Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The chicken embryo as an in vivo experimental model for drug testing: Advantages and limitations

Alternatives for in vivo assays for drug testing have been proposed to solve open issues, such as costs, ethical, and logistical problems. One option is the chicken embryo. Here, we discuss its use as an experimental model for drug testing as well as limitations that researchers who want to work with the model should consider.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main inoculation routes in a 10 embryonic incubation day (EID) chicken embryo.

References

  1. Kue, C. S., Tan, K. Y., Lam, M. L. & Lee, H. B. Exp. Anim. 64, 129–138 (2014).

    Article  Google Scholar 

  2. Mete, M. et al. Child’s Nerv. Syst. 32, 1715–1719 (2016).

    Article  Google Scholar 

  3. Abe, C. et al. J. Control. Release 182, 67–72 (2014).

    Article  CAS  Google Scholar 

  4. Li, W. et al. Sci. Rep. 9, 1–15 (2019).

    Google Scholar 

  5. Victorelli, F. D. et al. Eur. J. Pharm. Biopharm. 153, 273–284 (2020).

    Article  CAS  Google Scholar 

  6. Dias, M. F. et al. Biomed. Pharmacother. 103, 1107–1114 (2018).

    Article  CAS  Google Scholar 

  7. Vargas, A., Zeisser-Labouèbe, M., Lange, N., Gurny, R. & Delie, F. Adv. Drug Deliv. Rev. 59, 1162–1176 (2007).

    Article  CAS  Google Scholar 

  8. Gebhardt, D. O. E. & van Logten, M. J. Toxicol. Appl. Pharmacol. 13, 316–324 (1968).

    Article  CAS  Google Scholar 

  9. Hruba, H. et al. BMC Vet. Res. 15, 209 (2019).

    Article  Google Scholar 

  10. Kurantowicz, N. et al. Int. J. Nanomedicine 12, 2887–2898 (2017).

    Article  CAS  Google Scholar 

  11. Korhonen, A., Hemminki, K. & Vainio, H. Scand. J. Work. Environ. Health 8, 63–69 (1982).

    Article  CAS  Google Scholar 

  12. Sadighara, P., Amoli, J. S., Ashrafihelan, J., Aliesfahani, T. & Farkhondeh, T. Rev. Bras. Farmacogn. 21, 560–563 (2011).

    Article  Google Scholar 

  13. Khosravi, A. et al. PLoS One 13, e0196424 (2018).

    Article  Google Scholar 

  14. Elsayed, M., Mohamed, N., Hatab, M. & Elaroussi, M. Brazilian J. Poult. Sci. 21, (2019).

  15. Ribeiro, L.N.M. & Fonseca, B. B. Future Microbiol. fmb-2020-0118 (2020) https://doi.org/10.2217/fmb-2020-0118

  16. Ribeiro, L.N.M. et al. Pharmaceutics 12, 769 (2020).

    Article  CAS  Google Scholar 

  17. Wakenell, P. S. et al. Avian Dis. 46, 274–280 (2002).

    Article  Google Scholar 

  18. Williams, C. J. & Hopkins, B. A. Poult. Sci. 90, 223–226 (2011).

    Article  CAS  Google Scholar 

  19. Vaezirad, M. M., Koene, M. G., Wagenaar, J. A. & van Putten, J. P. M. Vaccine 36, 2139–2146 (2018).

    Article  CAS  Google Scholar 

  20. American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. (American Veterinary Medical Association, Schaumburg, IL, 2020).

  21. Lierz, M. & Korbel, R. J. Exot. Pet Med. 21, 44–58 (2012).

    Article  Google Scholar 

  22. Rosenbruch, M. ALTEX 14, 111–113 (1997).

    PubMed  Google Scholar 

  23. Aleksandrowicz, E. & Herr, I. ALTEX 32, 143–147 (2015).

    PubMed  Google Scholar 

  24. Maina, J. N. Structure and Function of the Shell and the Chorioallantoic Membrane of the Avian Egg: Embryonic Respiration. in The Biology of the Avian Respiratory System 219–247 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-44153-5_9

  25. Yuan, L., Tang, Q., Cheng, T. & Xia, N. Emerg. Microbes Infect. 9, 949–961 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) that support our work. To Laudo Laboratório company (especially to Dr. Marcio Botrel, Gustavo Mazer Ferraz and Rogério de Avelar Ferraz) who always support us with Technical experience. To Hy Line and VALO BioMedia Companies that support us with eggs in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belchiolina Beatriz Fonseca.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, B.B., da Silva, M.V. & de Morais Ribeiro, L.N. The chicken embryo as an in vivo experimental model for drug testing: Advantages and limitations. Lab Anim 50, 138–139 (2021). https://doi.org/10.1038/s41684-021-00774-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-021-00774-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research