
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports

Graph semantic similarity‑based
automatic assessment
for programming exercises
Chengguan Xiang 1,2, Ying Wang 1*, Qiyun Zhou 1 & Zhen Yu 2

This paper proposes an algorithm for the automatic assessment of programming exercises. The
algorithm assigns assessment scores based on the program dependency graph structure and the
program semantic similarity, but does not actually need to run the student’s program. By calculating
the node similarity between the student’s program and the teacher’s reference programs in terms of
structure and program semantics, a similarity matrix is generated and the optimal similarity node path
of this matrix is identified. The proposed algorithm achieves improved computational efficiency, with a
time complexity of O(n2) for a graph with n nodes. The experimental results show that the assessment
algorithm proposed in this paper is more reliable and accurate than several comparison algorithms,
and can be used for scoring programming exercises in C/C++, Java, Python, and other languages.

Keywords Automatic assessment, Program dependency graph, Program semantics, Similarity, Programming
exercises

Programming is one of the basic skills required by students of computer-related majors in colleges and
 universities1. In the teaching of programming courses, the assessment of exercises submitted by students forms
the basis for feedback that is intended to stimulate the students’ interest in learning. However, the manual
assessment of students’ programming exercises is time-consuming, labor-intensive, and error-prone2. Replacing
manual assessment with automatic assessment would not only reduce the workload of teachers, but also
provide instant feedback through the assessment results, thereby enhancing the learning experience. There
has been extensive research on the automatic assessment of program tasks, with the two main directions being
dynamic assessment and static assessment3,4. The scoring mechanism used in dynamic assessment is based on
the number of test cases passed by the student’s program. Many popular online judge systems use dynamic
program assessment. However, this method can only assess executable code that runs without errors4. Student
codes with a few wrong but almost-correct answers will be assigned zero points, which stifles the confidence
of learners5 and leads to a significant decline in learning attitudes and motivation6, making it difficult for the
students’ scores in the class to follow a normal distribution7. The scoring mechanism used in static assessment
calculates the similarity between the student’s program and the teacher’s programs through statistical analysis,
without executing the student code. In other words, the grading mechanism does not execute the student’s code
to assess its correctness or performance, and it does not consider compilation errors or runtime errors. Instead,
it analyzes the structure, syntax, semantics, and other characteristics of the student’s program, compares them
with the teacher’s program, and calculates the similarity between them. This method simulates the teacher’s
assessment process to a certain extent8 and is more suitable for the actual programming teaching environment9.
It is evident that similarity-based static evaluation methods hold greater promise. Recently, these methods have
primarily included those based on latent semantic analysis10,11, information retrieval12, syntax trees and program
dependency graphs13–15, and machine learning16–22. While these methods have shown certain effectiveness in
certain scenarios, they also face numerous challenges. These include issues such as the lack of training data due
to the absence of student code for new problems, reliability issues stemming from the diversity of programming
languages, and evaluation efficiency issues caused by low graph computation efficiency.

To address these challenges and enhance the accuracy and efficiency of evaluation. In this paper, a graph
semantic similarity-based automatic assessment method for programming exercises is proposed. This method
calculates the code similarity from the structural similarity of the program dependency graph and the semantic
similarity of the nodes, and then assigns a score to the student’s code. The specific contributions of this paper
are as follows:

OPEN

1Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079,
China. 2School of Mathematics and Big Data, Guizhou Education University, Guiyang 550018, China. *email:
wangyingcncc@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61219-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

(1) Taking the structural similarity of the program dependency graph and the semantic similarity of the nodes
as the assessment criteria, a new automatic assessment algorithm for student’s programming exercises is
proposed.

(2) By calculating the node similarity between the student’s program and the teacher’s programs, a similarity
matrix is generated. An optimal similar node path matching algorithm is proposed, which improves the
efficiency of calculating the similarity of the program dependency graph. For a program dependency graph
with n nodes, the time complexity is O(n2).

(3) The assessment algorithm proposed in this paper can be used to score programs that have compilation
errors or cannot be executed correctly, and supports the scoring of programs in multiple programming
languages.

The remainder of this paper is organized as follows. “Related work” outlines the relevant research work
on automatic evaluation of program assignments. “Preliminaries” introduces some preliminaries required to
develop the proposed algorithm. “Automatic assessment algorithm for program work based on graph semantic
similarity” describes the proposed assessment algorithm in detail, before “Experiments” presents the results of
an experimental verification process. Finally, “Conclusion” summarizes the results of this study.

Related work
Since the 1960s, researchers have been continuously exploring and studying the technology of automatic code
evaluation. In 1965, the first automated testing system for programming appeared, achieving a breakthrough
from 0 to 123.

From 1980 to 1999, automatic programming code evaluation technology emerged in the form of command-
line or graphical user interface tools, requiring the design of a set of commands to execute student programs,
focusing on evaluating whether the program is correct24. Hung et al.25 proposed an automatic scoring algo-
rithm for programs based on software metrics, considering factors such as programming skills, complexity,
programming style, and program efficiency.Reek26 developed the TRY system, which aims to provide accurate
and objective evaluation methods, by using teachers’ test data to evaluate the running performance of student
programs.Joy and Luck27 developed an online programming assignment submission and testing system called
BOSS, which allows students to perform self-tests before submitting their programs to ensure their correctness.
The Ceilidh automatic scoring system not only evaluates whether the program is correctly executed and whether
the programming style is standardized, but also further analyzes the complexity of the program structure28.

From 2000 to 2010, the rise of the Internet has greatly influenced the way people work and learn, and web-
based software architectures have become the new trend of the era. Programming code automatic evaluation has
also ushered in a golden age of development24,29,30. Jackson31 argues that the challenge in automatic assessment
of student programming assignments lies in ensuring that the program output is entirely correct, and proposes
that a combination of human and machine evaluation can better handle assignment assessment.Truong et al.32
introduced a static analysis framework that utilizes software engineering metrics to assess program quality. They
selected a method based on the XML representation of program abstract syntax trees to analyze and validate the
structural similarity of student solutions. Romli et al.33 argue that in evaluations, the focus should not only be
on detecting program errors, but also on assessing programming assignments through program static analysis
to ensure effective achievement of teaching objectives.

