC markers, p53 staining has its
limitations as within one image or between images, the marker
is not always indicative of cancer, vice versa. For example,
overexpression and positive staining for p53 may occur in normal
cells responding to DNA damage. In addition, p53 may be absent
in cancer cells with TP53 gene deletions?2. To overcome these
limitations, when training our model, we only considered p53-
positive cells as cancer if they come from a cancer slide and only
p53-negative cells from slides where the cells have a normal
morphology (Fig. 3d). In this way, we were confident that cells
were correctly labeled, with 8782 non-cancer tiles and 21,939
cancer tiles. We removed 23,275 tiles that had some levels of
uncertainty (Fig. 3d).

High-performance automated assessment of cancer cell
abundance and spatial distribution

We applied the trained HEMnet to unseen WSIs to predict cancer
regions. Of the 17 unseen H&E slides in the test dataset, all had
corresponding p53-stained slides and 13 had additional pathologist
annotation of the cancer region. We found that HEMnet could
accurately predict p53 stain pattern (ROC AUC=0.73) and
pathologist annotated cancer regions (ROC AUC = 0.84), (Fig. 4a, b).
These results suggest that p53-positive cancer regions for a given
tissue sample can be predicted from its general morphology using a
classifier developed with molecular labeled H&E images.

Published in partnership with The Hormel Institute, University of Minnesota

Comparing the p53 labeled tiles to pathologist labeled tiles
from the same location, we found an overall agreement in tile
labels (ROC AUC=0.67) (Supplementary Fig. 6). However, this
agreement was not absolutely perfect. To evaluate any discre-
pancies, for each slide we measured the ability of p53 stain to
annotate cancer. This analysis involved calculating the ROC AUC
between p53 stain and ground truth labels of tiles per a
pathologist. We found that HEMnet p53 performance (ROC AUC)
was higher in slides where p53 more accurately labeled cancer
(p53 vs pathologist tile labels ROC AUC) with a significant
correlation as noted by a Pearson coefficient of 1.02, and R*=
0.94 (Fig. 4c). This result indicated that the model learnt to
recognize specific morphology features of cancer cells and was
not strictly limited to identifying cells with high levels of p53. This
likely because cancer cells are morphologically distinct from
normal cells whereas the differences in morphology between p53
positive and negative cells are more subtle. We noted that there
were examples demonstrating that HEMnet can identify the
cancer marked by the pathologist, even where the cancer is not
identified by the p53 stain (Fig. 4d, e). Overall, the results suggest
that HEMnet is able to accurately identify tissue morphology
features of cancer.

External validation and application to TCGA suggests the
broad applicability

As an independent validation using an external dataset, we
applied HEMnet to colon adenocarcinoma samples from TCGA
colon cancer samples. We used these CRCs to investigate the
generalizability and clinical application of the method

npj Precision Oncology (2022) 14
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d Normalization of all slides (n = 32). Reduced variation of mean channel intensities after normalization was observed. Template slide means
channel intensities are closer to the median (boxplot center line) after normalization (indicated by arrows) and interquartile range (boxplot
bounding box) was shrunken. Boxplot whiskers indicate data range, excluding outliers.

(Supplementary Table 2). The unmodified HEMnet model was
trained by the in-house dataset described in this study to predict
on H&E WSiIs of colon adenocarcinoma. By combining the tile-level
prediction with the cellular content of each tile, we calculated the
proportion of cancer tissue to total tissue for each slide

npj Precision Oncology (2022) 14

(Supplementary Table 2 and Fig. 5a). This acts an approximation
of tumor purity which we compared to sequencing method
estimates from matched genomic data. There are several
differences between our colon cancer data and the TCGA data.
Most importantly, the sequencing was not performed on the same
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tissue used for diagnostic imaging. Despite these challenges, we
found a significant correlation between our method and tumor
purity as estimated by ABSOLUTE, with a regression coefficient of
0.8, as shown in Fig. 5. Furthermore, we examined if the
performance of HEMNet is affected by the following factors; (i)
TP53 mutations status, (ii) clinical stages, (iii) MSI status, and (iv)
CMS-RF classifier. We found that HEMnet performs well regardless
of the TP53 mutation background (Fig. 5a and Supplementary Fig.
8). Other factors did not affect the performance of HEMnet
significantly. These results suggest that HEMnet can generalize to
new colorectal clinical data and is able to reliably predict on TCGA
images. As we observed, our prediction is accurate in general for
detecting true positive (cancer cells) and true negative (normal
cells), but it also has small tissue proportion with false positives

