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Chirality‑assisted enhancement 
of tripartite entanglement 
in waveguide QED
Logan Patrick , Umar Arshad , Dingyu Guo  & Imran Mirza *

We study the generation and control of genuine tripartite entanglement among quantum emitters 
(QEs) that are side‑coupled to one‑dimensional spin‑momentum locked (or chiral) waveguides. By 
applying the machinery of Fock state master equations along with the recently proposed concurrence 
fill measure of tripartite entanglement [S. Xie and J. H. Eberly, Phys. Rev. Lett. 127, 040403 (2021)], 
we analyze how three‑photon Gaussian wavepackets can distribute entanglement among two 
and three QEs. We show that with a five times larger waveguide decay rate in the right direction as 
compared to the left direction, the maximum value of tripartite entanglement can be elevated by 35% 
as compared to the symmetric scenario where both left, and right direction decay rates are equal. 
Additionally, chirality can maintain the tripartite entanglement for longer than the corresponding 
symmetric decay rate. Finally, we study the influence of detunings and spontaneous emission 
on the resulting entanglement. We envision quantum networking and long‑distance quantum 
communication as two main areas of applications of this work.
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Quantum entanglement, an information resource, lies at the heart of several quantum-enabled  technologies1,2. 
However, when exposed to environmental interactions, entanglement is known to behave in a pretty fragile man-
ner, leading to known phenomena of entanglement sudden  death3 and early-stage  disentanglement4,5. Thus, one 
of the main challenges in developing quantum information technologies is to devise ways to sustain entanglement 
for a long enough time so that the information protocol can be reliably completed. Due to the advancement in 
the manufacturing of optical elements and atomic trapping techniques, waveguide quantum electrodynamics 
(wQED) has gained a lot of interest in recent  years6. Furthermore, the design of the wQED platforms makes 
them a promising candidate for quantum information processing tasks in general and long-distance quantum 
communications & quantum networking protocols, in  particular7,8.

In addition to achieving strong-light matter interaction (typically one of the essential requirements for entan-
glement generation), in more recent years, direction-dependent preferential photon emission/absorption (also 
known as chirality) has been demonstrated in wQED  architectures9. Hence, in the last five years or so, chiral 
quantum optics has been achieved in various physical  platforms10–12 and the area has witnessed a variety of 
novel  effects13–18. For instance, we have studied emitter-emitter entanglement dynamics in chiral and non-
chiral  wQED19–21. In particular, for the case of single and two photons, we have shown that for strongly coupled 
wQED case, such chiral light-matter interaction can lead to enhancement in the maximum value of bipartite 
emitter-emitter entanglement by a factor of 3/2 and 2, respectively, as compared to the corresponding non-chiral 
coupling  case22,23.

The need to establish and sustain entanglement among distant nodes of a quantum network for multiple users 
requires one to go beyond the bipartite entanglement and enter the domain of multiparty  entanglement24,25. The 
multipartite entanglement offers new types of applications in quantum computation, for instance, in the context 
of cluster states and measurement-based  computing26–28. Keeping in view these essential applications in quantum 
informatics, in this work, we study three-photon induced qubit-qubit entanglement in wQED. In particular, we 
pay attention to how the chiral light-matter interaction aids in accomplishing higher values of genuine tripartite 
entanglement and longer survival times. Worthwhile to emphasize here is the fact that the discussion of the 
tripartite entanglement should not be treated as a straightforward extension of single or two-photon entangle-
ment problems, but by doing so, we enter the more challenging domain of multipartite  entanglement29,30 where 
tripartite entanglement can serve as the first case study.
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As the theoretical tools, we work within the framework of Fock state master  equations31–33 and calculate 
the genuine tripartite entanglement among up to three two-level QEs using concurrence and concurrence fill 
 criteria34.

