Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Refinement of the stress-enhanced fear learning model of post-traumatic stress disorder: a behavioral and molecular analysis

Abstract

Post-traumatic stress disorder (PTSD) is a debilitating mental health condition for which current treatments have long-term efficacy in 50% of patients. There is a clear need for better understanding of the mechanisms underlying PTSD and the development of new treatment approaches. Analog trauma procedures in animals, such as the stress-enhanced fear learning (SEFL) procedure, can be used to produce behavioral and neurobiological changes that have validity in modeling PTSD. However, by necessity, the modeling of PTSD in animals requires them to potentially experience pain and suffering. Consistent with the ‘3Rs’ (reduction, refinement and replacement) of animal research, this study aimed to determine whether the SEFL procedure can be refined to reduce potential animal pain and suffering while retaining the same behavioral and neurobiological changes. Here we showed that PTSD-relevant changes could be produced in both behavior and the brain of rats that were group- rather than single-housed and that received lower-magnitude electric shocks in the ‘trauma analog’ session. We also varied the number of shock exposures in the trauma analog session, finding SEFL-susceptible and SEFL-resilient populations at all levels of shock exposure, but with greater levels of shock increasing the proportion of rats showing the SEFL-susceptible phenotype. These data demonstrate that the SEFL procedure can be used as an animal analog of PTSD with reduced potential pain and suffering to the animals and that variations in the procedure could be used to generate specific proportions of SEFL-susceptible and SEFL-resilient animals in future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The behavioral phenotype associated with SEFL could be observed in rat populations given different degrees of massed shock exposure.
Fig. 2: Expression of glutamate receptor subunits varied differentially depending on SEFL classification and the number of shocks experienced in context A.
Fig. 3: SEFL-resilient and SEFL-susceptible populations showed different correlations of glutamate receptor subunits.

Similar content being viewed by others

Data availability

All data accompanying this publication are available at the University of Cambridge data repository (https://doi.org/10.17863/CAM.75449).

References

  1. Parsons, R. G. & Ressler, K. J. Implications of memory modulation for post-traumatic stress and fear disorders. Nat. Neurosci. 16, 146–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Risbrough, V., Glenn, D. E. & Baker, D. G. in Translational Neuropsychopharmacology Current Topics in Behavioral Neurosciences (eds T. W. Robbins & B. J. Sahakian) 173–196 (Springer, 2016).

  3. Bisson, J. I. et al. Psychological treatments for chronic post-traumatic stress disorder: systematic review and meta-analysis. Br. J. Psychiatry 190, 97–104 (2007).

    Article  PubMed  Google Scholar 

  4. Holmes, E. A., Craske, M. G. & Graybiel, A. M. A call for mental-health science. Nature 511, 287–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Siegmund, A. & Wotjak, C. T. Toward an animal model of posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 1071, 324–334 (2006).

    Article  PubMed  Google Scholar 

  6. Bowers, M. E. & Ressler, K. J. An overview of translationally informed treatments for posttraumatic stress disorder: animal models of pavlovian fear conditioning to human clinical trials. Biol. Psychiatry 78, e15–e27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flores, Á., Fullana, M. À., Soriano-Mas, C. & Andero, R. Lost in translation: how to upgrade fear memory research. Mol. Psychiatry 23, 2122–2132 (2018).

    Article  PubMed  Google Scholar 

  8. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopresto, D., Schipper, P. & Homberg, J. R. Neural circuits and mechanisms involved in fear generalization: implications for the pathophysiology and treatment of posttraumatic stress disorder. Neurosci. Biobehav. Rev. 60, 31–42 (2016).

    Article  PubMed  Google Scholar 

  10. Rougemont-Bücking, A. et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci. Ther. 17, 227–236 (2011).

    Article  PubMed  Google Scholar 

  11. Milad, M. R., Rosenbaum, B. L. & Simon, N. M. Neuroscience of fear extinction: implications for assessment and treatment of fear-based and anxiety related disorders. Behav. Res. Ther. 62, 17–23 (2014).

    Article  PubMed  Google Scholar 

  12. Richter-Levin, G., Stork, O. & Schmidt, M. V. Animal models of PTSD: a challenge to be met. Mol. Psychiatry 24, 1135–1156 (2019).