Since 2011, the rapid development of information technologies such as big data, cloud computing, the Internet
of Things, and the Internet has promoted the rapid development of artificial intelligence. Integrating artificial
intelligence techniques into similarity-based static evaluation of programming code has become one of the focal
points of researchers’ attention and has yielded significant research achievements in this direction. Zen et al.10
proposed an algorithm for automatically scoring programming exercises using latent semantic analysis(LSA),
with a semantic vector space constructed by extracting the code structure and the cosine similarity between the
student’s exercises and answers calculated as the assessment criterion. Xu et al.34 propose a multi-granularity
feature fusion automatic scoring method based on latent semantic analysis. They extract features from student
programs and standard answer template programs, and calculate the similarity between the features. Inturi et al.11
proposed the Programming Assignment Grading through Control Statement and Program Features (PAGCSPF)
algorithm. This is a novel similarity measurement method that utilizes control statement features and program
features to compare and compute the similarity between student program code and teacher program code based
on their semantic execution patterns. The scoring results are similar to those of human teachers. Rahaman et al.12
proposed an evaluation model that automatically evaluates C programming assignments using the TF-IDF(Term
Frequency-Inverse Document Frequency) algorithm. By constructing TF-IDF score vectors of student programs
and teacher programs, the cosine similarity between the vectors is calculated to give a score. However, due to the
richness of programming languages, such as the use of different identifiers for variables, the reliability of evalu-
ation is poor. Verma et al.13 proposed the Syntax Tree Fingerprinting for Automated Evaluation(STF) grading
algorithm, which calculates the similarity of syntax tree structures by extracting code fingerprint features, and
verified the feasibility of this algorithm on codes written in Python. However, the algorithm only assesses the
compiled code, ignoring the rich feature information in the program dependency graph, which directly affects
the assessment accuracy. AlShamsi et al.35 proposed the Grader system for programming course evaluation,
which uses program graph representation to assess structural similarity and software metrics to evaluate program
quality. The system matches the output of student programs with the model recognition process to effectively
evaluate Java source code. Zougari et al.14 converted the program into a control flow graph to calculate the graph
similarity. However, when the number of nodes in the graph is large, the result cannot be accurately calculated
in a reasonable time15, resulting in low assessment efficiency. Additionally, researchers have employed models

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

like ridge regression, random forest, convolutional neural networks (CNNs), long short-term memory (LSTM),
among others, to analyze the code submitted by students. These models are used to compare the submitted code
with the reference answer, automatically determining its correctness and quality16. Srikant et al.17 achieved better
scoring results using ridge regression models than scoring based on test cases. Lazar et al.18 used random forest
in automatic program evaluation algorithm, achieving a correct rate of over 85%. Rezende Souza et al.19 trained
a convolutional neural network on collected exercises and achieved an average accuracy of 74.9%. Nabil et al.20
introduced long-term and short-term memory into the evaluation system to perform code analysis to detect
syntax errors. Srikant et al .21 used machine learning to assess the similarity of student codes through the latent
semantic modeling of grammatical features and code structures. Muddaluru et al.22 proposed a deep learning
and statistics combination method to predict C programming code scores. The model was used for word vector
conversion preprocessing, and CNN, random forest, and LSTM were integrated to predict the scores of program-
ming assignments. However, in programming teaching, if teachers often use past questions to test students, it
may lead to serious plagiarism by students. To avoid this situation, teachers need to use new questions to test
students, to ensure that they can truly master programming skills and solve problems independently. However,
new questions have fewer solutions, making it difficult to meet the data requirements for machine learning train-
ing. Therefore, it can be seen that there are defects in the practical programming teaching environment based
on machine learning evaluation methods.

Preliminaries
Graph similarity calculation
Calculating the graph similarity is a key issue in the field of graph research, and is the basis for many downstream
tasks. The graph similarity calculation is often based on graph kernel and graph matching methods. The graph
kernel method first decomposes the graph into a combination of subgraph structures, and then measures the
graph similarity by comparing the subgraph distributions of the two graphs. For graphs with n vertices, the time
complexity of the classical Graphlet kernel method is O(n4)36. In contrast, graph matching methods first calcu-
late a certain similarity measure between two graphs through the cross-graph mechanism, such as the classical
graph edit distance (GED) algorithm. Based on the greedy assignment problem, GED has a time complexity of
O((n+m)2) when the two graphs contain n and m vertices, respectively36,37. However, the current core method
of calculating the graph similarity is an NP-complete problem15,38,39. When the number of nodes in the two
graphs is greater than 16, even the most advanced GED algorithm cannot accurately calculate the results within
a reasonable time15.

Relative entropy
The relative entropy is a measure of the difference between two independent probability distributions40, also
known as the Kullback-Leibler (KL) divergence. For the same random variable X, if there are two independent
probability distributions P(x) and Q(x), then the relative entropy DKL(P||Q) is defined as

Maximum common subsequence
A sequence c that is a subsequence of both string X and string Y is called a common subsequence of X and Y. All
common subsequences of X and Y constitute the set C = {c1, c2, · · · , cn} . If ci(1 � i � n) is the element with the
largest length in the set, then ci is the largest common subsequence (LCS) of X and Y.

Automatic assessment algorithm for program work based on graph semantic
similarity
In the process of teaching programming, when reviewing the program codes submitted by students, teachers
often compare the similarity between the student’s program and the reference answers (search score points),
and assign scores according to the degree of matching. Therefore, by calculating the similarity between the
student’s program code and the correct codes given by the teacher, assessment methods based on the similarity
score are closer to the characteristics of human assessment behavior41. This paper proposes a graph semantic
similarity-based automatic assessment method for programming exercises, which solves the scoring problem in
the assessment of students’ programming courses. The process of the proposed algorithm, which is illustrated in
Fig. 1, includes four main steps, and the pseudo-code of the algorithm is shown in Fig. 2.

In this section, we mainly introduce four steps of automatic evaluation of program tasks based on graph
semantic similarity.

Step 1: Source code input. The input is a collection of source code from the student’s program and the teacher’s
programs. The student’s program source code refers to a single program text submitted by a student. The teacher’s
programs source code refers to the collection of program source code giving various solutions corresponding
to the problem.

Step 2: Program representation.

1. Generate abstract syntax tree
 Abstract syntax tree(AST) is a tree diagram representing the syntactic structure of a program. Each node

on the tree represents a structure in the source code, and is used for compiler optimization, code generation,
static analysis, and other tasks. To ensure that the assessment algorithm supports a variety of programming

(1)DKL(P�Q) =
∑

x∈X

P(x) log
P(x)

Q(x)

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

languages and meets the needs of programming teaching to the greatest extent, it is necessary to convert the
source code of the student’s program and the teacher’s programs into a syntax tree. The syntax trees created
by srcML (https:// www. srcml. org) allow for convenient analysis and manipulation of the source code, with
the tree structure represented by formatted xml. Thus, srcML is a lightweight, highly extensible, and robust
multi-language syntax tree generation tool. The xml documents can be accessed using the jsoup tool (https://
jsoup. org). For the simple case of three integer variables a, b, c in the C language declaration statement, the
syntax tree representation generated by srcML is shown in Fig. 3.