A literature survey on entanglement in wQED reveals that Zheng et al. have studied entanglement generation 
between two spatially separated qubits/QEs coupled to a bidirectional waveguide in  201335. They reported steady-
state entanglement (quantified through concurrence) ∼ 40% in their work. C.G-Ballestro et al., in Ref.36, have 
concluded 20− 30% entanglement between two qubits in the wQED setting, which was induced by two photons 
that were launched from the opposite ends of the waveguide. In Ref.37, Liao et al. have shown the maximum 
entanglement of ∼ 40% is attainable if the two qubits are separated by 0.125 �0 with �0 being the resonant wave-
length in their study. On the other hand, Mirza et al. (one of the authors of the present manuscript) have reported 
that entanglement of ∼ 70% can be reached between two qubits using chiral light-matter interfaces when a single 
photon Gaussian wavepacket induces the  entanglement22. In this work, by entering the multiphoton processes, as 
some of the main findings, we find that, as compared to the corresponding non-chiral (symmetric bidirectional) 
models, the chirality (five times larger emission rate into the right direction in the waveguide as compared to the 
left direction) can raise the maximum tripartite entanglement value by 35% of by a factor of ∼ 5/14 . Additionally, 
for both on-resonant and off-resonant cases, chirality aids in maintaining tripartite for a longer duration than the 
symmetric bidirectional problem. Furthermore, chirality exhibits better robustness against spontaneous emission 
losses than non-chiral scenarios. Overall, as compared to the single-photon wQED, we conclude that it is the 
combination of multiphoton Gaussian wavepackets and chiral light-matter interaction that causes the bipartite 
and tripartite entanglement to take values larger than those found in the single photon wQED.

The rest of the paper is structured as follows. In the next section, we discuss the theoretical description of our 
system. Next, we introduce the entanglement measure and discuss our results. Finally, we close with a summary 
section where we also point out possible future directions of this work.

Theoretical description
Model
As shown in Fig. 1, our system consists of a chain of two-level QEs (qubits, quantum dots, artificial atoms, natu-
ral atoms, etc.) side coupled to a bidirectional dispersionless and lossless waveguide (tapered fiber). The free 
Hamiltonian of the emitter chain is given by

where �̃j = ωegj − ωp − iγj is the detuning between the transition frequency ωegj of the jth QE and the peak 
frequency ωp of the three-photon wavepacket. The parameter γj has been added by hand to account for the 
spontaneous emission loss from the jth QE. Note that in our model, no direct coupling (such as dipole-dipole 
interaction) is present among the QEs; rather, the interaction is mediated through the waveguide field. σ̂j ≡ |gj��ej| 
is the standard lowering operator for the jth QE with |gj�(|ej�) being the ground (excited) state. The QE raising 
and lowering operators follow the standard Ferminonic commutation relation: 

{
σ̂i , σ̂

†
j

}
= δij . Next, we model 

the waveguide as a collection of two independent multimode quantum harmonic oscillators, one for the left (l) 
direction and the other for the right (r) direction. The corresponding photon annihilation operators are labelled 
as b̂l(ν) and b̂r(ω) for the ν th and ω th mode. These operators follow the typical Bosonic commutation relations: 

(1)ĤQE = �

N∑

j=1

�̃jσ̂
†
j σ̂j ,

Figure 1.  The system studied in this work: A chain of two-level quantum emitters side coupled to a one-
dimensional waveguide which is driven by a three-photon wavepacket (represented by the state |3ω1ω2ω3

� ) from 
the left end of the waveguide. Any photon source does not drive the right end of the waveguide and is, therefore, 
labeled with a vacuum state |vac� . The valleys on the waveguide surface are drawn to indicate the tapered region 
of the nanofiber where the QEs are trapped to accomplish chiral light-matter interactions. γj represents the non-
waveguide (or spontaneous) emission rate for the jth QE. For further details about the system parameters, see 
the text below.
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[b̂r(ω), b̂†r (ω
′
)] = δ(ω − ω

′
) and [b̂l(ν), b̂†l (ν

′
)] = δ(ν − ν

′
) . Thus, the waveguide Hamiltonian Ĥw takes the 

form

In Ĥw , we have considered an infinitely large number of closely spaced waveguide modes such that the integra-
tion over all modes is justified. Finally, the following Hamiltonian describes the interaction between the QEs 
and waveguide field under the rotating wave approximation.