    Article  PubMed  Google Scholar 

  13. Yamamoto, S. et al. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress. Anxiety 26, 1110–1117 (2009).

    Article  PubMed  Google Scholar 

  14. Rau, V., DeCola, J. P. & Fanselow, M. S. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci. Biobehav. Rev. 29, 1207–1223 (2005).

    Article  PubMed  Google Scholar 

  15. Rau, V. & Fanselow, M. S. Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress 12, 125–133 (2009).

    Article  PubMed  Google Scholar 

  16. Ponomarev, I., Rau, V., Eger, E. I., Harris, R. A. & Fanselow, M. S. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35, 1402–1411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Perusini, J. N. et al. Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharmacol. Rev. 41, 45–57 (2016).

    Article  CAS  Google Scholar 

  18. Gonzalez, S. T., Marty, V., Spigelman, I., Reise, S. P. & Fanselow, M. S. Impact of stress resilience and susceptibility on fear learning, anxiety, and alcohol intake. Neurobiol. Stress 15, 100335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Poulos, A. M., Zhuravka, I., Long, V., Gannam, C. & Fanselow, M. Sensitization of fear learning to mild unconditional stimuli in male and female rats. Behav. Neurosci. 129, 62–67 (2015).

    Article  PubMed  Google Scholar 

  20. Quinn, J. J., Skipper, R. A. & Claflin, D. I. Infant stress exposure produces persistent enhancement of fear learning across development. Dev. Psychobiol. 56, 1008–1016 (2013).

    Article  PubMed  Google Scholar 

  21. Poulos, A. M. et al. Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. Biol. Psychiatry 76, 306–314 (2014).

    Article  PubMed  Google Scholar 

  22. LeDoux, J. E., Cicchetti, P., Xagoraris, A. & Romanski, L. M. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388, 377–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Humeau, Y. et al. A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27, 10947–10956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pizzimenti, C. L., Navis, T. M. & Lattal, K. M. Persistent effects of acute stress on fear and drug-seeking in a novel model of the comorbidity between post-traumatic stress disorder and addiction. Learn. Mem. 24, 422–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen, 1959).

  28. Tribble, J. E. & Fanselow, M. S. Pair-housing rats does not protect from behavioral consequences of an acute traumatic experience. Behav. Neurosci. 133, 232–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruis, M. A. W. et al. Housing familiar male wildtype rats together reduces the long-term adverse behavioural and physiological effects of social defeat. Psychoneuroendocrinology 24, 285–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Sharp, J. L., Zammit, T. G., Azar, T. A. & Lawson, D. M. Stress-like responses to common procedures in male rats housed alone or with other rats. J. Am. Assoc. Lab. Anim. Sci. 41, 8–14 (2002).

    Google Scholar 

  31. Liu, X. et al. Effects of group housing on stress induced emotional and neuroendocrine alterations. Brain Res. 1502, 71–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Beery, A. K., Holmes, M. M., Lee, W. & Curley, J. P. Stress in groups: lessons from non-traditional rodent species and housing models. Neurosci. Biobehav. Rev. 113, 354–372 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Przybyl, K. J. et al. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol. Learn. Mem. 185, 107523 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. dos Santos Corrêa, M. et al. Relationship between footshock intensity, post-training corticosterone release and contextual fear memory specificity over time. Psychoneuroendocrinology 110, 104447 (2019).

    Article  PubMed  Google Scholar 

  35. Gruene, T. M., Flick, K., Stefano, A., Shea, S. D. & Shansky, R. M. Sexually divergent expression of active and passive conditioned fear responses in rats. Elife 4, e11352 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lebrón-Milad, K., Tsareva, A., Ahmed, N. & Milad, M. R. Sex differences and estrous cycle in female rats interact with the effects of fluoxetine treatment on fear extinction. Behav. Brain Res. 253, 217–222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Olff, M., Langeland, W., Draijer, N. & Gersons, B. P. R. Gender differences in posttraumatic stress disorder. Psychol. Bull. 133, 183–204 (2007).