Figure 1. Algorithm flow of automatic assessment of program work based on the similarity of graph semantics.

Step 1: Source code input.
Input the student's code
Input the teacher's code
Step 2: Program representation, Generate AST
Generate the AST for the student's code, named as studentXml
Generate a list of AST for all teacher programs, named as teacherXmls
// Construct Program Dependence Graph, Control Flow Graph, Data Flow Graph, Data Dependency Graph
studentCodeGraph = generatingGraph(studentXml)
teacherCodeGraphs = []
For each teacherXml in teacherXmls:
 teacherCodeGraphs.append(generatingGraph(teacherXml))
Step 3: Similarity calculation, Calculate the semantic similarity between node structure similarity
and node value based on relative entropy, and generate a similarity matrix
Similarity matrices simMatrixList = []
For each graph in teacherCodeGraphs:
 simMatrixList.append(createSimMatrix(graph, studentCodeGraph))
simList = []
For each matrix in simMatrixList:
 // Dynamic programming is used to realize the similarity algorithm
 simList.append(calcMaxPath(matrix, sizeOf(studentCodeGraph), sizeOf(teacherCodeGraphs)))
Step 4: Scoring
maxSim = 0
For each sim in simList:
 maxSim = max(maxSim, sim)
// Output score, pScore: the full score for question
printScore(maxSim * pScore)

Figure 2. Pseudo-code representation of automatic assessment of program work based on the similarity of
graph semantics.

Figure 3. Example syntax tree generated by srcML.

https://www.srcml.org
https://jsoup.org
https://jsoup.org

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

2. Abstract syntax tree standardization
 The purpose of standardization is to eliminate syntactic differences between programs as far as possible.

This reduces the number of teacher’s programs and improves the accuracy of assessment3.

(1) Variable declaration node standardization. The richness of programming languages means that vari-
ables can be declared in various forms. It is possible to declare only one variable after a data type
identifier, or to declare multiple variables at the same time and initialize their values when declaring
variables, such as int a,b,c = 0. In languages such as C++, Java, and Python, it is not necessary for all
declaration statements to be placed at the beginning of the program. The standardization of syntax
trees is intended to eliminate this variety. During standardization, only one variable can be declared
after a data type identifier. A declaration containing multiple variables is decomposed into multiple
statements, and the initialization assignment is decomposed into independent assignment state-
ments. The declaration of all variables must be placed at the beginning of the largest program block
in its scope. The variables are listed in descending order according to the number of references in
the subsequent program (if the number of references is the same, they are listed in the order of the
references). For example, the variable declaration statement int a = 1, b, c; in the C language can be
standardized as int a; int b; int c; a=1;. The standardized syntax tree is shown in Fig. 4.

(2) Expression node equivalence standardization. Expressions that are semantically equivalent to each
other have various forms of expression. The equivalence standardization of expression nodes is
intended to eliminate the changes and differences between expressions, resulting in as unified a
form as possible. All /=, %=, *=, −=, +=, ++, –, and other statements in the program are converted
into general forms, e.g., a/ = b becomes a = a+ b . Compound statement nodes are decomposed
into multiple simple statement nodes, i.e., x = y = z is decomposed into two nodes, x = y and y = z .
Symbolic calculation is used to simplify algebraic expressions and logical expressions. For example,
the algebraic expression y = x + 3+ 3 ∗ x + y ∗ 0+ x + 1 is normalized to y = 5 ∗ x + 4 , and the
logical expression y = (a||a&&b) is simplified to y = a.

(3) Node semantic standardization. In the programming process, students have considerable autonomy
in the choice of identifiers such as variable names and function names, and it is impossible to force
students to use uniform identifiers10. For example, with the statement for(int i=0;i<n;i=i+1), students
could write for(int low=0;low<len; low=low+1). To eliminate this semantic difference, all identifiers
are replaced with “#” in statements, and arithmetic operators, logical operators, parentheses, and
constants remain unchanged. For example, the statement for(int i=0;i<n;i=i+1) can be mapped to
the latent semantics #(# #=0 # < # # = # + 1), and the statement if(n>m && x<y) can be mapped to
the latent semantics #(# > # && # < #). Finally, the value of the node is marked as a latent semantic
string.

(4) Delete nodes with invalid semantics. Deleting all sentences that do not contain actual semantics will
improve the accuracy of the assessment. Thus, combined with a previous suggestion2, sentence nodes
with invalid semantics are deleted according to the following rules.

A. Delete statement nodes that do not modify any variable data, such as the statements x = x and
x + 3;

B. If two adjacent assignment statement nodes are assigned to the same variable and will not cause
other variable values to be lost, delete the former node, such as for the two assignment statement
nodes x = y and x = z , where the node x = y is deleted;

C. If the variable is not used after being assigned, delete the expression node;
D. After executing the first three deletion rules, delete all variable declaration nodes that are not ref-

erenced in their scope.

(5) Node structure standardization. In the syntax tree generated in the previous step, the nodes are
reconstructed according to the statement, and the statement information is decomposed into node
attributes. Because the program is executed from top to bottom, it is vital to maintain the consistency
of each node in the syntax tree and the program source code. Thus, the middle root traversal method
of the tree is used to number (ID) the nodes in the syntax tree, except for the root node. Nodes other
than the root node are assigned natural numbers starting from 0, and root node is assigned a value
of −1 (this refers to the root node of the syntax tree generated by srcML). For example, consider a
program to calculate the value of a+aa+aaa+...+aa...a (where the number of digits in the final addend
is n), where the values of n and a are input from the keyboard. The source code of a C program submit-

Figure 4. Example of a standardized syntax tree for variable declarations.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

ted by a student is shown in Fig. 5, and the syntax tree after the node structure has been standardized
is shown in Fig. 6.

3. Generating program dependency graph
 Program dependence graph(PDG) is a directed multigraph with labeled edges, used to represent the

control and data dependencies in a program. The directed edges of the control flow graph(CFG), data
flow graph(DFG), and data dependency graph(DDG) are then added to the standardized syntax tree to
generate the program feature adjacency matrix. For the syntax tree shown in Figure 6, the generated program
dependency graph is shown in Figure 7.

4. Generating graph adjacency matrix
 Neglecting the root node, which has an ID of −1 , if the directed graph A = (V ,E) is the PDG, where V

represents the set of n nodes and E represents the set of all directed edges, then the adjacency matrix can be
represented as

Figure 5. Program source code.

Figure 6. Normalized syntax tree.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

Step 3: Similarity calculation. After calculating the adjacency matrix of the dependency graph between the
student’s program and the teacher’s template programs, the student’s program is matched with each of the
teacher’s template programs and the relative entropy of structural information and semantic information is used
to measure the similarity between nodes. This section describes a semantic similarity calculation method based
on the relative entropy of the nodes and the maximum common subsequence.

1. Calculate the similarity between each node in the dependency graphs of the student’s program and the
teacher’s programs.

 Calculating the similarity between nodes is equivalent to finding the differences between local structural
information. If the difference between nodes is relatively small, the similarity is relatively large, and vice
 versa42. Therefore, the relative entropy and semantics can be used to quantify the difference between nodes.
The calculation method is divided into four steps: (a) Generate the probability set of nodes and adjacent
nodes; (b) Calculate the relative entropy of the node pair; (c) Calculate the semantic maximum common
subsequence length of all AST subtree nodes contained in the node pair; (d) Calculate the similarity of two
nodes from the relative entropy and maximum common subsequence length.

 To clarify the calculation of the similarity between nodes, we use GA to represent the student’s program
dependency graph and GB to represent the teacher’s programs dependency graph. Let nodes x and y be taken
from the node sets of graphs GA and GB , respectively, and let |GA| and |GB| represent the numbers of nodes
in graphs GA and GB .

(1) Generate the probability set of nodes and adjacent points A local network is composed of nodes and
their adjacent points. Let D(GA) represent the degree of graph GA and D(GB) represent the degree of
graph GB , and Dmax = Max(D(GA),D(GB)) . The probability set of node i, P(i), is used to calculate
the relative entropy, and node i itself is included in the calculation. Thus, P(i) should have Dmax + 1
elements, and is specifically expressed as follows:

 When Dmax � k > 0, p(i, k) represents the probability of the kth adjacent point of node i, and p(i, 0)
represents the probability of node i itself, that is,

(2)Mi∈V&&j∈V (i, j) =

{

1 if < i, j >∈ E� < j, i >∈ E
0 else

(3)P(i) =
[

p(i, 0), p(i, 1), · · · , p(i,Dmax)
]

Figure 7. Normalized program dependency graph.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

 For the PDG shown in Fig. 7, if the degree of the PDG it is being compared with is less than 12, then
Dmax = 12 , and the adjacent points of node 11 are 2, 4, 6, 10, 12, 14, and 15. Therefore, the prob-
ability set of node 11 is

(2) Calculate the relative entropy of the node pair The relative entropy represents the asymmetric differ-
ence between two probability distributions. Both the relative entropy and similarity will be different
when calculated using a different order of elements in the probability set42. Therefore, when calculat-
ing the relative entropy of a node pair, the first element of the probability set must be the probability
of the current node, and the other elements are arranged in descending order of probability. Let P′(i)
represent the probability set of node i after sorting, which is expressed as follows:

 For example, the probability set P(11) in the previous section is reordered as follows:

 Let P′(x) represent the probability set of nodes in graph GA and P′(y) represent the probability set of
nodes in graph GB . The relative entropy of x and y is defined as follows:

(3) Calculate the maximum common subsequence length of all AST subtree node semantics contained
in the node pair Use the first root access nodes x and y as the AST subtrees of the root nodes,
respectively, and connect the semantic attribute values of the visited nodes as the semantic sequence
of the nodes, denoted as token_sequences(x) and token_sequences(y) . In the PDG shown in Fig. 7,
token_sequences(11) = “#(# = 0# < ## = #+ 1)# = #+ 10 ∗ ## = #+ #′′ . The dynamic program-
ming algorithm is used to calculate the maximum common subsequence length of nodes x and y,
that is,

(4) Calculate the similarity of two nodes from the relative entropy and maximum common subsequence
length The similarity between nodes x and y is quantified using the relative entropy of node pairs
and the longest common subsequence. The similarity based on the relative entropy of node pairs is
defined as follows:

 The similarity of the LCS based on the node pair is defined as follows:

 The similarity between nodes x and y is then defined as:

 where a is the similarity weight based on the relative entropy of the node pair, b is the similarity
weight based on the LCS of the node pair, and a+ b = 1 . The optimal values of a and b are deter-
mined by least-squares estimation, a = 0.6416 , b = 0.3584 . We then calculate the similarity between
each node in GA and each node in GB , and generate the node similarity matrix between GA and GB :

2. Graph similarity calculation

(4)p(i, k) =

degree(i)

degree(i)+
�min (degree(i),Dmax)

m=1 degree(m)
k == 0

degree(k)

degree(i)+
�min (degree(i),Dmax)

m=1 degree(m)
k > 0&&k <= degree(i)

0 k > degree(i)

P(11) =

[

7

45
,
12

45
,
4

45
,
5

45
,
5

45
,
3

45
,
5

45
,
4

45
, 0, 0, 0, 0, 0

]

(5)P′(i) =
[

p(i, 0), p′(i, 1), . . . , p′(i,Dmax)
]

P′(11) =

[

7

45
,
12

45
,
5

45
,
5

45
,
5

45
,
4

45
,
4

45
,
3

45
, 0, 0, 0, 0, 0

]

(6)KL
(

P′(x)�P′(y)
)

=

min(degree (x),degree (y))
∑

m=0

p′(x,m) ln
p′(x,m)

p′(y,m)

(7)LCS_len(x, y) = length(LCS(token_sequences(x), token_sequences(y)))

(8)SimKL(x, y) = 1−
KL

(

P′(x)�P′(y)
)

+ KL
(

P′(y)�P′(x)
)

2

(9)SimLCS(x, y) =
2× LCS_len(x, y)

length(token_sequences(x))+ length(token_sequences(y))

(10)Sim(x, y) = a× SimKL(x, y)+ b× SimLCS(x, y)

M(GA,GB) =

Sim(0, 0) Sim(0, 1) · · · Sim(0, |GB| − 1)
Sim(1, 0) Sim(1, 1) · · · Sim(1, |GB| − 1)

...
...

...
...

Sim(|GA| − 1, 0) Sim(|GA| − 1, 1) · · · Sim(|GA| − 1, |GB| − 1)

|GA|×|GB|

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

 Program assessment needs to return results within a reasonable time. To ensure the efficiency of the
program dependency graph similarity calculation, this paper proposes a new optimal similar node path
matching algorithm. The basic idea of the algorithm design is as follows:

(1) When teachers review students’ programs, they usually compare them against reference programs,
identify the statements (points) that are most likely to score, and assign points as appropriate. Finally,
the students’ scores are aggregated according to all points.

(2) For novice programmers, incentives are more conducive to stimulating learning interest than penal-
ties. Thus, the assessment algorithm should attempt to determine the optimal pair of similar nodes,
with each node only selected once.

(3) Because the program code is executed from top to bottom, the selection of the optimal similarity
node pair must be carried out in sequence according to the AST first root sequence. In generating
the optimal similarity path, the optimal similarity node for the current node can only appear in the
first root sequence after the first pair of similar nodes.

(4) The similarity of two PDGs is measured as the sum of the similarity of all node pairs on the opti-
mal similarity path of the similarity matrix. In the similarity matrix M(GA,GB) , for any (v, w),
0 � v < |GA|, 0 � w < |GB| , the optimal similar path is:

 where SMV is the sum of the similarity of all nodes on the optimal similar path, namely:

 The largest optimal similarity path with SMV is taken as the optimal similarity path of the similarity
matrix M(GA,GB) . The similarity between graphs GA and GB is:

 Dynamic programming is used to realize the similarity algorithm for GA and GB , as shown in Fig. 8.
The time complexity of the algorithm is O(n2).

Step 4: Scoring.
After the previous processing steps, the similarity between the student’s program and the teacher’s set of

programs can be calculated, and the maximum similarity is used to assign a score to the student. The formula
for calculating the student’s score is as follows:

(11)SMP(v,w) =

(v,w) (v = |GA| − 1)or(w = |GB| − 1)
(v,w)

�
�

SMP
�

v + 1,w′
�

| w′ > w,
w′ < |GB|, SMV

�

v + 1, w′
�

> ∀{ others
SMV(v + 1,β)

�

�β �= w′,β > w,β <
�

�GB |
��

(12)SMV(v,w) =
∑

(α,β)∈SMP(v,w)

Sim(α,β)

(13)Sim graph (GA,GB) =
Max(v∈GA ,w∈GB)(SMV(v,w))

Max(|GA|, |GB|)

Figure 8. Dynamic programming for implementing graph similarity algorithm.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

where PScore is the full score for the question, Simgraph(Gstudent ,Gi) refers to the similarity between the student’s
PDG and the teacher’s i-th PDG, and n is the number of programs in the teacher’s set.

Experiments
Datasets
To verify the reliability and accuracy of the static program assessment algorithm based on graph semantic simi-
larity, an experimental verification was conducted using two datasets. The first dataset was taken from the final
exam of a C language course covering 10 semesters across academic years 2011-2015. Excluding the unanswered
questions on programming, 1576 exam papers were retained, with a total of 36 unique programming questions.
All questions were manually corrected by teachers. To reduce the scoring errors caused by subjective factors
such as fatigue and preference, and to ensure the fairness of the scoring, the project team hired four teachers (all
experienced in teaching programming in C) to regrade the test papers one by one. The four teachers provided
at least five reference programs for each question, and the full score for each programming question was set to
10 points. When the deviation between two teachers was greater than 2 points, the four teachers discussed and
revised the scores together. The teachers were asked to study the reference answers (reference procedures) for
the questions carefully before grading.

The second dataset was the program code that passed all the test data in MAXUETANG platform(https://mxt.
cn). According to the requirement that only one record for the same subject was retained for the same student,
duplicates were deleted. Additionally, subjects with fewer than 50 submission records in the same language were
removed and their submission records were deleted. Finally, 856323 submission records and 1370 questions were
retained, including 485624 C/C++ submission records, 256283 Java submission records, and 114416 Python
submission records. The full score for each question was again set to 10 points. Students’ personal information
was filtered in both datasets.

All methods were performed in accordance with the relevant guidelines and regulations of Guizhou Educa-
tion University. All experimental protocols were approved by the Academic and Ethic Committee at school of
mathematics and big data, Guizhou Education University under approval number: GZEU-IRB20230107. The
informed consent was obtained from all subjects.

Assessment indicators
When human teachers grade procedural questions, there will always be scoring errors. The reliability metric is
used to analyze the effectiveness of the algorithm scores. If the score assigned by the proposed algorithm is within
the given error margin of all teachers’ scores, it is considered an effective score; otherwise, it is an invalid score.
Thus, the reliability of the proposed algorithm can be defined as the ratio of the number of valid scores (M) to
the total number of ratings (N), namely:

The precision metric analyzes how close the score assigned by the proposed algorithm is to that assigned by a
human teacher. A higher value of the precision indicates that the two are closer together. The precision is cal-
culated as follows:

Where N is the number of student programs being assessed, H represents the number of human teachers par-
ticipating in the assessment, S is the item score, xi represents the proposed algorithm’s assessment score for the
i-th program, and xij is the assessment score assigned by the j-th human teacher for the ith program.

Cosine similarity is used to represent the closeness between algorithm score vector A and teacher score vector
B, with a value range of [−1, 1]. The closer the value is to 1, the more similar they are. The calculation formula
is as follows:

Where Ai and Bi represent the i-th score from the algorithm and the i-th score from the teacher, and n represents
the total number of scores.

Experimental results
The algorithm implementation was written in Python and Java, and the experiments were conducted on a hard-
ware environment consisting of an Intel(R) Core(TM) i5-9400 CPU @ 2.90 GHz (6 CPUs), 8G memory, and the
CentOS6.10 operating system. The experimental results are shown in Tables 1 and 2.

On dataset 1, the teacher scoring error was set to 2 points, and the average grade given by the teacher is 7.29.
The proposed algorithm was compared with the LAS, TF-IDF, STF, and PAGCSPF algorithms. The experimental
results presented in Table 1 show that the proposed algorithm achieves a reliability of 85.72% and a precision

(14)Score = PScore ×Maxi∈{0,1,...,n−1}

(

Simgraph(Gstudent ,Gi)
)

(15)Reliability =
M

N
× 100%

(16)Precision =

1−
1

N

N
�

i=1

�

�

�
xi −

1
H

�H
j=1 xij

�

�

�

S

× 100%

(17)Cosine_Similarity =

∑n
i=1 Ai × Bi

√

∑n
i=1 A

2
i ×

√

∑n
i=1 B

2
i

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

of 96.99%. As shown in Fig. 9a, the algorithm proposed in this article has higher reliability and precision than
the other four algorithms. These scores are better than those of the four comparison algorithms. The evaluation
results are more stable and reliable. Furthermore, as shown in Fig. 9b, the cosine similarity of the algorithm
discussed in this paper stands at 0.9952, exceeding that of the other four comparative algorithms. As shown
in Fig. 10, the average score of the algorithm proposed in this article is 7.14, which is only 0.15 lower than the
average evaluation score of 7.29 given by the teacher, indicating a small difference. In comparison to the other

Table 1. Experimental results on dataset 1.

 Methods Average score Standard deviation Reliability (%) Precision (%) Cosine Similarity

 LSA10 6.98 2.432 62.11 79.21 0.9232

 TF-IDF12 6.88 2.473 67.89 80.03 0.9213

 STF13 6.84 2.239 79.75 87.02 0.9581

 PAGCSPF11 6.95 2.190 83.62 94.59 0.9839

 Ours 7.14 2.173 85.72 96.99 0.9952

Table 2. Experimental results on dataset 2.

Methods Language Average score Standard deviation Reliability (%) Precision (%) Cosine similarity

LSA10

C/C++ 8.09 2.326 60.17 80.92 0.9610

Java 8.39 2.217 67.28 83.94 0.9668

Python 8.26 2.231 65.19 82.64 0.9654

Avg 8.25 2.258 64.215 82.50 0.9644

TF-IDF12

C/C++ 8.59 2.141 71.23 85.91 0.9703

Java 8.68 2.079 73.61 86.8 0.9724

Python 8.63 2.073 73.52 86.31 0.9723

Avg 8.63 2.098 72.79 86.34 0.9717

STF13

C/C++ 9.11 1.794 82.63 91.05 0.9811

Java 9.03 1.844 81.29 90.29 0.9797

Python 9.13 1.711 84.34 91.30 0.9829

Avg 9.09 1.783 82.75 90.88 0.9812

PAGCSPF11

C/C++ 9.14 1.756 83.56 91.48 0.9820

Java 9.23 1.678 85.43 92.32 0.9838

Python 9.14 1.701 84.64 91.49 0.9831

Avg 9.17 1.712 84.54 91.76 0.9830

Ours

C/C++ 9.32 1.568 87.59 93.23 0.9861

Java 9.27 1.596 86.98 92.79 0.9855

Python 9.15 1.678 85.03 91.51 0.9836

Avg 9.25 1.614 86.53 92.51 0.9851

Figure 9. Comparison of algorithm execution results.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

four algorithms, the standard deviation of the proposed algorithm is 2.173, which is lower, indicating higher
consistency. This result underscores that the proposed algorithm more closely approximates the teacher’s scoring,
exhibits greater effectiveness, and represents a significant improvement over existing methods.

On dataset 2, 40% of the submitted records were randomly selected for each topic as the teacher’s programs,
with the remaining 60% used as the student’s programs to be assessed. The scoring error was set to 1 point. The
proposed algorithm was again compared with the LAS, TF-IDF, STF, and PAGCSPF algorithms. The experimen-
tal results presented in Table 2 show that, in the C/C++ language program assessment, the proposed algorithm
achieves a reliability score of 87.59% and precision of 93.23%, outperforming the other four algorithms. In the
Java language program assessment, the proposed algorithm again outperforms the other algorithms, with a
reliability of 86.98% and precision of 92.79%. In the Python language program assessment, the reliability of the
proposed algorithm is 85.03% and its precision is 91.51%, which are better scores than achieved by the other
four algorithms. Furthermore, looking at the average scores, the algorithm proposed in this article shows high
marks in the evaluations of the three programming languages, implying that it can accurately match the scores
expected by teachers. For instance, in the evaluation of C/C++ programs, the algorithm has an average score of
9.32, which is the closest to the actual score, meaning it aligns most closely with the teacher’s grading, and also
appears to be more reliable in the credibility of the scores given. Observing the standard deviation, the stability
of the algorithm’s scoring is confirmed once again. In the evaluations of the three different programming lan-
guages, the algorithm proposed in this article exhibited the lowest standard deviation, thus proving its stable and
consistent scoring characteristics. For example, in the evaluation of C/C++ programs, the algorithm’s standard
deviation is 1.568, which is lower compared to other algorithms, indicating that it has better robustness and
consistency than the other four algorithms compared, giving it an advantage in the field of automated program
evaluation. It is evident that the algorithm proposed in this paper has demonstrated excellent performance across
various evaluation metrics, particularly when it comes to assessing programs written in different programming
languages. Whether in terms of reliability, precision, or consistency of scoring, it shows a significant improvement
over the LAS, TF-IDF, STF, and PAGCSPF algorithms. The proposed algorithm can be applied to the evaluation
of programs written in multiple languages.

Conclusion
This paper has proposed an automatic assessment algorithm for programming exercises based on graph semantic
similarity. The algorithm calculates the similarity between the students’ programs and the teacher’s programs in
terms of the structural similarity of PDGs and the semantic similarity of nodes. Based on the typical reviewing
behavior of human teachers, a new optimal similar node path matching algorithm was proposed. This improves
the efficiency of calculating the similarity of PDGs, achieving a time complexity of O(n2) . Experiments on two
datasets show that the proposed algorithm is superior to LSA, TF-IDF, STF, and PAGCSPF algorithms in terms
of reliability and accuracy. The program assessment algorithm proposed in this paper can be used to assess code
that cannot be compiled correctly, and supports the assessment of programs written in C/C++, Java, Python,
and other languages. The accuracy of the evaluation algorithm proposed in this paper depends, to some extent,
on the number of teacher program templates. In future work, we will integrate dynamic evaluation to discover
and incorporate innovative student code, supplementing it into the teacher templates. Simultaneously, we will
further investigate AI-based techniques for generating teacher program templates to automatically create richer
and more diverse templates, thereby enhancing the accuracy of the evaluation algorithm.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable
request.

Figure 10. Average score and standard deviation of different algorithms.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

Received: 12 June 2023; Accepted: 2 May 2024

References
 1. Gordillo, A. Effect of an instructor-centered tool for automatic assessment of programming assignments on students’ perceptions

and performance. Sustainabilityhttps:// doi. org/ 10. 3390/ su112 05568 (2019).
 2. Liu, X., Wang, S., Wang, P. & Wu, D. Automatic grading of programming assignments: An approach based on formal semantics. In

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET).
126–137 https:// doi. org/ 10. 1109/ ICSE- SEET. 2019. 00022 (2019).

 3. Wang, T., Su, X., Wang, Y. & Ma, P. Semantic similarity-based grading of student programs. Inf. Softw. Technol. 49, 99–107. https://
doi. org/ 10. 1016/j. infsof. 2006. 03. 001 (2007).

 4. Tharmaseelan, J., Manathunga, K., Reyal, S., Kasthurirathna, D. & Thurairasa, T. Revisit of automated marking techniques for
programming assignments. In 2021 IEEE Global Engineering Education Conference (EDUCON). 650–657 https:// doi. org/ 10. 1109/
EDUCO N46332. 2021. 94538 89 (2021).

 5. Sara, et al. A new similarity-based method for assessing programming assignments using symbolic execution. Int. J. Appl. Eng.
Res. 13, 1963–1981 (2018).

 6. Cheng, L.-C., Li, W. & Tseng, J. C. R. Effects of an automated programming assessment system on the learning performances of
experienced and novice learners. Interact. Learn. Environ.https:// doi. org/ 10. 1080/ 10494 820. 2021. 20062 37 (2021).

