Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction and evaluation of a clinically relevant model of septic arthritis

Abstract

Despite the creation of several experimental animal models for the study of septic arthritis, a protocol detailing the development of a reliable and easily reproducible animal model has not yet been reported. The experimental protocol described herein for the development of a clinically relevant mouse model of septic arthritis includes two main study stages: the first stage consisting of the preparation of the mice and of the methicillin-resistant Staphylococcus aureus (MRSA) cultures, followed by direct inoculation of MRSA into the knee joints of C57BL/6J mice (25–40 min); and a second study stage consisting of multiple sample collection and data analysis (1–3 days). This protocol may be carried out by researchers skilled in mouse care and trained to work with biosafety-level-2 agents such as MRSA. The model of septic arthritis described here has demonstrated clinical relevance in developing intra-articular inflammation and cartilage destruction akin to that of human patients. Moreover, we describe methods for serum, synovial fluid and knee joint tissue analysis that were used to confirm the development of septic arthritis in this model, and to test potential treatments. This protocol confers the advantages of enabling granular evaluation of the pathophysiology of MRSA infection and of the efficacy of therapeutic medications; it may also be employed to study a range of native joint diseases beyond inflammatory pathologies alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the protocol.
Fig. 2: Flow images of septic arthritis procedure.
Fig. 3: Evaluation of septic arthritis murine model and analysis of synovial fluid in septic arthritis.
Fig. 4: Evaluation of pathophysiological score in septic arthritis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Kaandorp, C. J., Krijnen, P., Moens, H. J., Habbema, J. D. & van Schaardenburg, D. The outcome of bacterial arthritis: a prospective community-based study. Arthritis Rheum. 40, 884–892 (1997).

    Article  CAS  Google Scholar 

  2. Mathews, C. J., Weston, V. C., Jones, A., Field, M. & Coakley, G. Bacterial septic arthritis in adults. Lancet 375, 846–855 (2010).

    Article  Google Scholar 

  3. Carpenter, C. R., Schuur, J. D., Everett, W. W. & Pines, J. M. Evidence-based diagnostics: adult septic arthritis. Acad. Emerg. Med. 18, 781–796 (2011).

    Article  Google Scholar 

  4. Alder, K. D. et al. Intracellular Staphylococcus aureus in bone and joint infections: a mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 141, 115568 (2020).

    Article  CAS  Google Scholar 

  5. Herrmann, M. et al. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158, 693–701 (1988).

    Article  CAS  Google Scholar 

  6. McGavin, M. H., Krajewska-Pietrasik, D., Ryden, C. & Hook, M. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect. Immun. 61, 2479–2485 (1993).

    Article  CAS  Google Scholar 

  7. Yacoub, A. et al. Purification of a bone sialoprotein-binding protein from Staphylococcus aureus. Eur. J. Biochem. 222, 919–925 (1994).

    Article  CAS  Google Scholar 

  8. McDevitt, D., Francois, P., Vaudaux, P. & Foster, T. J. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11, 237–248 (1994).

    Article  CAS  Google Scholar 

  9. Cheung, A. I., Projan, S. J., Edelstein, R. E. & Fischetti, V. A. Cloning, expression, and nucleotide sequence of a Staphylococcus aureus gene (fbpA) encoding a fibrinogen-binding protein. Infect. Immun. 63, 1914–1920 (1995).

    Article  CAS  Google Scholar 

  10. Ryden, C., Tung, H. S., Nikolaev, V., Engstrom, A. & Oldberg, A. Staphylococcus aureus causing osteomyelitis binds to a nonapeptide sequence in bone sialoprotein. Biochem. J. 327, 825–829 (1997).

    Article  CAS  Google Scholar 

  11. Shirtliff, M. E. & Mader, J. T. Acute septic arthritis. Clin. Microbiol. Rev. 15, 527–544 (2002).

    Article  Google Scholar 

  12. Wang, J. & Wang, L. Novel therapeutic interventions towards improved management of septic arthritis. BMC Musculoskelet. Disord. 22, 530 (2021).

    Article  Google Scholar 

  13. Mitchell, M., Howard, B., Haller, J., Sartoris, D. J. & Resnick, D. Septic arthritis. Radiol. Clin. North Am. 26, 1295–1313 (1988).

    Article  CAS  Google Scholar 

  14. Smith, R. L., Schurman, D. J., Kajiyama, G., Mell, M. & Gilkerson, E. The effect of antibiotics on the destruction of cartilage in experimental infectious arthritis. J. Bone Joint Surg. Am. 69, 1063–1068 (1987).