    Article  PubMed  Google Scholar 

  38. Shansky, R. M. Are hormones a “female problem” for animal research? Science 364, 825–826 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Fanselow, M. S. & Kim, J. J. Acquisition of contextual pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist d,l-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav. Neurosci. 108, 210–212 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Maren, S., Aharonov, G. & Fanselow, M. S. Retrograde abolition of conditioned fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav. Neurosci. 110, 718–726 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, S.-H., de Oliveira Alvares, L. & Nader, K. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat. Neurosci. 12, 905–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ben Mamou, C., Gamache, K. & Nader, K. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat. Neurosci. 9, 1237–1239 (2006).

    Article  PubMed  Google Scholar 

  43. Milton, A. L. et al. Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J. Neurosci. 33, 1109–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clem, R. L. & Huganir, R. L. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Espejo, P. J., Ortiz, V., Martijena, I. D. & Molina, V. A. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex. Neuropharmacology 109, 349–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Meyer, E. Behavioral, Biochemical, and Physiological Components of Stress-Enhanced Fear Learning in an Animal Model of Post-Traumatic Stress Disorder. PhD thesis, Univ. of California Los Angeles (2014).

  47. Sotres-Bayon, F., Bush, D. E. A. & LeDoux, J. E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32, 1929–1940 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Dalton, G. L., Wu, D. C., Wang, Y. T., Floresco, S. B. & Phillips, A. G. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 62, 797–806 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Holehonnur, R. et al. Increasing the GluN2A/GluN2B ratio in neurons of the mouse basal and lateral amygdala inhibits the modification of an existing fear memory trace. J. Neurosci. 36, 9490–9504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rao-Ruiz, P. et al. Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat. Neurosci. 14, 1302–1308 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Conoscenti, M. A., Smith, N. J. & Fanselow, M. S. Dissociable consequences of moderate and high volume stress are mediated by the differential energetic demands of stress. Soc. Sci. Res. Netw. https://doi.org/10.2139/ssrn.4029512 (2022).

    Article  Google Scholar 

  52. Shimizu, K., Kurosawa, N. & Seki, K. The role of the AMPA receptor and 5-HT3 receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol. Behav. 153, 70–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Ellenbroek, B. & Youn, J. Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech. 9, 1079–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi, Y.-W., Fan, B.-F., Xue, L., Wen, J.-L. & Zhao, H. Regulation of fear extinction in the basolateral amygdala by dopamine D2 receptors accompanied by altered GluR1, GluR1-Ser845 and NR2B levels. Front. Behav. Neurosci. 11, 116 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Jarome, T. J. et al. The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation. Learn. Mem. 19, 300–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardinal, R. N. & Aitken, M. R. F. Whisker: a client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).

    Article  PubMed  Google Scholar 

  57. Cardinal, R. N. & Aitken, M. R. F. ANOVA for the Behavioural Sciences Researcher (Lawrence Erlbaum Associates, Inc., 2006).

  58. Glass, G. V., Peckham, P. D. & Sanders, J. R. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Rev. Educ. Res. 42, 237–288 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Department of Psychology, University of Cambridge. A.L.M. is the Ferreras-Willetts Fellow in Neuroscience at Downing College, University of Cambridge. The authors would like to thank G. Vousden for writing the MATLAB scripts that were used to quantify conditioned freezing.

Author information

Authors and Affiliations

Authors

Contributions

A.L.M. conceived and designed the experiments and analysis. I.A.V.A. and A.L.M. collected the data and performed the analysis for the behavioral experiments. M.S.P., O.S.R.P.S. and A.L.M. collected the data and performed the analysis for the western blotting experiments. A.L.M. wrote the manuscript, and all authors edited and approved the manuscript.

Corresponding author

Correspondence to Amy L. Milton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Julia Chester, Jennifer Quinn, Graziano Pinna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Assche, I.A., Padilla, M.S., Stupart, O.S.R.P. et al. Refinement of the stress-enhanced fear learning model of post-traumatic stress disorder: a behavioral and molecular analysis. Lab Anim 51, 293–300 (2022). https://doi.org/10.1038/s41684-022-01054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-01054-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing