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Graph semantic similarity‑based 
automatic assessment 
for programming exercises
Chengguan Xiang 1,2, Ying Wang 1*, Qiyun Zhou 1 & Zhen Yu 2

This paper proposes an algorithm for the automatic assessment of programming exercises. The 
algorithm assigns assessment scores based on the program dependency graph structure and the 
program semantic similarity, but does not actually need to run the student’s program. By calculating 
the node similarity between the student’s program and the teacher’s reference programs in terms of 
structure and program semantics, a similarity matrix is generated and the optimal similarity node path 
of this matrix is identified. The proposed algorithm achieves improved computational efficiency, with a 
time complexity of O(n2) for a graph with n nodes. The experimental results show that the assessment 
algorithm proposed in this paper is more reliable and accurate than several comparison algorithms, 
and can be used for scoring programming exercises in C/C++, Java, Python, and other languages.

Keywords Automatic assessment, Program dependency graph, Program semantics, Similarity, Programming 
exercises

Programming is one of the basic skills required by students of computer-related majors in colleges and 
 universities1. In the teaching of programming courses, the assessment of exercises submitted by students forms 
the basis for feedback that is intended to stimulate the students’ interest in learning. However, the manual 
assessment of students’ programming exercises is time-consuming, labor-intensive, and error-prone2. Replacing 
manual assessment with automatic assessment would not only reduce the workload of teachers, but also 
provide instant feedback through the assessment results, thereby enhancing the learning experience. There 
has been extensive research on the automatic assessment of program tasks, with the two main directions being 
dynamic assessment and static  assessment3,4. The scoring mechanism used in dynamic assessment is based on 
the number of test cases passed by the student’s program. Many popular online judge systems use dynamic 
program assessment. However, this method can only assess executable code that runs without  errors4. Student 
codes with a few wrong but almost-correct answers will be assigned zero points, which stifles the confidence 
of  learners5 and leads to a significant decline in learning attitudes and  motivation6, making it difficult for the 
students’ scores in the class to follow a normal  distribution7. The scoring mechanism used in static assessment 
calculates the similarity between the student’s program and the teacher’s programs through statistical analysis, 
without executing the student code. In other words, the grading mechanism does not execute the student’s code 
to assess its correctness or performance, and it does not consider compilation errors or runtime errors. Instead, 
it analyzes the structure, syntax, semantics, and other characteristics of the student’s program, compares them 
with the teacher’s program, and calculates the similarity between them. This method simulates the teacher’s 
assessment process to a certain  extent8 and is more suitable for the actual programming teaching  environment9. 
It is evident that similarity-based static evaluation methods hold greater promise. Recently, these methods have 
primarily included those based on latent semantic  analysis10,11, information  retrieval12, syntax trees and program 
dependency  graphs13–15, and machine  learning16–22. While these methods have shown certain effectiveness in 
certain scenarios, they also face numerous challenges. These include issues such as the lack of training data due 
to the absence of student code for new problems, reliability issues stemming from the diversity of programming 
languages, and evaluation efficiency issues caused by low graph computation efficiency.

To address these challenges and enhance the accuracy and efficiency of evaluation. In this paper, a graph 
semantic similarity-based automatic assessment method for programming exercises is proposed. This method 
calculates the code similarity from the structural similarity of the program dependency graph and the semantic 
similarity of the nodes, and then assigns a score to the student’s code. The specific contributions of this paper 
are as follows:
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(1)  Taking the structural similarity of the program dependency graph and the semantic similarity of the nodes 
as the assessment criteria, a new automatic assessment algorithm for student’s programming exercises is 
proposed.

(2) By calculating the node similarity between the student’s program and the teacher’s programs, a similarity 
matrix is generated. An optimal similar node path matching algorithm is proposed, which improves the 
efficiency of calculating the similarity of the program dependency graph. For a program dependency graph 
with n nodes, the time complexity is O(n2).

(3) The assessment algorithm proposed in this paper can be used to score programs that have compilation 
errors or cannot be executed correctly, and supports the scoring of programs in multiple programming 
languages.

The remainder of this paper is organized as follows. “Related work” outlines the relevant research work 
on automatic evaluation of program assignments. “Preliminaries” introduces some preliminaries required to 
develop the proposed algorithm. “Automatic assessment algorithm for program work based on graph semantic 
similarity” describes the proposed assessment algorithm in detail, before “Experiments” presents the results of 
an experimental verification process. Finally, “Conclusion” summarizes the results of this study.

Related work
Since the 1960s, researchers have been continuously exploring and studying the technology of automatic code 
evaluation. In 1965, the first automated testing system for programming appeared, achieving a breakthrough 
from 0 to  123.