 7. Li, Z., Li, L., Wu, Y., Liu, Y. & Chen, X. Automated student code scoring by analyzing grammatical and semantic information of
code. In 2021 16th International Conference on Computer Science & Education (ICCSE). 963–968. https:// doi. org/ 10. 1109/ ICCSE
51940. 2021. 95693 18 (2021).

 8. Delgado-Pérez, P. & Medina-Bulo, I. Customizable and scalable automated assessment of C/C++ programming assignments.
Comput. Appl. Eng. Educ. 28, 1449–1466. https:// doi. org/ 10. 1002/ cae. 22317 (2020).

 9. Russell, S., Caton, S. & Becker, B. A. Online programming exams—An experience report. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1, ITiCSE 2023. 436–442. https:// doi. org/ 10. 1145/ 35871 02. 35888
29 (2023).

 10. Zen, K., Iskandar, D. A. & Linang, O. Using latent semantic analysis for automated grading programming assignments. In 2011
International Conference on Semantic Technology and Information Retrieval. 82–88. https:// doi. org/ 10. 1109/ STAIR. 2011. 59957 69
(2011).

 11. Inturi, S. & Swamydas, M. Programming assignment grading through control statement and program features. In 2023 International
Conference on Emerging Techniques in Computational Intelligence (ICETCI). 122–129. https:// doi. org/ 10. 1109/ ICETC I58599. 2023.
10331 134 (2023).

 12. Rahaman, M. A. & Latiful Hoque, A. S. M. Automatic evaluation of programming assignments using information retrieval
techniques. In Proceedings of International Conference on Computational Intelligence and Data Engineering. 47–57. https:// doi.
org/ 10. 1007/ 978- 981- 13- 6459-4_6 (2019).

 13. Verma, A., Udhayanan, P., Shankar, R. M., KN, N. & Chakrabarti, S. K. Source-code similarity measurement: Syntax tree
fingerprinting for automated evaluation. In Proceedings of the First International Conference on AI-ML Systems. https:// doi. org/
10. 1145/ 34860 01. 34862 28 (2021).

 14. Zougari, S., Tanana, M. & Lyhyaoui, A. Hybrid assessment method for programming assignments. In 2016 4th IEEE International
Colloquium on Information Science and Technology (CiSt). 564–569 https:// doi. org/ 10. 1109/ CIST. 2016. 78051 12 (2016).

 15. Bai, Y. et al. Simgnn: A neural network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. 384–392. https:// doi. org/ 10. 1145/ 32896 00. 32909 67 (2019).

 16. Messer, M., Brown, N. C. C., Kölling, M. & Shi, M. Machine learning-based automated grading and feedback tools for programming:
A meta-analysis. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1, ITiCSE
2023. 491–497. https:// doi. org/ 10. 1145/ 35871 02. 35888 22 (2023).

 17. Srikant, S. & Aggarwal, V. A system to grade computer programming skills using machine learning. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1887–1896. https:// doi. org/ 10. 1145/ 26233 30.
26233 77 (2014).

 18. Lazar, T., Možina, M. & Bratko, I. Automatic extraction of AST patterns for debugging student programs. In Artificial Intelligence
in Education (André, E., Baker, R., Hu, X., Rodrigo, M. M. T. & du Boulay, B. eds.). 162–174. https:// doi. org/ 10. 1007/ 978-3- 319-
61425-0_ 14 (2017).

 19. Rezende Souza., F. D., de Assis Zampirolli., F. & Kobayashi., G. Convolutional neural network applied to code assignment grading.
In Proceedings of the 11th International Conference on Computer Supported Education—Vol. 1: CSEDU. 62–69. https:// doi. org/ 10.
5220/ 00077 11000 620069 (2019).

 20. Nabil, R. et al. Evalseer: An intelligent gamified system for programming assignments assessment. In 2021 International Mobile,
Intelligent, and Ubiquitous Computing Conference (MIUCC). 235–242. https:// doi. org/ 10. 1109/ MIUCC 52538. 2021. 94476 29 (2021).

 21. Srikant, S. & Aggarwal, V. A system to grade computer programming skills using machine learning. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. https:// doi. org/ 10. 1145/ 26233 30. 26233 77 (2014).

 22. Muddaluru, R. V., Thoguluva, S. R., Prabha, S., Pati, P. B. & Balakrishnan, R. M. Auto-grading C programming assignments with
Codebert and random forest regressor. In 2023 14th International Conference on Computing Communication and Networking
Technologies (ICCCNT). 1–6. https:// doi. org/ 10. 1109/ ICCCN T56998. 2023. 10308 341 (2023).

 23. Forsythe, G. E. & Wirth, N. Automatic grading programs. Commun. ACM 8, 275–278. https:// doi. org/ 10. 1145/ 364914. 364937
(1965).

 24. Douce, C., Livingstone, D. & Orwell, J. Automatic test-based assessment of programming: A review. J. Educ. Resour. Comput. 5,
4. https:// doi. org/ 10. 1145/ 11634 05. 11634 09 (2005).

 25. Hung, S.-L., Kwok, L.-F. & Chan, R. Automatic programming assessment. Comput. Educ. 20, 183–190. https:// doi. org/ 10. 1016/
0360- 1315(93) 90086-X (1993).

 26. Reek, K. A. The try system -or- how to avoid testing student programs. SIGCSE Bull. 21, 112–116. https:// doi. org/ 10. 1145/ 65294.
71198 (1989).

 27. Joy, M. & Luck, M. On-line Submission and Testing of Programming Assignments. Vol. 1. 95–103 (SEDA, 1995).
 28. Benford, S. D., Burke, E. K., Foxley, E. & Higgins, C. A. The Ceilidh system for the automatic grading of students on programming

courses. In Proceedings of the 33rd Annual on Southeast Regional Conference, ACM-SE 33. 176–182. https:// doi. org/ 10. 1145/ 11220
18. 11220 50 (1995).

 29. Nayak, S., Agarwal, R. & Khatri, S. K. Automated assessment tools for grading of programming assignments: A review. In 2022
International Conference on Computer Communication and Informatics (ICCCI). 1–4. https:// doi. org/ 10. 1109/ ICCCI 54379. 2022.
97407 69 (2022).