Published in partnership with The Hormel Institute, University of Minnesota

(predicting normal epithelia cells as cancer cells, often found as
ambiguous regions with HEMnet probability scores lower than
those for cancer regions). However, we believe that the tiles
annotated with our prediction scores could assist a pathologist to
examine slides quickly and validate ambiguous areas (Supple-
mentary Fig. 9).

DISCUSSION

Histopathological examination of H&E images has been the gold
standard for pathologic diagnosis of almost all suspected cancer
patients*?®, Modern applications of machine-learning tools to
analyze H&E images are increasing being used recently’-?°, with
some of the computer-assisted image diagnosis tools already

npj Precision Oncology (2022) 14
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approved by the Food and Drug Administration (FDA)3°. Hundreds
of deep-learning methods have been developed to use just H&E
images to detect and diagnose cancer’. Although some of these
methods have achieved high performance, they all rely on
pathological annotation for labeling/segmenting images into
multiple tissue regional classes”3'. Notably, the gold-standard
annotation by pathologists is not always the ground truth and
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there is inherent variation in annotation between pathologists. In
the case of melanoma, for example, the intra-observer reprodu-
cibility was low, for class Il (35.2%), class Il (59.5%), and class IV
(63.2%)2. Most methods also require a large number of annotated
images for model training and evaluation®*>* and the lack of large
annotated datasets is a major challenge for deep-learning image
analysis’. We developed HEMnet as a cancer diagnosis framework
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that uses digital labeling and neural network to address these
challenges.

HEMnet combines two common types of histopathological WSI
data, namely H&E staining and immunohistochemistry staining
images. The novelty in HEMnet pipeline lies in the molecular label
transferring, which allows for the use of pixel-level molecular
information cancer cells (e.g., P53 positive/negative pixel) with
thousands time higher resolution than manual pathological
segmentation. In HEMnet, we solved several key technical
challenges to allow for accurate, fast and generalizable label
transferring, with the ultimate aim that HEMnet can be
implementable to different datasets, including those with a high
level of technical variation. Briefly, technical variation is introduced
by the tissue sectioning, mounting, staining and imaging
processes. Very few studies investigated the intrinsic technical
variations, like contrast, brightness, or signal to noise’. Different to
most methods, HEMnet implements an optimized pipeline for
preprocessing, allowing removal of technical variation between
images. HEMnet include functionalities to thoroughly perform
background correction, normalization, alignment, registration, and
label transferring. Prior to normalization, luminosity standardiza-
tion was performed to correct for image brightness. We compared
three normalization methods, Vahadane®®, Reinhard®® and
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Macenko®’, and confirmed the better performance of the
Vahadane method (set as default). The image registration
implements a probabilistic approach with mutual information
maximization. We compared multiple options and found that
intensity-based registration, and the sequential combination of
Affine followed by B-spline registration®®, using a gradient-
descent-based optimizer to minimize mutual information loss
perform well for registering H&E image data. We also assessed the
computation and running time, as registration is an intensive
process. Down-scaling was found as a practical solution. Finally, to
label the registered image, we developed a tile-level thresholding
strategy to distinguish cancer, non-cancer and uncertain labels for
every tile of 224 * 224px. The tile-level labeling with thresholding,
categorizing and filtering steps allows us to create a high-quality
training (and evaluation) dataset for neural network, minimizing
the technical noise from registration errors and uncertain labeling.