From 1980 to 1999, automatic programming code evaluation technology emerged in the form of command-
line or graphical user interface tools, requiring the design of a set of commands to execute student programs, 
focusing on evaluating whether the program is  correct24. Hung et al.25 proposed an automatic scoring algo-
rithm for programs based on software metrics, considering factors such as programming skills, complexity, 
programming style, and program efficiency.Reek26 developed the TRY system, which aims to provide accurate 
and objective evaluation methods, by using teachers’ test data to evaluate the running performance of student 
programs.Joy and  Luck27 developed an online programming assignment submission and testing system called 
BOSS, which allows students to perform self-tests before submitting their programs to ensure their correctness.
The Ceilidh automatic scoring system not only evaluates whether the program is correctly executed and whether 
the programming style is standardized, but also further analyzes the complexity of the program  structure28.

From 2000 to 2010, the rise of the Internet has greatly influenced the way people work and learn, and web-
based software architectures have become the new trend of the era. Programming code automatic evaluation has 
also ushered in a golden age of  development24,29,30.  Jackson31 argues that the challenge in automatic assessment 
of student programming assignments lies in ensuring that the program output is entirely correct, and proposes 
that a combination of human and machine evaluation can better handle assignment assessment.Truong et al.32 
introduced a static analysis framework that utilizes software engineering metrics to assess program quality. They 
selected a method based on the XML representation of program abstract syntax trees to analyze and validate the 
structural similarity of student solutions. Romli et al.33 argue that in evaluations, the focus should not only be 
on detecting program errors, but also on assessing programming assignments through program static analysis 
to ensure effective achievement of teaching objectives.

Since 2011, the rapid development of information technologies such as big data, cloud computing, the Internet 
of Things, and the Internet has promoted the rapid development of artificial intelligence. Integrating artificial 
intelligence techniques into similarity-based static evaluation of programming code has become one of the focal 
points of researchers’ attention and has yielded significant research achievements in this direction. Zen et al.10 
proposed an algorithm for automatically scoring programming exercises using latent semantic analysis(LSA), 
with a semantic vector space constructed by extracting the code structure and the cosine similarity between the 
student’s exercises and answers calculated as the assessment criterion. Xu et al.34 propose a multi-granularity 
feature fusion automatic scoring method based on latent semantic analysis. They extract features from student 
programs and standard answer template programs, and calculate the similarity between the features. Inturi et al.11 
proposed the Programming Assignment Grading through Control Statement and Program Features (PAGCSPF) 
algorithm. This is a novel similarity measurement method that utilizes control statement features and program 
features to compare and compute the similarity between student program code and teacher program code based 
on their semantic execution patterns. The scoring results are similar to those of human teachers. Rahaman et al.12 
proposed an evaluation model that automatically evaluates C programming assignments using the TF-IDF(Term 
Frequency-Inverse Document Frequency) algorithm. By constructing TF-IDF score vectors of student programs 
and teacher programs, the cosine similarity between the vectors is calculated to give a score. However, due to the 
richness of programming languages, such as the use of different identifiers for variables, the reliability of evalu-
ation is poor. Verma et al.13 proposed the Syntax Tree Fingerprinting for Automated Evaluation(STF) grading 
algorithm, which calculates the similarity of syntax tree structures by extracting code fingerprint features, and 
verified the feasibility of this algorithm on codes written in Python. However, the algorithm only assesses the 
compiled code, ignoring the rich feature information in the program dependency graph, which directly affects 
the assessment accuracy. AlShamsi et al.35 proposed the Grader system for programming course evaluation, 
which uses program graph representation to assess structural similarity and software metrics to evaluate program 
quality. The system matches the output of student programs with the model recognition process to effectively 
evaluate Java source code. Zougari et al.14 converted the program into a control flow graph to calculate the graph 
similarity. However, when the number of nodes in the graph is large, the result cannot be accurately calculated 
in a reasonable  time15, resulting in low assessment efficiency. Additionally, researchers have employed models 
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like ridge regression, random forest, convolutional neural networks (CNNs), long short-term memory (LSTM), 
among others, to analyze the code submitted by students. These models are used to compare the submitted code 
with the reference answer, automatically determining its correctness and  quality16. Srikant et al.17 achieved better 
scoring results using ridge regression models than scoring based on test cases. Lazar et al.18 used random forest 
in automatic program evaluation algorithm, achieving a correct rate of over 85%. Rezende Souza et al.19 trained 
a convolutional neural network on collected exercises and achieved an average accuracy of 74.9%. Nabil et al.20 
introduced long-term and short-term memory into the evaluation system to perform code analysis to detect 
syntax errors. Srikant et al .21 used machine learning to assess the similarity of student codes through the latent 
semantic modeling of grammatical features and code structures. Muddaluru et al.22 proposed a deep learning 
and statistics combination method to predict C programming code scores. The model was used for word vector 
conversion preprocessing, and CNN, random forest, and LSTM were integrated to predict the scores of program-
ming assignments. However, in programming teaching, if teachers often use past questions to test students, it 
may lead to serious plagiarism by students. To avoid this situation, teachers need to use new questions to test 
students, to ensure that they can truly master programming skills and solve problems independently. However, 
new questions have fewer solutions, making it difficult to meet the data requirements for machine learning train-
ing. Therefore, it can be seen that there are defects in the practical programming teaching environment based 
on machine learning evaluation methods.

Preliminaries
Graph similarity calculation
Calculating the graph similarity is a key issue in the field of graph research, and is the basis for many downstream 
tasks. The graph similarity calculation is often based on graph kernel and graph matching methods. The graph 
kernel method first decomposes the graph into a combination of subgraph structures, and then measures the 
graph similarity by comparing the subgraph distributions of the two graphs. For graphs with n vertices, the time 
complexity of the classical Graphlet kernel method is O(n4)36. In contrast, graph matching methods first calcu-
late a certain similarity measure between two graphs through the cross-graph mechanism, such as the classical 
graph edit distance (GED) algorithm. Based on the greedy assignment problem, GED has a time complexity of 
O((n+m)2) when the two graphs contain n and m vertices,  respectively36,37. However, the current core method 
of calculating the graph similarity is an NP-complete  problem15,38,39. When the number of nodes in the two 
graphs is greater than 16, even the most advanced GED algorithm cannot accurately calculate the results within 
a reasonable  time15.

Relative entropy
The relative entropy is a measure of the difference between two independent probability  distributions40, also 
known as the Kullback-Leibler (KL) divergence. For the same random variable X, if there are two independent 
probability distributions P(x) and Q(x), then the relative entropy DKL(P||Q) is defined as

Maximum common subsequence
A sequence c that is a subsequence of both string X and string Y is called a common subsequence of X and Y. All 
common subsequences of X and Y constitute the set C = {c1, c2, · · · , cn} . If ci(1 � i � n) is the element with the 
largest length in the set, then ci is the largest common subsequence (LCS) of X and Y.

Automatic assessment algorithm for program work based on graph semantic 
similarity
In the process of teaching programming, when reviewing the program codes submitted by students, teachers 
often compare the similarity between the student’s program and the reference answers (search score points), 
and assign scores according to the degree of matching. Therefore, by calculating the similarity between the 
student’s program code and the correct codes given by the teacher, assessment methods based on the similarity 
score are closer to the characteristics of human assessment  behavior41. This paper proposes a graph semantic 
similarity-based automatic assessment method for programming exercises, which solves the scoring problem in 
the assessment of students’ programming courses. The process of the proposed algorithm, which is illustrated in 
Fig. 1, includes four main steps, and the pseudo-code of the algorithm is shown in Fig. 2.

In this section, we mainly introduce four steps of automatic evaluation of program tasks based on graph 
semantic similarity.

Step 1: Source code input. The input is a collection of source code from the student’s program and the teacher’s 
programs. The student’s program source code refers to a single program text submitted by a student. The teacher’s 
programs source code refers to the collection of program source code giving various solutions corresponding 
to the problem.

Step 2: Program representation.

1. Generate abstract syntax tree
  Abstract syntax tree(AST) is a tree diagram representing the syntactic structure of a program. Each node 

on the tree represents a structure in the source code, and is used for compiler optimization, code generation, 
static analysis, and other tasks. To ensure that the assessment algorithm supports a variety of programming 

(1)DKL(P�Q) =
∑

x∈X

P(x) log
P(x)

Q(x)
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languages and meets the needs of programming teaching to the greatest extent, it is necessary to convert the 
source code of the student’s program and the teacher’s programs into a syntax tree. The syntax trees created 
by srcML (https:// www. srcml. org) allow for convenient analysis and manipulation of the source code, with 
the tree structure represented by formatted xml. Thus, srcML is a lightweight, highly extensible, and robust 
multi-language syntax tree generation tool. The xml documents can be accessed using the jsoup tool (https:// 
jsoup. org). For the simple case of three integer variables a, b, c in the C language declaration statement, the 
syntax tree representation generated by srcML is shown in Fig. 3.

Figure 1.  Algorithm flow of automatic assessment of program work based on the similarity of graph semantics.

Step 1: Source code input.
Input the student's code
Input the teacher's code
Step 2: Program representation, Generate AST
Generate the AST for the student's code, named as studentXml
Generate a list of AST for all teacher programs, named as teacherXmls
// Construct Program Dependence Graph, Control Flow Graph, Data Flow Graph, Data Dependency Graph
studentCodeGraph = generatingGraph(studentXml)
teacherCodeGraphs = []
For each teacherXml in teacherXmls:
    teacherCodeGraphs.append(generatingGraph(teacherXml))
Step 3: Similarity calculation, Calculate the semantic similarity between node structure similarity 
and node value based on relative entropy, and generate a similarity matrix
Similarity matrices simMatrixList = []
For each graph in teacherCodeGraphs:
    simMatrixList.append(createSimMatrix(graph, studentCodeGraph))
simList = []
For each matrix in simMatrixList:
    // Dynamic programming is used to realize the similarity algorithm
    simList.append(calcMaxPath(matrix, sizeOf(studentCodeGraph), sizeOf(teacherCodeGraphs)))
Step 4: Scoring
maxSim = 0
For each sim in simList:
    maxSim = max(maxSim, sim)
// Output score, pScore: the full score for question
printScore(maxSim * pScore)

Figure 2.  Pseudo-code representation of automatic assessment of program work based on the similarity of 
graph semantics.

Figure 3.  Example syntax tree generated by srcML.

https://www.srcml.org
https://jsoup.org
https://jsoup.org
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2. Abstract syntax tree standardization
  The purpose of standardization is to eliminate syntactic differences between programs as far as possible. 

This reduces the number of teacher’s programs and improves the accuracy of  assessment3. 

(1) Variable declaration node standardization. The richness of programming languages means that vari-
ables can be declared in various forms. It is possible to declare only one variable after a data type 
identifier, or to declare multiple variables at the same time and initialize their values when declaring 
variables, such as int a,b,c = 0. In languages such as C++, Java, and Python, it is not necessary for all 
declaration statements to be placed at the beginning of the program. The standardization of syntax 
trees is intended to eliminate this variety. During standardization, only one variable can be declared 
after a data type identifier. A declaration containing multiple variables is decomposed into multiple 
statements, and the initialization assignment is decomposed into independent assignment state-
ments. The declaration of all variables must be placed at the beginning of the largest program block 
in its scope. The variables are listed in descending order according to the number of references in 
the subsequent program (if the number of references is the same, they are listed in the order of the 
references). For example, the variable declaration statement int a = 1, b, c; in the C language can be 
standardized as int a; int b; int c; a=1;. The standardized syntax tree is shown in Fig. 4.

(2) Expression node equivalence standardization. Expressions that are semantically equivalent to each 
other have various forms of expression. The equivalence standardization of expression nodes is 
intended to eliminate the changes and differences between expressions, resulting in as unified a 
form as possible. All /=, %=, *=, −=, +=, ++, –, and other statements in the program are converted 
into general forms, e.g., a/ = b becomes a = a+ b . Compound statement nodes are decomposed 
into multiple simple statement nodes, i.e., x = y = z is decomposed into two nodes, x = y and y = z . 
Symbolic calculation is used to simplify algebraic expressions and logical expressions. For example, 
the algebraic expression y = x + 3+ 3 ∗ x + y ∗ 0+ x + 1 is normalized to y = 5 ∗ x + 4 , and the 
logical expression y = (a||a&&b) is simplified to y = a.

(3) Node semantic standardization. In the programming process, students have considerable autonomy 
in the choice of identifiers such as variable names and function names, and it is impossible to force 
students to use uniform  identifiers10. For example, with the statement for(int i=0;i<n;i=i+1), students 
could write for(int low=0;low<len; low=low+1). To eliminate this semantic difference, all identifiers 
are replaced with “#” in statements, and arithmetic operators, logical operators, parentheses, and 
constants remain unchanged. For example, the statement for(int i=0;i<n;i=i+1) can be mapped to 
the latent semantics #(# #=0 # < # # = # + 1), and the statement if(n>m && x<y) can be mapped to 
the latent semantics #(# > # && # < #). Finally, the value of the node is marked as a latent semantic 
string.

(4) Delete nodes with invalid semantics. Deleting all sentences that do not contain actual semantics will 
improve the accuracy of the assessment. Thus, combined with a previous  suggestion2, sentence nodes 
with invalid semantics are deleted according to the following rules. 

A. Delete statement nodes that do not modify any variable data, such as the statements x = x and 
x + 3;

B. If two adjacent assignment statement nodes are assigned to the same variable and will not cause 
other variable values to be lost, delete the former node, such as for the two assignment statement 
nodes x = y and x = z , where the node x = y is deleted;

C. If the variable is not used after being assigned, delete the expression node;
D. After executing the first three deletion rules, delete all variable declaration nodes that are not ref-

erenced in their scope.

(5) Node structure standardization. In the syntax tree generated in the previous step, the nodes are 
reconstructed according to the statement, and the statement information is decomposed into node 
attributes. Because the program is executed from top to bottom, it is vital to maintain the consistency 
of each node in the syntax tree and the program source code. Thus, the middle root traversal method 
of the tree is used to number (ID) the nodes in the syntax tree, except for the root node. Nodes other 
than the root node are assigned natural numbers starting from 0, and root node is assigned a value 
of −1 (this refers to the root node of the syntax tree generated by srcML). For example, consider a 
program to calculate the value of a+aa+aaa+...+aa...a (where the number of digits in the final addend 
is n), where the values of n and a are input from the keyboard. The source code of a C program submit-

Figure 4.  Example of a standardized syntax tree for variable declarations.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10530  | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

ted by a student is shown in Fig. 5, and the syntax tree after the node structure has been standardized 
is shown in Fig. 6.

3.  Generating program dependency graph
  Program dependence graph(PDG) is a directed multigraph with labeled edges, used to represent the 

control and data dependencies in a program. The directed edges of the control flow graph(CFG), data 
flow graph(DFG), and data dependency graph(DDG) are then added to the standardized syntax tree to 
generate the program feature adjacency matrix. For the syntax tree shown in Figure 6, the generated program 
dependency graph is shown in Figure 7.

4. Generating graph adjacency matrix
  Neglecting the root node, which has an ID of −1 , if the directed graph A = (V ,E) is the PDG, where V 

represents the set of n nodes and E represents the set of all directed edges, then the adjacency matrix can be 
represented as

Figure 5.  Program source code.

Figure 6.  Normalized syntax tree.
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Step 3: Similarity calculation. After calculating the adjacency matrix of the dependency graph between the 
student’s program and the teacher’s template programs, the student’s program is matched with each of the 
teacher’s template programs and the relative entropy of structural information and semantic information is used 
to measure the similarity between nodes. This section describes a semantic similarity calculation method based 
on the relative entropy of the nodes and the maximum common subsequence.

1. Calculate the similarity between each node in the dependency graphs of the student’s program and the 
teacher’s programs.

  Calculating the similarity between nodes is equivalent to finding the differences between local structural 
information. If the difference between nodes is relatively small, the similarity is relatively large, and vice 
 versa42. Therefore, the relative entropy and semantics can be used to quantify the difference between nodes. 
The calculation method is divided into four steps: (a) Generate the probability set of nodes and adjacent 
nodes; (b) Calculate the relative entropy of the node pair; (c) Calculate the semantic maximum common 
subsequence length of all AST subtree nodes contained in the node pair; (d) Calculate the similarity of two 
nodes from the relative entropy and maximum common subsequence length.

  To clarify the calculation of the similarity between nodes, we use GA to represent the student’s program 
dependency graph and GB to represent the teacher’s programs dependency graph. Let nodes x and y be taken 
from the node sets of graphs GA and GB , respectively, and let |GA| and |GB| represent the numbers of nodes 
in graphs GA and GB . 

(1) Generate the probability set of nodes and adjacent points A local network is composed of nodes and 
their adjacent points. Let D(GA) represent the degree of graph GA and D(GB) represent the degree of 
graph GB , and Dmax = Max(D(GA),D(GB)) . The probability set of node i, P(i), is used to calculate 
the relative entropy, and node i itself is included in the calculation. Thus, P(i) should have Dmax + 1 
elements, and is specifically expressed as follows: 

 When Dmax � k > 0, p(i, k) represents the probability of the kth adjacent point of node i, and p(i, 0) 
represents the probability of node i itself, that is, 

(2)Mi∈V&&j∈V (i, j) =

{

1 if < i, j >∈ E� < j, i >∈ E
0 else

(3)P(i) =
[

p(i, 0), p(i, 1), · · · , p(i,Dmax )
]

Figure 7.  Normalized program dependency graph.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10530  | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

 For the PDG shown in Fig. 7, if the degree of the PDG it is being compared with is less than 12, then 
Dmax = 12 , and the adjacent points of node 11 are 2, 4, 6, 10, 12, 14, and 15. Therefore, the prob-
ability set of node 11 is 

(2) Calculate the relative entropy of the node pair The relative entropy represents the asymmetric differ-
ence between two probability distributions. Both the relative entropy and similarity will be different 
when calculated using a different order of elements in the probability  set42. Therefore, when calculat-
ing the relative entropy of a node pair, the first element of the probability set must be the probability 
of the current node, and the other elements are arranged in descending order of probability. Let P′(i) 
represent the probability set of node i after sorting, which is expressed as follows: 

 For example, the probability set P(11) in the previous section is reordered as follows: 

 Let P′(x) represent the probability set of nodes in graph GA and P′(y) represent the probability set of 
nodes in graph GB . The relative entropy of x and y is defined as follows: 

(3) Calculate the maximum common subsequence length of all AST subtree node semantics contained 
in the node pair Use the first root access nodes x and y as the AST subtrees of the root nodes, 
respectively, and connect the semantic attribute values of the visited nodes as the semantic sequence 
of the nodes, denoted as token_sequences(x) and token_sequences(y) . In the PDG shown in Fig. 7, 
token_sequences(11) = “#(# = 0# < ## = #+ 1)# = #+ 10 ∗ ## = #+ #′′ . The dynamic program-
ming algorithm is used to calculate the maximum common subsequence length of nodes x and y, 
that is, 

(4) Calculate the similarity of two nodes from the relative entropy and maximum common subsequence 
length The similarity between nodes x and y is quantified using the relative entropy of node pairs 
and the longest common subsequence. The similarity based on the relative entropy of node pairs is 
defined as follows: 

 The similarity of the LCS based on the node pair is defined as follows: 

 The similarity between nodes x and y is then defined as: 

 where a is the similarity weight based on the relative entropy of the node pair, b is the similarity 
weight based on the LCS of the node pair, and a+ b = 1 . The optimal values of a and b are deter-
mined by least-squares estimation, a = 0.6416 , b = 0.3584 . We then calculate the similarity between 
each node in GA and each node in GB , and generate the node similarity matrix between GA and GB : 

2. Graph similarity calculation

(4)p(i, k) =















degree(i)

degree(i)+
�min (degree(i),Dmax)

m=1 degree(m)
k == 0

degree(k)

degree(i)+
�min (degree(i),Dmax)

m=1 degree(m)
k > 0&&k <= degree(i)

0 k > degree(i)

P(11) =

[

7

45
,
12

45
,
4

45
,
5

45
,
5

45
,
3

45
,
5

45
,
4

45
, 0, 0, 0, 0, 0

]

(5)P′(i) =
[

p(i, 0), p′(i, 1), . . . , p′(i,Dmax)
]

P′(11) =

[

7

45
,
12

45
,
5

45
,
5

45
,
5

45
,
4

45
,
4

45
,
3

45
, 0, 0, 0, 0, 0

]

(6)KL
(

P′(x)�P′(y)
)

=

min( degree (x),degree (y))
∑

m=0

p′(x,m) ln
p′(x,m)

p′(y,m)

(7)LCS_len(x, y) = length(LCS(token_sequences(x), token_sequences(y)))

(8)SimKL(x, y) = 1−
KL

(

P′(x)�P′(y)
)

+ KL
(

P′(y)�P′(x)
)

2

(9)SimLCS(x, y) =
2× LCS_len(x, y)

length(token_sequences(x))+ length(token_sequences(y))

(10)Sim(x, y) = a× SimKL(x, y)+ b× SimLCS(x, y)

M(GA,GB) =











Sim(0, 0) Sim(0, 1) · · · Sim(0, |GB| − 1)
Sim(1, 0) Sim(1, 1) · · · Sim(1, |GB| − 1)

...
...

...
...

Sim(|GA| − 1, 0) Sim(|GA| − 1, 1) · · · Sim(|GA| − 1, |GB| − 1)











|GA|×|GB|
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  Program assessment needs to return results within a reasonable time. To ensure the efficiency of the 
program dependency graph similarity calculation, this paper proposes a new optimal similar node path 
matching algorithm. The basic idea of the algorithm design is as follows: 

(1) When teachers review students’ programs, they usually compare them against reference programs, 
identify the statements (points) that are most likely to score, and assign points as appropriate. Finally, 
the students’ scores are aggregated according to all points.

(2) For novice programmers, incentives are more conducive to stimulating learning interest than penal-
ties. Thus, the assessment algorithm should attempt to determine the optimal pair of similar nodes, 
with each node only selected once.

(3) Because the program code is executed from top to bottom, the selection of the optimal similarity 
node pair must be carried out in sequence according to the AST first root sequence. In generating 
the optimal similarity path, the optimal similarity node for the current node can only appear in the 
first root sequence after the first pair of similar nodes.

(4) The similarity of two PDGs is measured as the sum of the similarity of all node pairs on the opti-
mal similarity path of the similarity matrix. In the similarity matrix M(GA,GB) , for any (v, w), 
0 � v < |GA|, 0 � w < |GB| , the optimal similar path is: 

 where SMV is the sum of the similarity of all nodes on the optimal similar path, namely: 

 The largest optimal similarity path with SMV is taken as the optimal similarity path of the similarity 
matrix M(GA,GB) . The similarity between graphs GA and GB is: 

 Dynamic programming is used to realize the similarity algorithm for GA and GB , as shown in Fig. 8. 
The time complexity of the algorithm is O(n2).

Step 4: Scoring.
After the previous processing steps, the similarity between the student’s program and the teacher’s set of 

programs can be calculated, and the maximum similarity is used to assign a score to the student. The formula 
for calculating the student’s score is as follows:

(11)SMP(v,w) =















(v,w) (v = |GA| − 1)or(w = |GB| − 1)
(v,w)

�
�

SMP
�

v + 1,w′
�

| w′ > w,
w′ < |GB|, SMV

�

v + 1, w′
�

> ∀{ others
SMV(v + 1,β)

�

�β �= w′,β > w,β <
�

�GB |
��

(12)SMV(v,w) =
∑

(α,β)∈SMP(v,w)

Sim(α,β)

(13)Sim graph (GA,GB) =
Max(v∈GA ,w∈GB)(SMV(v,w))

Max(|GA|, |GB|)

Figure 8.  Dynamic programming for implementing graph similarity algorithm.
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where PScore is the full score for the question, Simgraph(Gstudent ,Gi) refers to the similarity between the student’s 
PDG and the teacher’s i-th PDG, and n is the number of programs in the teacher’s set.

Experiments
Datasets
To verify the reliability and accuracy of the static program assessment algorithm based on graph semantic simi-
larity, an experimental verification was conducted using two datasets. The first dataset was taken from the final 
exam of a C language course covering 10 semesters across academic years 2011-2015. Excluding the unanswered 
questions on programming, 1576 exam papers were retained, with a total of 36 unique programming questions. 
All questions were manually corrected by teachers. To reduce the scoring errors caused by subjective factors 
such as fatigue and preference, and to ensure the fairness of the scoring, the project team hired four teachers (all 
experienced in teaching programming in C) to regrade the test papers one by one. The four teachers provided 
at least five reference programs for each question, and the full score for each programming question was set to 
10 points. When the deviation between two teachers was greater than 2 points, the four teachers discussed and 
revised the scores together. The teachers were asked to study the reference answers (reference procedures) for 
the questions carefully before grading.

The second dataset was the program code that passed all the test data in MAXUETANG platform(https://mxt.
cn). According to the requirement that only one record for the same subject was retained for the same student, 
duplicates were deleted. Additionally, subjects with fewer than 50 submission records in the same language were 
removed and their submission records were deleted. Finally, 856323 submission records and 1370 questions were 
retained, including 485624 C/C++ submission records, 256283 Java submission records, and 114416 Python 
submission records. The full score for each question was again set to 10 points. Students’ personal information 
was filtered in both datasets.

All methods were performed in accordance with the relevant guidelines and regulations of Guizhou Educa-
tion University. All experimental protocols were approved by the Academic and Ethic Committee at school of 
mathematics and big data, Guizhou Education University under approval number: GZEU-IRB20230107. The 
informed consent was obtained from all subjects.

Assessment indicators
When human teachers grade procedural questions, there will always be scoring errors. The reliability metric is 
used to analyze the effectiveness of the algorithm scores. If the score assigned by the proposed algorithm is within 
the given error margin of all teachers’ scores, it is considered an effective score; otherwise, it is an invalid score. 
Thus, the reliability of the proposed algorithm can be defined as the ratio of the number of valid scores (M) to 
the total number of ratings (N), namely:

The precision metric analyzes how close the score assigned by the proposed algorithm is to that assigned by a 
human teacher. A higher value of the precision indicates that the two are closer together. The precision is cal-
culated as follows:

Where N is the number of student programs being assessed, H represents the number of human teachers par-
ticipating in the assessment, S is the item score, xi  represents the proposed algorithm’s assessment score for the 
i-th program, and xij is the assessment score assigned by the j-th human teacher for the ith program.

Cosine similarity is used to represent the closeness between algorithm score vector A and teacher score vector 
B, with a value range of [ −1, 1 ]. The closer the value is to 1, the more similar they are. The calculation formula 
is as follows:

Where Ai and Bi represent the i-th score from the algorithm and the i-th score from the teacher, and n represents 
the total number of scores.

Experimental results
The algorithm implementation was written in Python and Java, and the experiments were conducted on a hard-
ware environment consisting of an Intel(R) Core(TM) i5-9400 CPU @ 2.90 GHz (6 CPUs), 8G memory, and the 
CentOS6.10 operating system. The experimental results are shown in Tables 1 and 2.

On dataset 1, the teacher scoring error was set to 2 points, and the average grade given by the teacher is 7.29. 
The proposed algorithm was compared with the LAS, TF-IDF, STF, and PAGCSPF algorithms. The experimental 
results presented in Table 1 show that the proposed algorithm achieves a reliability of 85.72% and a precision 

(14)Score = PScore ×Maxi∈{0,1,...,n−1}

(

Simgraph(Gstudent ,Gi)
)

(15)Reliability =
M

N
× 100%

(16)Precision =
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�

�

�
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1
H
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�
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S
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of 96.99%. As shown in Fig. 9a, the algorithm proposed in this article has higher reliability and precision than 
the other four algorithms. These scores are better than those of the four comparison algorithms. The evaluation 
results are more stable and reliable. Furthermore, as shown in Fig. 9b, the cosine similarity of the algorithm 
discussed in this paper stands at 0.9952, exceeding that of the other four comparative algorithms. As shown 
in Fig. 10, the average score of the algorithm proposed in this article is 7.14, which is only 0.15 lower than the 
average evaluation score of 7.29 given by the teacher, indicating a small difference. In comparison to the other 

Table 1.  Experimental results on dataset 1.

 Methods  Average score  Standard deviation  Reliability (%)  Precision (%)  Cosine Similarity

  LSA10 6.98 2.432 62.11 79.21 0.9232

 TF-IDF12 6.88 2.473 67.89 80.03 0.9213

  STF13 6.84 2.239 79.75 87.02 0.9581

  PAGCSPF11 6.95 2.190 83.62 94.59 0.9839

 Ours 7.14 2.173 85.72 96.99 0.9952

Table 2.  Experimental results on dataset 2.