where we have assumed Ŵjr(ω) ≈ Ŵjr(ωegj ) ≡ Ŵjr and Ŵjl(ω) ≈ Ŵjl(ωegj ) ≡ Ŵjl . Note that in this assumption, 
we have not applied the Markov approximation (flat bath spectrum around the system resonance)31,38; instead, 
we are considering a highly localized interaction. dj represents the location of the jth emitter with dj+1 − dj = L 
being the separation between two consecutive QEs (or lattice constant) that correspond to the time delay τ = L/c . 
The parameter k0 = ωeg/c is the wavenumber associated with the atomic transition frequency, while c represents 
the group velocity of photons in the waveguide. The net Hamiltonian of the global system (QEs, waveguide, and 
their interaction) is given by Ĥ = ĤQE + Ĥw + Ĥint.

It is worthwhile to point out that, in this work, we always work in a unit system where detuning is defined 
in terms of atom-waveguide coupling rate (as we’ll see in the “Results” section) instead of directly linking this 
coupling rate with the bare atomic frequency. Therefore, it is not possible to directly see the validity of rotating 
wave approximation under the condition Ŵ > ωeg ,i . We still apply the rotating wave approximation based on the 
underlying assumption that, typically, the bandwidth of the system resonances is much smaller than the spacing 
between any two consecutive resonances, allowing us to disregard all the non-resonant terms in the Interaction 
Hamiltonian. Please note that others have also made such assumptions in the context of deriving Fock state 
master equations for single and two-photon problems (see, for instance, Ref.31 where between Eqs. (1) and (2) 
of their paper Gheri et al. has some discussion about this point).

Driven dissipative dynamics
As shown in Fig. 1, the left end of our wQED setup is driven by a reservoir that initially exists in a three-photon 
Fock state, unlike the standard studied scenario where a classical coherent light source drives the system. Con-
sidering this critical distinction, we derive the master equation apt for the present problem and study the driven 
dissipative dynamics of our wQED setup through the following bi-directional three-photon Fock state master 
equation. 

(2)Ĥw = �

+∞∫

−∞

ωb̂†r (ω)b̂r(ω)dω + �

+∞∫

−∞

νb̂†l (ν)b̂l(ν)dν.

(3)Ĥint =− i�

N∑

j=1

[ +∞∫

−∞

√
Ŵjr

2π
eik0dj σ̂ †

j b̂r(ω)dω +
+∞∫

−∞

√
Ŵjl

2π
e−ik0dj σ̂

†
j b̂l(ν)dν

]
+ h.c.,

(4a)
dρ̂3,3(t)

dt
= L̂

[
ρ̂3,3

]
+

N∑

i=1

√
Ŵir

(√
3eik0di g(t)

[
ρ̂2,3, σ̂

†
i

]
+

√
3e−ik0di g∗(t)

[
σ̂i , ρ̂

†
2,3

])
,

(4b)
dρ̂2,3(t)

dt
= L̂

[
ρ̂2,3

]
+

N∑

i=1

√
Ŵir

(√
2eik0di g(t)

[
ρ̂1,3, σ̂

†
i

]
+

√
3e−ik0di g∗(t)

[
σ̂i , ρ̂2,2

])
,

(4c)
dρ̂1,3(t)

dt
= L̂

[
ρ̂1,3

]
+

N∑

i=1

√
Ŵir

(
eik0di g(t)

[
ρ̂0,3, σ̂

†
i

]
+

√
3e−ik0di g∗(t)

[
σ̂i , ρ̂

†
1,2

])
,

(4d)
dρ̂0,3(t)

dt
= L̂

[
ρ̂0,3

]
+

N∑

i=1

√
3Ŵir e

−ik0di g∗(t)
[
σ̂i , ρ̂

†
0,2

]
,

(4e)
dρ̂2,2(t)

dt
= L̂

[
ρ̂2,2

]
+

N∑

i=1

√
Ŵir

(√
2eik0di g(t)

[
ρ̂1,2, σ̂

†
i

]
+

√
2e−ik0di g∗(t)

[
σ̂i , ρ̂

†
1,2

])
,

(4f)
dρ̂1,2(t)

dt
= L̂

[
ρ̂1,2

]
+

N∑

i=1

√
Ŵir

(
eik0di g(t)

[
ρ̂0,2, σ̂

†
i

]
+

√
2e−ik0di g∗(t)

[
σ̂i , ρ̂1,1

])
,

(4g)
dρ̂0,2(t)

dt
= L̂

[
ρ̂0,2

]
+

N∑

i=1

√
2Ŵir e

−ik0di g∗(t)
[
σ̂i , ρ̂0,1

]
,
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Here, we would like to point out that a similar Fock-state master equation valid for N photons has also been 
reported in the past (see, for example, Eq. (21) in Ref.32). However, two main differences exist between our 
three-photon Fock-state master equation, and the one reported in Ref.32. One is the absence of the terms in our 
master equation that are quadratic in g(t), which are known to appear in the case of nonlinear interactions (for 
instance, in cavity quantum  optomechanics39) or in the case of adiabatically eliminated multi-level quantum 
 systems40. Since our problem doesn’t address both scenarios, the absence of such quadratic terms in Eq. (4) is 
understandable. The second difference stems from the fact that, unlike the master equation reported in Ref.32), 
our master equation incorporates bidirectional couplings between QEs and photon wavepacket, which is suitable 
for studying wQED problems). The Liouvillian superoperator L̂ appearing in the aforementioned equation set 
(4) and applied to an operator ρ̂ consists of three parts

with L̂cs[ρ̂] , L̂pd[ρ̂] , and L̂cd[ρ̂] respectively represent the closed system dynamics, pure decay of energy from 
the system into the environmental degrees of freedom, and cooperative decay due to collective QE effects. These 
explicit forms of these Liouvillian subparts are given by 

 where 2Ŵirl = Ŵir + Ŵil . The Kronecker delta functions appearing in the expression of L̂cd[ρ̂] are defined as 
δi≷j = 1 , ∀ i ≷ j . The parameter D represent the ratio of inter-emitter separation L and the resonant wavelength 
�0 where �0 = 2πc/ωeg . Note that due to the spontaneous emission from the quantum emitters, we did get energy 
dissipation into the external environment (see Eq. (6b), where part of the Liouvillian results in pure decay (abbre-
viated with the subscript pd)). However, unlike the usual Markov master equations, we obtain time-dependent 
terms in our Fock state master equation (with prefactor g(t)). Finally, the explicit form of the various operators 
appearing in Eq. (4) are given by 

Here j = 2, 1, 0, , k = 1, 0 , Û(t; t0) ≡ exp[−i
�
Ĥ(t − t0)] is the time evolution operator with Ĥ being the 

total Hamiltonian defined in the paragrap below Eq. (3), and ρ̂l(t) is the density operator for the left continuum 
in the waveguide. |�3� , |�2� and |�1� are the three-, two- and one-photon reservoir states, respectively with 
|�0� = |vac� . Note that only the diagonal operators can be categorized as physically valid density matrices in 

(4h)
dρ̂1,1(t)

dt
= L̂

[
ρ̂1,1

]
+

N∑

i=1

√
Ŵir

(
eik0di g(t)

[
ρ̂0,1, σ̂

†
i

]
+ e−ik0di g∗(t)

[
σ̂i , ρ̂

†
0,1

])
,

(4i)
dρ̂0,1(t)

dt
= L̂

[
ρ̂0,1

]
+

N∑

i=1

√
Ŵir e

−ik0di g∗(t)
[
σ̂i , ρ̂0,0

]
,

(4j)
dρ̂0,0(t)

dt
= L̂

[
ρ̂0,0

]
.

(5)L̂ [ρ̂] = L̂cs[ρ̂] + L̂pd[ρ̂] + L̂cd[ρ̂],

(6a)L̂cs[ρ̂] ≡
−i

�

[
ĤQE , ρ̂

]
,

(6b)L̂pd[ρ̂] ≡ −
N∑

i=1

Ŵirl

(
σ̂
†
i σ̂iρ̂ − 2σ̂iρ̂σ̂

†
i + ρ̂σ̂

†
i σ̂i

)
,

(6c)L̂cd[ρ̂] ≡ −
N∑

i �=j=1

(√
ŴirŴjr δi>j +

√
ŴilŴjl δi<j

){(
σ̂
†
i σ̂jρ̂ − σ̂iρ̂σ̂

†
j

)
e−2π iD(i−j) − h.c.

}
,

(7a)ρ̂3,3(t) = trR

{
Û(t; t0)ρ̂sys(t0)|�3���3|ρ̂l(t0)Û†(t; t0)

}
,

(7b)ρ̂j,3(t) = trR

{
Û(t; t0)ρ̂sys(t0)|�j���3|ρ̂l(t0)Û†(t; t0)

}
,

(7c)ρ̂j,2(t) = trR

{
Û(t; t0)ρ̂sys(t0)|�j���2|ρ̂l(t0)Û†(t; t0)

}
,

(7d)ρ̂k,1(t) = trR

{
Û(t; t0)ρ̂sys(t0)|�k���1|ρ̂l(t0)Û†(t; t0)

}
,

(7e)ρ̂0,0(t) = trR

{
Û(t; t0)ρ̂sys(t0)|vac��vac|ρ̂l(t0)Û†(t; t0)

}
.
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the above-mentioned set of operators. The rest of the off-diagonal operators are not density matrices but they 
do obey a useful property that ρ̂†

j,3(t) = ρ̂3,j(t) , ρ̂†
j,2(t) = ρ̂2,j(t) , and ρ̂†

k,1(t) = ρ̂1,k(t).

Initial conditions
Initially, we consider all QEs to be in their ground state with the right waveguide continuum in a three-photon 
wavepacket with the joint spectral density function G (ω1,ω2,ω3) and the left continuum in a vacuum state i.e. 
the initial pure state |�� of the system and environment can be expressed as a product state of the form:

At this stage we keep the form of G (ω1,ω2,ω3) general, however, the normalization condition on |�� requires 
any G (ω1,ω2,ω3) must follow the condition

where in arriving at this condition, we have assumed the spectral function G (ω1,ω2,ω3) is symmetric under 
the exchange of mode frequencies ω1 , ω2 , and ω3 . Finally, we impose

which are the initial conditions followed by the operators appearing in Eq. (4).
Before moving on to the “Results and discussion” section, we would like to explain how our Fock state master 

equation can be regarded as non-Markovian. To this end, we first consider a single-photon Fock state master 
equation where the initial state of the reservoir can be expressed as:

Following the above notation, the ‘r’ subscript indicates the right direction in the waveguide, with superscript 
(1) representing the single-photon nature of the state here. G (ω) is the spectral function for the single photon 
wavepacket. Now we notice that if we apply the environment input operator b̂in (as introduced in Ref.31) on this 
state, we obtain

while performing the above calculation we have used the commutation relation [b̂r(ω), b̂†r (ω
′
)] = δ(ω − ω

′
) and 

finally defined G̃ (t) =
√
2π

∫∞
−∞ G (ω)e−iω(t−t0)dω . On the other hand, if we have a three-photon wavepacket 

launched from the environment into the right direction of the waveguide, as reported in Eq. (8), and we now 
apply the input operator to this state, after some calculation, one can find

while arriving at the final expression, we have assumed Bosonic symmetry under the exchange of ωi ←→ ωj , 
∀i = 1, 2, 3 and j = 1, 2, 3 with i  = j . Note that, under the narrow-bandwidth assumption (as explained in Ref.31 
and Ref.33) the function G̃ (ω1,ω2, t) leads us to the three-photon Gaussian wavepacket g(t) which shows up 
in our final Fock state master equation (see Eq. (4)). Two key differences can be immediately noticed in com-
parison to the single-photon and vacuum environment state cases. These differences explain why Eq. (4) has 
non-Markovian features. 

1. For the three-photon wavepackets, the application of the input operator produces a state that carries the 
information left in the field about the destruction of a single photon at a certain frequency encoded in the 
function G̃ (ω1,ω2, t) . This behavior is unlike the problem of the single-photon case where b̂in|�(1)

r � was 
not able to store the information about the destruction of the photon in the field. Note that this behavior 
extends to purely vacuum states environments as well as b̂in|vac� = 0 doesn’t produce any time-dependent 
terms in the resultant master equation.

(8)

|�� = |�QE� ⊗ |�r� ⊗ |�l� =
⊗

j

|gj� ⊗ |�r� ⊗ |vac�,

with |�r� =
1√
3!