    Article  CAS  Google Scholar 

  15. Oppegaard, O., Skodvin, B., Halse, A. K. & Langeland, N. CD64 as a potential biomarker in septic arthritis. BMC Infect. Dis. 13, 278 (2013).

    Article  CAS  Google Scholar 

  16. Martinez-Aguilar, G. et al. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr. Infect. Dis. J. 23, 701–706 (2004).

    Article  Google Scholar 

  17. Arnold, S. R. et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J. Pediatr. Orthop. 26, 703–708 (2006).

    Article  Google Scholar 

  18. Al-Nammari, S. S., Bobak, P. & Venkatesh, R. Methicillin resistant Staphylococcus aureus versus methicillin sensitive Staphylococcus aureus adult haematogenous septic arthritis. Arch. Orthop. Trauma Surg. 127, 537–542 (2007).

    Article  Google Scholar 

  19. Salgado, C. D., Dash, S., Cantey, J. R. & Marculescu, C. E. Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin. Orthop. Relat. Res. 461, 48–53 (2007).

    Article  Google Scholar 

  20. Vincent, G. M. & Amirault, J. D. Septic arthritis in the elderly. Clin. Orthop. Relat. Res. 251, 241–245 (1990).

    Article  Google Scholar 

  21. Wang, C. L., Wang, S. M., Yang, Y. J., Tsai, C. H. & Liu, C. C. Septic arthritis in children: relationship of causative pathogens, complications, and outcome. J. Microbiol. Immunol. Infect. 36, 41–46 (2003).

    Google Scholar 

  22. Yu, K. et al. Recalcitrant methicillin-resistant Staphylococcus aureus infection of bone cells: Intracellular penetration and control strategies. Bone Joint Res. 9, 49–59 (2020).

    Article  Google Scholar 

  23. Kwon, H. K. et al. Dual therapeutic targeting of intra-articular inflammation and intracellular bacteria enhances chondroprotection in septic arthritis. Sci. Adv. https://doi.org/10.1126/sciadv.abf2665 (2021).

  24. Otto, G. Combination therapy for septic arthritis. Nat. Rev. Rheumatol. 17, 509 (2021).

    Article  Google Scholar 

  25. Kwon, H. K. et al. Treating ‘septic’ with enhanced antibiotics and ‘arthritis’ by mitigation of excessive inflammation. Front. Cell Infect. Microbiol. 12, 897291 (2022).

    Article  CAS  Google Scholar 

  26. Garcia-De La Torre, I. Advances in the management of septic arthritis. Rheum. Dis. Clin. North Am. 29, 61–75 (2003).

    Article  Google Scholar 

  27. Long, B., Koyfman, A. & Gottlieb, M. Evaluation and management of septic arthritis and its mimics in the emergency department. West J. Emerg. Med. 20, 331–341 (2019).

    Article  Google Scholar 

  28. Ross, K. et al. Outbreak of septic arthritis associated with intra-articular injections at an outpatient practice—New Jersey, 2017. MMWR Morb. Mortal. Wkly Rep. 66, 777–779 (2017).

    Article  Google Scholar 

  29. Johnson, A. H., Campbell, W. G. Jr. & Callahan, B. C. Infection of rabbit knee joints after intra-articular injection of Staphylococcus aureus. Comparison with joints injected with Staphylococcus albus. Am. J. Pathol. 60, 165–202 (1970).

    CAS  Google Scholar 

  30. Wysenbeek, A. J. et al. Treatment of staphylococcal septic arthritis in rabbits by systemic antibiotics and intra-articular corticosteroids. Ann. Rheum. Dis. 57, 687–690 (1998).

    Article  CAS  Google Scholar 

  31. Colavite, P. M. & Sartori, A. Septic arthritis: immunopathogenesis, experimental models and therapy. J. Venom Anim. Toxins Incl. Trop. Dis. 20, 19 (2014).

    Article  Google Scholar 

  32. Hultgren, O., Kopf, M. & Tarkowski, A. Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host. Eur. J. Immunol. 29, 2400–2405 (1999).

    Article  CAS  Google Scholar 

  33. Shaw, L. N. et al. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE 3, e3844 (2008).

    Article  Google Scholar 

  34. Narita, K. et al. Role of interleukin-17A in cell-mediated protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of clumping factor A. Infect. Immun. 78, 4234–4242 (2010).

    Article  CAS  Google Scholar 

  35. Fatima, F. et al. Radiological features of experimental staphylococcal septic arthritis by micro computed tomography scan. PLoS ONE 12, e0171222 (2017).