 30. Agrawal, A. & Reed, B. A survey on grading format of automated grading tools for programming assignments. In ICERI2022
Proceedings, 15th Annual International Conference of Education, Research and Innovation. 7506–7514. https:// doi. org/ 10. 21125/
iceri. 2022. 1912 (2022).

https://doi.org/10.3390/su11205568
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://doi.org/10.1016/j.infsof.2006.03.001
https://doi.org/10.1016/j.infsof.2006.03.001
https://doi.org/10.1109/EDUCON46332.2021.9453889
https://doi.org/10.1109/EDUCON46332.2021.9453889
https://doi.org/10.1080/10494820.2021.2006237
https://doi.org/10.1109/ICCSE51940.2021.9569318
https://doi.org/10.1109/ICCSE51940.2021.9569318
https://doi.org/10.1002/cae.22317
https://doi.org/10.1145/3587102.3588829
https://doi.org/10.1145/3587102.3588829
https://doi.org/10.1109/STAIR.2011.5995769
https://doi.org/10.1109/ICETCI58599.2023.10331134
https://doi.org/10.1109/ICETCI58599.2023.10331134
https://doi.org/10.1007/978-981-13-6459-4_6
https://doi.org/10.1007/978-981-13-6459-4_6
https://doi.org/10.1145/3486001.3486228
https://doi.org/10.1145/3486001.3486228
https://doi.org/10.1109/CIST.2016.7805112
https://doi.org/10.1145/3289600.3290967
https://doi.org/10.1145/3587102.3588822
https://doi.org/10.1145/2623330.2623377
https://doi.org/10.1145/2623330.2623377
https://doi.org/10.1007/978-3-319-61425-0_14
https://doi.org/10.1007/978-3-319-61425-0_14
https://doi.org/10.5220/0007711000620069
https://doi.org/10.5220/0007711000620069
https://doi.org/10.1109/MIUCC52538.2021.9447629
https://doi.org/10.1145/2623330.2623377
https://doi.org/10.1109/ICCCNT56998.2023.10308341
https://doi.org/10.1145/364914.364937
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1016/0360-1315(93)90086-X
https://doi.org/10.1016/0360-1315(93)90086-X
https://doi.org/10.1145/65294.71198
https://doi.org/10.1145/65294.71198
https://doi.org/10.1145/1122018.1122050
https://doi.org/10.1145/1122018.1122050
https://doi.org/10.1109/ICCCI54379.2022.9740769
https://doi.org/10.1109/ICCCI54379.2022.9740769
https://doi.org/10.21125/iceri.2022.1912
https://doi.org/10.21125/iceri.2022.1912

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:10530 | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

 31. Jackson, D. A semi-automated approach to online assessment. SIGCSE Bull. 32, 164–167. https:// doi. org/ 10. 1145/ 353519. 343160
(2000).

 32. Truong, N., Roe, P. & Bancroft, P. Static analysis of students’ java programs. In Proceedings of the Sixth Australasian Conference on
Computing Education—Vol. 30, ACE ’04. 317–325. https:// doi. org/ 10. 5555/ 979968. 980011 (2004).

 33. Romli, R., Sulaiman, S. & Zamli, K. Z. Automatic programming assessment and test data generation a review on its approaches. In
2010 International Symposium on Information Technology. Vol. 3. 1186–1192. https:// doi. org/ 10. 1109/ ITSIM. 2010. 55614 88 (2010).

 34. Xu, K. et al. Student programs performance scoring based on probabilistic latent semantic analysis and multi-granularity feature
fusion for MOOC. In 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC).
893–896. https:// doi. org/ 10. 1109/ ICNIS C57059. 2022. 00179 (2022).

 35. AlShamsi, F. & Elnagar, A. An automated assessment and reporting tool for introductory java programs. In 2011 International
Conference on Innovations in Information Technology. 324–329. https:// doi. org/ 10. 1109/ INNOV ATIONS. 2011. 58938 42 (2011).

 36. Wang, Z., Shen, H., Cao, Q. & Cheng, X. Survey on graph classification. J. Softw. 33, 171. https:// doi. org/ 10. 13328/j. cnki. jos. 006323
(2022).

 37. Xu, Z., Zhang, K., Ning, L. & Gu, T. Summary of graph edit distance. Comput. Sci. 45, 11–18. https:// doi. org/ 10. 11896/j. issn. 1002-
137X. 2018. 04. 002 (2018).

 38. Bunke, H. & Shearer, K. A graph distance metric based on the maximal common subgraph. Pattern Recognit. Lett. 19, 255–259.
https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0167 86559 70017 97 (1998).

 39. Zeng, Z., Tung, A. K. H., Wang, J., Feng, J. & Zhou, L. Comparing stars: On approximating graph edit distance. Proc. VLDB Endow.
2, 25–36. https:// doi. org/ 10. 14778/ 16876 27. 16876 31 (2009).

 40. Wang, Z. & Liu, C. Wind turbine gearbox condition monitoring based on box–cox transformation and relative entropy residual
analysis. Proc. CSEE 40, 4210–4218 https:// doi. org/ 10. 13334/j. 0258- 8013. pcsee. 191338 (2020).

 41. Ma Peijun, S. X. & Tiantian, W. Automatic grading of student programs based on program understanding. J. Comput. Res. Dev.
46, 1136–1142 (2009).

 42. Zhang, Q., Li, M. & Deng, Y. Measure the structure similarity of nodes in complex networks based on relative entropy. Phys. A
Stat. Mech. Appl. 491, 749–763. https:// doi. org/ 10. 1016/j. physa. 2017. 09. 042 (2018).

Acknowledgements
This work was supported in part by the Science and Technology Foundation of Guizhou Province (No.
QianKeHeJiChu-ZK[2021]YiBan 309), and the Youth Program of the Education Foundation of Guizhou Province
(No. QianJiaoHeKYZi[2021]248).

Author contributions
C.X. and Y.W. conceived the methods and the research; C.X and Z.Y. conducted the experiment; C.X. and Q.Z.
wrote the paper. All authors reviewed the Manuscript.Te data used in this article have been approved by the
author.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1145/353519.343160
https://doi.org/10.5555/979968.980011
https://doi.org/10.1109/ITSIM.2010.5561488
https://doi.org/10.1109/ICNISC57059.2022.00179
https://doi.org/10.1109/INNOVATIONS.2011.5893842
https://doi.org/10.13328/j.cnki.jos.006323
https://doi.org/10.11896/j.issn.1002-137X.2018.04.002
https://doi.org/10.11896/j.issn.1002-137X.2018.04.002
https://www.sciencedirect.com/science/article/pii/S0167865597001797
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.13334/j.0258-8013.pcsee.191338
https://doi.org/10.1016/j.physa.2017.09.042
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Graph semantic similarity-based automatic assessment for programming exercises
	Related work
	Preliminaries
	Graph similarity calculation
	Relative entropy
	Maximum common subsequence

	Automatic assessment algorithm for program work based on graph semantic similarity
	Experiments
	Datasets
	Assessment indicators
	Experimental results

	Conclusion
	References
	Acknowledgements