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞

dω1dω2dω3 G (ω1,ω2,ω3)b̂
†
r (ω1)b̂

†
r (ω2)b̂

†
r (ω2)|vac�.

(9)

+∞∫

−∞

+∞∫

−∞

+∞∫

−∞

∣∣G (ω1,ω2,ω3)
∣∣2dω1dω2dω3 = 1,

(10)ρ̂m,m(0) = ρ̂sys(0) =
⊗

j

|gj��gj|, ∀m and n = 0, 1, 2, 3; ρ̂m,n(0) = 0, withm �= n,

(11)|�(1)
r � =

∫ ∞

−∞
G (ω)b̂†r (ω)|vac�dω.

(12)b̂in|�(1)
r � = 1√

2π

∫ ∞

−∞
e−iω

′
(t−t0)b̂r(ω

′
)dω

′ |�(1)
r � = G̃ (t)|vac�,

(13)
b̂in|�r� =

√
3

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞

1√
2π

G (ω1,ω2,ω
′
)e−iω

′
(t−t0)dω

′
)
b̂†r (ω1)b̂

†
r (ω2)|vac�dω1dω2

≡
√
3

∫ ∞

−∞

∫ ∞

−∞
G̃ (ω1,ω2, t)b̂

†
r (ω1)b̂

†
r (ω2)|vac�dω1dω2,
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2. In the three-photon problem, the resultant state (which now has two photons) evolves in a non-trivial fashion 
after applying the input operator. It generates the hierarchy of new operators defined in Eq. (7), again unlike 
the single-photon or vacuum environment cases where the application of b̂in produces either a vacuum state 
or give zero contribution, which in the case of vacuum state environments produce Markovian results.

Results and discussion
In this section, by numerically solving our three-photon bidirectional Fock state master equation, we address 
two questions: (1) How does the incoming three-photon wavepacket excite the QEs, and how does the popula-
tion evolve in time? (2) How does the photon absorption & emission generate entanglement among QEs, and 
how can chirality impact the entanglement manipulation? Albeit Eq. (4) is valid for any number of QEs, in the 
following, we focus on situations up to 3 QEs. To set the stage, we begin with the most straightforward possible 
problem of a single QE.

One QE case and population dynamics
For the single-QE case ( N = 1 ) our free QE Hamiltonian reduces to ĤQE = ��̃σ̂ †σ̂ and as initial conditions we 
assume ρ̂m,m(t0) = |g��g| , ∀m = 3, 2, 1, 0 and the remaining operators to be zero. For the three-photon spectral 
density function G (ω1,ω2,ω3) , we assume a factorized form such that using Schmidt decomposition, one can 
write

with 
∑

cyc representing the sum over all pairwise cyclic permutations of the indices, which counts to 6 terms. 
We point out that the type mentioned above of decomposition of the spectral density function is experimentally 
achievable when the three-photon wavepacket is generated by combining the single photons emitted by three 
independent  sources31,41. Moving forward, in all plots to follow, we select a real-valued Gaussian temporal profile 
for each g function, i.e.

Here µ and t represent the standard deviation and mean of the Gaussian function, respectively. In Fig. 2 we 
plot the population dynamics under strong drive condition i.e. |�(max)(t)| > Ŵ with �(t) =

√
2Ŵg(t) . The rest 

of the parameters mentioned in the plot caption are selected to generate higher excitation  probabilities32,42. The 
green dotted dashed curve shows our three-photon normalized Gaussian wavepacket peaked at t = t = 5Ŵ−1 . 
We have plotted the ground ( Pg ) and excited population ( Pe ) for two cases, namely, a non-chiral or symmetric 
bidirectional coupling ( Ŵ1r = Ŵ1l ) case (thin blue solid and dashed curves); and a chiral case (thick red solid and 
dashed curves) in which emission in the right direction is five-time larger than the left direction ( Ŵ1r = 5Ŵ1l ). 
In both cases, we note that as the Gaussian wavepacket begins interacting with the QE, it took almost t ∼ Ŵ−1 
time before the populations change.