    Article  Google Scholar 

  36. Jin, T. et al. A novel mouse model for septic arthritis induced by Pseudomonas aeruginosa. Sci. Rep. 9, 16868 (2019).

    Article  Google Scholar 

  37. Volzke, J. et al. Inflammatory joint disease is a risk factor for streptococcal sepsis and septic arthritis in mice. Front. Immunol. 11, 579475 (2020).

    Article  CAS  Google Scholar 

  38. Morgan, D. S., Fisher, D., Merianos, A. & Currie, B. J. An 18 year clinical review of septic arthritis from tropical Australia. Epidemiol. Infect. 117, 423–428 (1996).

    Article  CAS  Google Scholar 

  39. del Val del Amo, N. et al. Study of 112 patients with septic arthritis caused by pyogenic organisms and fungi: changes in the clinical spectrum during the last 2 decades. Rev. Clin. Esp. 197, 540–544 (1997).

    Google Scholar 

  40. Nissim, L. et al. The impact of gender on the clinical presentation, management, and surgical outcomes of patients with native-joint septic arthritis. J. Eval. Clin. Pract. 27, 371–376 (2021).

    Article  Google Scholar 

  41. Wang, Y. et al. Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets. Proc. Natl Acad. Sci. USA 114, E5094–E5102 (2017).

    CAS  Google Scholar 

  42. Mohammad, M. et al. The YIN and YANG of lipoproteins in developing and preventing infectious arthritis by Staphylococcus aureus. PLoS Pathog. 15, e1007877 (2019).

    Article  CAS  Google Scholar 

  43. Liu, L. et al. High susceptibility to collagen-induced arthritis in mice with progesterone receptors selectively inhibited in osteoprogenitor cells. Arthritis Res. Ther. 22, 165 (2020).

    Article  CAS  Google Scholar 

  44. Chia, W. T. et al. MMP-9 mRNA as a therapeutic marker in acute and chronic stages of arthritis induced by type II collagen antibody. J. Formos Med. Assoc. 107, 245–252 (2008).

    Article  CAS  Google Scholar 

  45. Kung, L. H. W. et al. Comprehensive expression analysis of microRNAs and mRNAs in synovial tissue from a mouse model of early post-traumatic osteoarthritis. Sci. Rep. 7, 17701 (2017).

    Article  Google Scholar 

  46. Smith, M. M. et al. Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology 47, 1172–1178 (2008).

    Article  CAS  Google Scholar 

  47. Marty, I. et al. Amelioration of collagen-induced arthritis by thrombin inhibition. J. Clin. Invest. 107, 631–640 (2001).

    Article  CAS  Google Scholar 

  48. Pritzker, K. P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14, 13–29 (2006).

    Article  CAS  Google Scholar 

  49. Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18, S17–S23 (2010).

    Article  Google Scholar 

  50. Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).

    Article  CAS  Google Scholar 

  51. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    Article  CAS  Google Scholar 

  52. Hayer, S. et al. ‘SMASH’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-219247 (2021).

  53. Fitzgerald, J., Endicott, J., Hansen, U. & Janowitz, C. Articular cartilage and sternal fibrocartilage respond differently to extended microgravity. NPJ Microgravity 5, 3 (2019).

    Article  Google Scholar 

  54. Liphardt, A. M. et al. Changes in mechanical loading affect arthritis-induced bone loss in mice. Bone 131, 115149 (2020).

    Article  Google Scholar 

  55. Dubost, J. J. et al. No changes in the distribution of organisms responsible for septic arthritis over a 20 year period. Ann Rheum Dis 61, 267–269 (2002).

    Article  CAS  Google Scholar 

  56. Li, H. K. et al. Oral versus intravenous antibiotics for bone and joint infection. N. Engl. J. Med. 380, 425–436 (2019).

    Article  CAS  Google Scholar 

  57. Bernard, L. et al. Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N. Engl. J. Med. 384, 1991–2001 (2021).

    Article  CAS  Google Scholar 

  58. Argyriou, A. et al. Single cell sequencing identifies clonally expanded synovial CD4+ TPH cells expressing GPR56 in rheumatoid arthritis. Nat. Commun. 13, 4046 (2022).

  59. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    Article  CAS  Google Scholar 

  60. Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci Rep. 10, 10868 (2020).

    Article  CAS  Google Scholar 

  61. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  CAS  Google Scholar 

  62. McGonagle, D., Baboolal, T. G. & Jones, E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 13, 719–730 (2017).

    Article  CAS  Google Scholar 

  63. Cheng, L. et al. New insights from single-cell sequencing data: synovial fibroblasts and synovial macrophages in rheumatoid arthritis. Front. Immunol. 12, 709178 (2021).

    Article  CAS  Google Scholar 

  64. Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–22 (2014).

    Article  CAS  Google Scholar 

  65. Uson, J. et al. EULAR recommendations for intra-articular therapies. Ann. Rheum. Dis. 80, 1299–1305 (2021).

    Article  Google Scholar 

  66. Lin, X., Tsao, C. T., Kyomoto, M. & Zhang, M. Injectable natural polymer hydrogels for treatment of knee osteoarthritis. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202101479 (2021).

  67. Liu, M. et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017).

    Article  CAS  Google Scholar 

  68. Achaerandio-de Nova, A. et al. Development of an experimental model of septic knee arthritis in rats through intra-articular inoculation of Staphylococcus aureus. Lab Anim. 55, 270–280 (2021).

    Article  CAS  Google Scholar 

  69. Olney, B. W., Papasian, C. J. & Jacobs, R. R. Risk of iatrogenic septic arthritis in the presence of bacteremia: a rabbit study. J. Pediatr. Orthop. 7, 524–526 (1987).

    Article  CAS  Google Scholar 

  70. Smith, R. L., Kajiyama, G. & Schurman, D. J. Staphylococcal septic arthritis: antibiotic and nonsteroidal anti-inflammatory drug treatment in a rabbit model. J. Orthop. Res. 15, 919–926 (1997).

    Article  CAS  Google Scholar 

  71. Linhart, W. E., Spendel, S., Weber, G. & Zadravec, S. Septic arthritis—an experimental animal model useful in free oxygen radical research. Z. Versuchstierkd 33, 65–71 (1990).

    CAS  Google Scholar 

  72. Huang, D. B., Noviello, S. & Gemmell, C. G. Iclaprim reduces the incidence and severity of Staphylococcus aureus-induced septic arthritis in a murine model. Access Microbiol. 1, e000052 (2019).

    Article  CAS  Google Scholar 

  73. Ali, A. et al. IL-1 receptor antagonist treatment aggravates staphylococcal septic arthritis and sepsis in mice. PLoS ONE 10, e0131645 (2015).

    Article  Google Scholar 

  74. Bremell, T., Lange, S., Yacoub, A., Ryden, C. & Tarkowski, A. Experimental Staphylococcus aureus arthritis in mice. Infect. Immun. 59, 2615–2623 (1991).

    Article  CAS  Google Scholar 

  75. Daum, R. S. et al. A model of Staphylococcus aureus bacteremia, septic arthritis, and osteomyelitis in chickens. J. Orthop. Res. 8, 804–813 (1990).

    Article  CAS  Google Scholar 

  76. Calander, A. M. et al. Matrix metalloproteinase-9 (gelatinase B) deficiency leads to increased severity of Staphylococcus aureus-triggered septic arthritis. Microbes Infect. 8, 1434–1439 (2006).

    Article  CAS  Google Scholar 

  77. Staurengo-Ferrari, L. et al. Interleukin-33 receptor (ST2) deficiency improves the outcome of Staphylococcus aureus-induced septic arthritis. Front. Immunol. 9, 962 (2018).

    Article  Google Scholar 

  78. Boff, D. et al. CXCR2 is critical for bacterial control and development of joint damage and pain in Staphylococcus aureus-induced septic arthritis in mouse. Eur. J. Immunol. 48, 454–463 (2018).

    Article  CAS  Google Scholar 

  79. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  Google Scholar 

  80. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institutes of Health (NIH) National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grants AR056246 and AR068353. We appreciate the histological assistance of N. Troiano and J. Fretz (Department of Orthopaedics and Rehabilitation, Yale School of Medicine).

Author information

Authors and Affiliations

Authors

Contributions

H.-K.K. conceptualized and performed all experiments. K.E.Y. analyzed the data. H.-K.K., K.E.Y. and F.Y.L. wrote the manuscript.

Corresponding author

Correspondence to Francis Y. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Tao Jin, Johann Volzke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Reporting Summary

Supplementary Video 1

Visual instructions for Steps 7–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, HK., Yu, K.E. & Lee, F.Y. Construction and evaluation of a clinically relevant model of septic arthritis. Lab Anim 52, 11–26 (2023). https://doi.org/10.1038/s41684-022-01089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-01089-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research