Overall, the label-transferring solution implemented in HEMnet
represents a significant technical advance and is needed to the
increasingly important digital histopathological analysis field. The
label transferring brings about three key beneficial effects on
model training. First, the pixel-level labels allow us to divide one
image into hundreds to thousands of smaller, high-resolution,
molecular labeled tiles, thereby increasing sample sizes for model
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training and testing. This enables development of accurate
models with few slides, unlike existing methods which require a
thousands of WSIs”33. In general, tiling of WSI yields the large
amount of data for training neural network and thus is able to
overcome gaps in image assignment. This feature was demon-
strated by the fact that HEMnet successfully identified some non
p53-stained cells as cancer cells (Fig. 4). With pixel-level labeling,
the classification of cancer cells is at hundreds to thousands of
times higher resolution than macroscopic drawings by patholo-
gists. Moreover, molecular labeling is automated, making the
output less dependent on the laborious, manual and variable
annotations by trained pathologists.

HEMnet, with its label transferring approaches, can be beneficial
for a large range of applications. When processing an independent
validation set not used in the original-learning process, HEMnet
predicted the same overlapping region delineated though a
pathology annotation (ROC AUC = 0.84). We validated HEMnet by
systematically comparing HEMnet with other methods and with
the ground truth pathological annotation. We found highly
correlated results with other independent methods (correlation
coefficient in predicting cancer purity = 0.8) using TCGA dataset®°.

We selected p53 staining, an established marker for cancer cells,
to develop HEMnet label transferring as we expected that well
studied problem allows us to evaluate the performance of our
algorithm. Among non-cancer cells, p53 protein is usually
undetectable by IHC?2, whereas up to 74% of colorectal cancer
cells stained positive for p53 with brown color'®2%23, The
generalization to other types of markers and cancer, for example
HER2 for breast cancer, is possible with further validation. The
feasibility of correlating H&E images with IHC images by deep
neural networks has been investigated for the case of
SOX10 staining®® and fluorescent cancer marker images like pan-
cytokeratin (panCK), or a-smooth muscle actin (a-SMA)*'. HEMnet
was developed using p53 IHC staining as an appropriate colorectal
cancer marker that is expressed in 70%-80% of colon cancers'®. We
expect that the HEMnet label transferring and thresholding
approaches to define positive cancer labels can be generalized
to other cancer types and immunohistochemistry markers. HEMnet
can be readily adapted for training on new data—the analysis
framework takes into account technical variation and scalability as
discussed above. We confirmed by the test on the TCGA dataset
robust performance. The label transferring pipeline can be
expanded to many other applications to integrate imaging data
from adjacent tissue sections. We made HEMnet an easily
adaptable tool for most users through the interactive Google
Colaboratory workspace, which allows users to upload their data
and use our pretrained model for neural network prediction.

In conclusion, HEMnet is currently the unique molecular
modeling approach that utilizes both H&E and IHC images for
quantitatively classifying cancer cells within tissue sections. We
expect that HEMnet has the potential to be used as a computer-
assisted tool that help pathologists by suggesting important
regions, such as cancer parts, in the tissue?®*?, HEMnet does not
require human pathological annotation, automatically labeling
images at pixel resolution. The application of software like HEMnet
can benefit cancer diagnosis by unprecedented resolution,
efficiency, reproducibility, accuracy, speed, reduced cost and
increased access to pathological services. In an aging society
where more biopsies are available while there is a lack of
professional anatomic pathologists*3, such computational innova-
tion is increasingly important. We believe HEMnet can further
accelerate computational pathology application and integration
into the pathology workflow routine, assisting in disease diagnosis
and ultimately removing missed diagnosis and improving patient
outcomes. We provide HEMnet as an open-source software and
also as an accessible cloud-based prediction tool that allow users
to analyze their images without a requirement for further
programming.
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METHODS

H&E and IHC image dataset generation

We collected cancer tissue samples from 30 patients at Stanford Hospital.
All patients were enrolled according to a study protocol approved by the
Stanford University School of Medicine Institutional Review Board (IRB-
11886). All participants provided written informed consent to take part in
the study. Tissues were obtained from the Stanford Cancer Institute Tissue
Bank. In addition, we obtained matched normal, non-cancer tissue from
five patients. Each sample was formalin fixed and paraffin embedded
(FFPE) as a tissue block and two adjacent sections were taken from each
block, ensuring these sections would close to identical. One section was
prepared with H&E staining and the other with IHC staining against p53
using DO-7 monoclonal antibody (Roche, Cat# 790-2912, prediluted) by
Anatomic Pathology & Clinical Laboratories at Stanford Medicine. All digital
slide images were generated in Aperio SVS format by Translational
Pathology Core Laboratory at University of California, Los Angeles. This
study was conducted in compliance with the Helsinki Declaration. Each
tissue section was scanned at x20 magnification to generate a total of 35
of p53 and H&E pairs of high-resolution WSIs.

Training, validating, and testing dataset generation

We use a common practice in machine learning of splitting our dataset of
WSIs into training, validation and test sets. No overlap existed between
these datasets to ensure that test and validation data was completely
independent. We assigned the five normal WSI pairs and five cancer WSI
pairs to the training dataset. To ensure an accurate training dataset, we
also confirmed that most p53-stained regions were cancer in these slides
by a pathologist. Altogether, this provided the model the optimal degree
of learning to distinguish between cancer and non-cancer tissue
(Supplementary Fig. 1a). The WSIs were captured at gigapixel scale
(Supplementary Fig. 1b) allowing us to employ a tiling strategy to split
each WSI into thousands of smaller 224 x 224px image tiles for neural
network training. We set aside five cancer WSI pairs as a validation dataset
to optimize our model’s hyperparameters. The remaining 17 cancer WSls
were assigned to an independent test dataset to assess our model’s
performance on unseen slides.

H&E stain color normalization

Undesirable color variations occur in H&E staining and imaging due to
different immunohistochemistry reagents, protocols and slide scanners®>,
Therefore, the same cellular structures in a tissue can appear different
depending on how the tissue was stained and imaged. To ensure our
model generalized to images from H&E slides across different facilities, we
corrected for technical variations in the staining and imaging process. First,
we corrected for imaging brightness and ensured that the slide
background is white through luminosity standardization (Supplementary
Fig. 2). Next, we normalized each H&E WSI to a reference stain color profile
derived from a template WSI using the Vahadane et al*°. stain normal-
ization method implemented in StainTools**, Eq. (1).

ODfar = C* S (M

The ODg,, is the flattened optical density (OD) array derived from the RGB
WSI. A stain matrix (S) encodes the stain color for the H&E staining and is
estimated using the Vahadane method. This stain matrix is used to find the
pixel stain concentration matrix (C). To normalize a source WSI to a
template WSI, the stain and concentration matrix for both images are
calculated, as per Egs. (2) and (3).

ODSOLIFCE = CSOLIFCG * SSOUICE (2)

oD = Cremplate * Stempl (3)

p! P

The Csource Matrix describes the concentration of hematoxylin and eosin
stain at each pixel. Using the stain matrix from the template image
(Stemplate) We colored each pixel in source concentration matrix to produce
an image (Eq. (4)), as if the source image was stained and captured the
same way as the template image.

ODnorm = Csource * Stemplare (4)

By normalizing all WSls, training and unseen, to the template image, we
ensured that similar cellular structures have the similar appearances
regardless of how they were stained and underwent image scanning.

To select a suitable template WSI, we find the cancer slide with mean R,
G, B channel intensities closest to the median of the mean of the different
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channel (R, G and B) intensities of all images (Supplementary Fig. 1c). In
addition, we implemented two user-selectable, popular but less advanced,
image normalization methods by Reinhard et al.>® and Macenko et al.>’.

Registration of IHC images to H&E images

For the IHC images to be used to accurately label the H&E images, each IHC
image was aligned with its corresponding H&E image. Despite originating
from adjacent sections of the same tissue block, technical differences in
sectioning, mounting and imaging caused misalignment between IHC
images and their H&E counterparts. We aligned these images by
implementing image registration through the SimplelTK package®.

During registration, the IHC images were warped such that they were
aligned to the H&E images. By only transforming the IHC images we
ensured that the H&E images remained unaltered. Technical variation
among H&E images, for example the variation in the brightness, or color
intensities due to microscopy exposure time and/or staining time, was
normalized (Supplementary Fig. 2 and Fig. 2). Thus, a neural network
trained on these H&E images can be applied to new normalized, but
otherwise unmodified, H&E images.

We verified the accurate registration through visual inspection and a
quantitative mutual information metric. We overlaid the registered p53
over the corresponding H&E image to visually check for correct alignment.
In addition, we compared the alignment of p53 image to the H&E image
by computing the mutual information between these images before,
during and after registration. Mutual information is an information theory
concept that can be applied to measure image registration performance
(Supplementary Fig. 3). An increase in mutual information after registration
is indicative of a better image alignment. The mutual information between
the IHC and H&E image can be calculated using Eq. (5).

p(ihc, h&e)

I(IHC,H&E) = Z p(ihc, h&e)log(m) (5)

ihc,h&e

where p(ihc) and the p(h&e) are the marginal probability distributions of
grayscale pixel intensities in the IHC and H&E image, respectively. The p
(ihc, h&e) is the joint distribution of the images’ grayscale pixel intensities.

Registration strategies can broadly be segregated into feature-based
and intensity-based methods. Feature-based methods extract features
(e.g., corners) or fiducials from the source and target image and transform
the source image such that features in the source image are in the same
location as matching features in the target image. On the other hand,
intensity-based methods consider the pixel intensity or intensity distribu-
tions. These methods also transform the source image such that it most
closely correlates with the pixel intensities or intensity distributions of the
target image, as measured by a cost function. In preliminary testing, we
found that an intensity-based approach was effective for H&E images.

For our intensity-based registration approach, we selected a mutual
information cost function to quantify the extent of registering the source
and target images. This cost function measures the mutual information
between the pixel intensity distributions of the source and target image.
The goal of registration is to transform the source image such that the
mutual information between the source and target image is maximized—
this would imply a well registered image. The mutual information is
calculated from grayscale pixel intensities so the IHC and H&E-stained
images were first converted to grayscale. Post-registration, the optimal
transform for the grayscale IHC image is applied to each channel of the
RGB IHC image to produce a registered color image.

To achieve accurate registration and reach a global, rather than local
optima, we performed affine registration followed by b-spline registration.
The initial linear affine registration is limited to translation, scale, shear and
rotation transformations whereas the subsequent b-spline registration is a
non-linear transformation. The initial affine step ensures that large
architectural features in the image are registered before b-spline registers
the finer cellular features. The affine and b-spline transformations are both
tuned by a gradient-descent-based optimizer to minimize the mutual
information cost function.

Each affine and b-spline registration step incorporates a multi-resolution
approach. The concept here is similar; to achieve better registration by
registering large features before small features. At the beginning of the
affine and b-spline step, a low-resolution image is used to encourage
registration of the large features in the image. Gradually higher and higher
resolutions are used to register every so finer features until the desired
final resolution is reached. As registration is a computationally intensive
process, especially for gigapixel WSIs, we registered smaller versions of the
IHC and H&E images that were downscaled by 5 times - the downscale
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factor is user-adjustable. The final output of registration was color 5x
downscaled IHC images accurately registered to corresponding H&E
images of identical size. As the H&E images may have captured a different
field of view compared to the IHC images, any out of image pixels in the
IHC images were filled in with white.

Automated labeling of images based on p53 staining

Registration transformed the p53 image to the same coordinate system as
the corresponding H&E image. Thus, every pixel in the aligned p53 image
referred to a pixel in the same location on the corresponding H&E image.
This alignment was crucial for the p53 stain to accurately label the
H&E image.

To label each pixel as one overlapping with cancer versus normal tissue,
we applied thresholding to the p53 image. This process determined which
pixels were positively (cancer) or negatively (normal) stained. The p53 IHC
stain was visualized by the deposition of DAB (3,3’-Diaminobenzidine) on
the tissue, giving positively stained tissue a brown color. We distinguished
DAB-positive pixels, and hence p53-positive pixels, from the rest of the
image by deconvoluting the RGB image into separate hematoxylin, eosin
and DAB channels. This process was based on a method developed by
Ruifrok and Johnston®. In this way, we could focus our thresholding on
the DAB stain, which reflects the level of p53 protein at each pixel.

We observed that the pixels within the DAB channel fell into three
classes: p53-positive pixels; faint tissue background staining which we
interpret as p53-negative staining; pixels of slide background where there
is no tissue and no p53 stain. To simplify this into a two-class thresholding
problem, we used the hematoxylin channel to separate the tissue from the
slide background—we applied separate thresholding to the tissue only
regions of the DAB channel. In both cases, we used Ostu thresholding
which maximized the inter-class variance between two classes. Through
segmenting the tissue with the hematoxylin channel, we distinguished the
tissue by its low, but considerably greater than slide background, levels of
stain. In addition, it ensured that we retained the nuclei which have high
levels of hematoxylin and is where the p53 protein is localized. Following
tissue thresholding, we applied the Otsu thresholding to only the tissue
regions of the DAB channel and separated each pixel into two classes: a
p53-positive class of high intensity pixels; a p53-negative class of low
intensity background-stained pixels. This process was applied automati-
cally and independently to each p53 slide so that pixel misclassification did
not occur because of subtle differences in staining between p53 slides.

We split each H&E image into 224 x 224px tiles for model training and
testing. Subsequently, we translated p53 pixel level classification to tile-
level cancer/normal classification. The registered p53 image was 5x down
sampled to facilitate registration and it was on this image that we
determined pixel and tile labels, as it is aligned to the H&E. Thus, we
analysed and labeled 5x down sampled tiles of 45px x 45px, of equivalent
field-of-view to the original image. These tiles contain multiple cells—
within a tumor infiltrated region of tissue, not all of these cells will be
cancer. To ensure that we did not miss cancer cells while minimizing the
levels of false staining, we labeled a tile cancer if more than 2% of the
pixels within the tile were p53 positive. The remaining tissue tiles were
labeled as normal or'non-cancer’.

Additional strategies to ensure accurate tile labeling

Pathology review provided the cancer versus normal cell status of these
tissues. Three samples stained positive for p53 despite no histopathologic
indications of tumor cells, which would have led to inaccurate labeling and
model misclassification. To ensure accurate model training and testing, the
p53 and H&E WSIs from these samples were excluded in the analysis.
Overall, this left a total of 32 pairs of H&E and p53 WSlIs, 27 cancer and five
normal tissues.

In some cases, the p53 stain was not distinct enough to provide a
definitive label to a tile so we labeledc ambiguous tiles as uncertain and
discard them. These ambiguous tiles may add noise to the training data
and prevent accurate evaluation of the model's performance. We
addressed this issue by setting an upper and lower user-selectable DAB
intensity thresholds to enable labeling of tiles as uncertain. These
thresholds were applied to the mean DAB intensity of each tile. Tiles that
that fell between these thresholds were labeled as uncertain and were not
used for training or testing the model. The remaining cancer and non-
tumor tile labels were transferred from the registered p53 image to the
H&E tiles destined for model training.
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To safeguard against any registration errors and ensure accurate label
transfer, if a p53/H&E pair of tiles had only one tile containing tissue, that
H&E tile was discarded. To assess a tile, we segmented the tissue from the
background in both p53 and H&E images using the GrabCut algorithm by
Rother et al.%. In addition, to ensure a clean training dataset, only cancer-
positive tiles from cancer samples were used and only cancer-negative tiles
from the non-cancer samples were used.

Training a convolutional neural network (CNN)

We trained the model with 224 x 224px tiles from ten H&E WSIs at x10
magnification. Owing to our tiling strategy, we could generate thousands
of samples from each WSI which we pooled together for training the
model. We used transfer learning to develop a VGG16-based CNN for
classifying tiles as cancer or non-cancer. Our model utilized a VGG16
architecture and was pretrained on ~1.3 million images from ImageNet*,
for feature extraction. HEMnet has multiple options to implement CNN
models during the image training, including ResNet50, VGG16, VGG19,
InceptionV3, and Xception. We compared these models and found similar
performance, with VGG16 running slightly faster and producing a higher
accuracy (Supplementary Table 1). In fact, our HEMnet-VGG16 model has
much fewer (>1000 times) parameters than in the original VGG16 model
(Supplementary Fig. 4) because we only used VGG16 feature extractor with
a transfer-learning approach where the parameters in the CNN base model
are not trained. In addition, the max pooling layer (1,1, 512) output from
this pretrained model was used as input to train a fully connected layer of
256 neurons), which output one sigmoid neuron with class probability for
TP53 binary label. By using weights pretrained on a large number of
images, we can train our model a relatively small dataset and still achieve
accurate predictions without overfitting. Features from each 224 x 224px
tile were fed into a fully connected neural network to predict tile cancer
status.

The complete CNN was trained on labeled H&E tiles generated from the
10 training WSIs at x10 magnification, for 100 epochs. We employed data
augmentation to overcome overfitting and improve model generalizability.
Since a given tissues extent of tumor cell infiltration remains the same
regardless of the viewing angle or orientation, we randomly rotated and
flipped tiles. The hyperparameters that performed best on the validation
set were used for training the model that was used on all testing of unseen
slides in this work. We implemented this system with Python using
Tensorflow as the deep-learning framework.

Performance evaluations

We tested our model on H&E test slides, evaluating its performance
compared to p53 stain patterns and pathologist annotations. We measured
model performance by computing accuracy, confusion matrices and
receiver-operating curves (ROC). To evaluate performance against p53
annotations, we generated a test dataset using the same method
described for the training dataset. Given that the sections had cellular
mixtures, we generated tiles that solely represented cancer and normal
tissues. For 13 of the 17 slides, we acquired pathologist cancer annotation
drawings on the WSIs. We extracted the annotations and labeled tiles
enclosed by the cancer annotation as cancer and labeled the remaining
tissue tiles as non-cancer (Supplementary Fig. 5).

The main performance metrics are accuracy and ROC AUC. These are
calculated by comparing the p53 and pathologist test dataset tiles labels
with the labels predicted by our model (Figs. 4, 5 and Supplementary Fig.
6). Since cancer and non-cancer tiles do not evenly distribute in these
datasets, we balanced the number of tiles for each class by subsampling
the dominant class.

TCGA validation

We validated our model on 24 colorectal cancer with H&E images. The
WSIs were obtained from the TCIA and matched genomic data was
retrieved from The Cancer Genomic Atlas (TCGA). The TCIA and TCGA are
public repositories of cancer medical imaging data (including digital
histopathology data) and cancer genomic data, respectively. We used our
model predictions to estimate tumor purity and compared this to
estimates of tumor purity derived from genome sequencing studies. For
this image-based analysis, we calculated the proportion of the cancer
tissue area to total tissue area by weighting tile predictions by the area of
tissue within each tile. This is more accurate than using the proportion of
cancer tiles to all tiles as some tiles, especially on the edge of the tissue. For
example, a tile that is half background and half tissue would only
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contribute half a tile worth of area. We compare our estimate to seven
method for determining tumor purity. This comparison included the
programs ABSOLUTE*®, EXPANDS*®, ESTIMATE>®, CPE®', InfiniumPurify*?,
and LUMP (leukocytes unmethylation for purity) (Supplementary Fig. 7).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The datasets (all high-resolution H&E and TP53 images) used and/or analysed during
the current study are freely available from the https://dna-discovery.stanford.edu/
research/web-resources/HEMnet. The results for ABSOLUTE, ESTIMATE, CPE, Infinium-
Purify, LUMP used for comparison with HEMnet were from “Supplementary Data 1”
available at https://doi.org/10.1038/ncomms9971.

CODE AVAILABILITY

The source code, tutorials, and interactive analysis tools are available at https://
github.com/BiomedicalMachineLearning/HEMnet. We also provide cloud-based
implementation of the HEMnet (Supplementary Fig. 10), available as Google Colab
notebook and an ImJoy application (links to these apps are on HEMnet github page).
HEMnet is also available as an open-source PyPI python package (https://pypi.org/
project/hemnet). The HEMnet software version 1.0.0 was used and the version
information of software dependencies are listed in the HEMnet github site in the
environmentyml file. We used SimplelTK version 1.2.3 for image registration and
Staintools version 2.1.2 for normalization. EXPANDS 2.0.0 was applied for estimating
tumor purity using the default setting.
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