Methods Language Average score Standard deviation Reliability (%) Precision (%) Cosine similarity

LSA10

C/C++ 8.09 2.326 60.17 80.92 0.9610

Java 8.39 2.217 67.28 83.94 0.9668

Python 8.26 2.231 65.19 82.64 0.9654

Avg 8.25 2.258 64.215 82.50 0.9644

TF-IDF12

C/C++ 8.59 2.141 71.23 85.91 0.9703

Java 8.68 2.079 73.61 86.8 0.9724

Python 8.63 2.073 73.52 86.31 0.9723

Avg 8.63 2.098 72.79 86.34 0.9717

STF13

C/C++ 9.11 1.794 82.63 91.05 0.9811

Java 9.03 1.844 81.29 90.29 0.9797

Python 9.13 1.711 84.34 91.30 0.9829

Avg 9.09 1.783 82.75 90.88 0.9812

PAGCSPF11

C/C++ 9.14 1.756 83.56 91.48 0.9820

Java 9.23 1.678 85.43 92.32 0.9838

Python 9.14 1.701 84.64 91.49 0.9831

Avg 9.17 1.712 84.54 91.76 0.9830

Ours

C/C++ 9.32 1.568 87.59 93.23 0.9861

Java 9.27 1.596 86.98 92.79 0.9855

Python 9.15 1.678 85.03 91.51 0.9836

Avg 9.25 1.614 86.53 92.51 0.9851

Figure 9.  Comparison of algorithm execution results.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10530  | https://doi.org/10.1038/s41598-024-61219-8

www.nature.com/scientificreports/

four algorithms, the standard deviation of the proposed algorithm is 2.173, which is lower, indicating higher 
consistency. This result underscores that the proposed algorithm more closely approximates the teacher’s scoring, 
exhibits greater effectiveness, and represents a significant improvement over existing methods.

On dataset 2, 40% of the submitted records were randomly selected for each topic as the teacher’s programs, 
with the remaining 60% used as the student’s programs to be assessed. The scoring error was set to 1 point. The 
proposed algorithm was again compared with the LAS, TF-IDF, STF, and PAGCSPF algorithms. The experimen-
tal results presented in Table 2 show that, in the C/C++ language program assessment, the proposed algorithm 
achieves a reliability score of 87.59% and precision of 93.23%, outperforming the other four algorithms. In the 
Java language program assessment, the proposed algorithm again outperforms the other algorithms, with a 
reliability of 86.98% and precision of 92.79%. In the Python language program assessment, the reliability of the 
proposed algorithm is 85.03% and its precision is 91.51%, which are better scores than achieved by the other 
four algorithms. Furthermore, looking at the average scores, the algorithm proposed in this article shows high 
marks in the evaluations of the three programming languages, implying that it can accurately match the scores 
expected by teachers. For instance, in the evaluation of C/C++ programs, the algorithm has an average score of 
9.32, which is the closest to the actual score, meaning it aligns most closely with the teacher’s grading, and also 
appears to be more reliable in the credibility of the scores given. Observing the standard deviation, the stability 
of the algorithm’s scoring is confirmed once again. In the evaluations of the three different programming lan-
guages, the algorithm proposed in this article exhibited the lowest standard deviation, thus proving its stable and 
consistent scoring characteristics. For example, in the evaluation of C/C++ programs, the algorithm’s standard 
deviation is 1.568, which is lower compared to other algorithms, indicating that it has better robustness and 
consistency than the other four algorithms compared, giving it an advantage in the field of automated program 
evaluation. It is evident that the algorithm proposed in this paper has demonstrated excellent performance across 
various evaluation metrics, particularly when it comes to assessing programs written in different programming 
languages. Whether in terms of reliability, precision, or consistency of scoring, it shows a significant improvement 
over the LAS, TF-IDF, STF, and PAGCSPF algorithms. The proposed algorithm can be applied to the evaluation 
of programs written in multiple languages.

Conclusion
This paper has proposed an automatic assessment algorithm for programming exercises based on graph semantic 
similarity. The algorithm calculates the similarity between the students’ programs and the teacher’s programs in 
terms of the structural similarity of PDGs and the semantic similarity of nodes. Based on the typical reviewing 
behavior of human teachers, a new optimal similar node path matching algorithm was proposed. This improves 
the efficiency of calculating the similarity of PDGs, achieving a time complexity of O(n2) . Experiments on two 
datasets show that the proposed algorithm is superior to LSA, TF-IDF, STF, and PAGCSPF algorithms in terms 
of reliability and accuracy. The program assessment algorithm proposed in this paper can be used to assess code 
that cannot be compiled correctly, and supports the assessment of programs written in C/C++, Java, Python, 
and other languages. The accuracy of the evaluation algorithm proposed in this paper depends, to some extent, 
on the number of teacher program templates. In future work, we will integrate dynamic evaluation to discover 
and incorporate innovative student code, supplementing it into the teacher templates. Simultaneously, we will 
further investigate AI-based techniques for generating teacher program templates to automatically create richer 
and more diverse templates, thereby enhancing the accuracy of the evaluation algorithm.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.

Figure 10.  Average score and standard deviation of different algorithms.
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