The maximum value of the excited state probability P(max)
e  attained for the bidirectional case turns out to be 

0.521 at t = 5.25Ŵ−1 , which is smaller than the reported value of 0.80132 for the single photon problem due to 
the involvement of bidirectional decays in our model. Additionally, the shape of Pe follows the profile of Gaussian 
input, which decays as the photon wavepacket leaves the QE region. Conversely, the chiral case allowed to attain 
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Figure 2.   Population dynamics, quantified in the Ŵ−1 units, for a single ( N = 1 ) two-level QE when interacted 
with a three-photon Gaussian wavepacket. We have considered the following common parameters in all curves: 
� = 0 , µ = 1.46Ŵ , t = 5Ŵ−1 . For the chiral case, we have set Ŵ1r/Ŵ1l = 5 ; while for the bidirectional case, we 
have selected a symmetric case, i.e., Ŵ1r = Ŵ1l ≡ Ŵ . The orange dotted horizontal line confirms normalization in 
both bidirectional and chiral cases.
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a smaller value of P(max)
e = 0.373 due to a higher decay rate into the right waveguide direction. This maximum 

value is achieved at a time t = 4.85Ŵ−1 slightly before the Pe reaches its maximum value for the bidirectional 
case. More importantly, we observe the formation of a side shoulder around t ∼ 5.5Ŵ−1 . Such behavior of Pe in 
the chiral case is known for the single and two-photon wQED  problems22,23 and (as discussed below) will help 
in better emitter-emitter entanglement generation and control.

Two‑QE case and bipartite entanglement
We now extend our wQED study to two QEs. In addition to new ways of population distribution, the case of two 
QEs opens the possibility of generating entanglement between the QEs, which we quantify through the well-
known concurrence  measure43,44. For two particles, say particle A and particle B, existing in a bipartite pure or 
mixed state ρ̂AB , Wootter’s concurrence CA(B) is defined as

where eigenvalues of operator ρ̃AB , �i , ∀i = 1, 2, 3, 4 are written in a descending order. ρ̃AB is called the spin-
flipped density operator, which is related to the system density operator and the Pauli spin-flip operator σ̂y 
through

The concurrence bounds are defined as 0 ≤ CA(B) ≤ 1 with CA(B) = 1 refers to a maximally entangled bipartite 
state (for example, a Bell  state45) and CA(B) = 0 indicates an entirely separable (unentangled) state. For the pre-
sent problem we introduce the basis set {|g1g2� → |1�, |e1g2� → |2�, |g1e2� → |3�, |e1e2� → |4�} . Next, subject 
to the initial condition ρ̂sys(0) = |g1g2��g1g2| , we numerically solve the three-photon Fock state master equation. 
Therein, we find that the spin-flip density matrix of the two-QE system takes the following form, with 8 out of 
16 time-dependent density matrix elements remaining zero for all times

Note that we have adopted short notation here in which ρ1 ≡ �1|ρ̂3,3(t)|1� , ρ4 ≡ �1|ρ̂3,3(t)|4� , ρ6 ≡ �2|ρ̂3,3(t)|2� , 
and ρ16 ≡ �4|ρ̂3,3(t)|4� . Diagonalization of ρ̃12(t) yields the following set of eigenvalues

Inserting these eigenvalues in Eq. (16), one can find the entanglement between QEs. In Fig. 3c, we plot this 
bipartite entanglement in both the bidirectional symmetric and chiral cases. In parts (a) and (b) of Fig. 3, the 
populations corresponding to these two cases have also been plotted. For the bidirectional symmetric case, we 
notice that the temporal profile of concurrence follows a pattern with two peaks (at t = 4.70Ŵ−1 and t = 6.65Ŵ−1 ) 
separated by a dip (centered at t ∼ 6Ŵ−1 ) while reaching the maximum value of up to 11% . The first peak is 
reached just before the three-photon wavepacket reaches its maximum value. After that, as the wavepacket begins 
to leave the emitter region, we observe an increase in the concurrence around t = 6.65Ŵ−1 , forming the second 
peak. To fully understand the behavior of this pattern, not only the population dynamics needs to be discussed 
(in terms of the formation of two types of Bell states, namely, 

(
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Figure 3.   Two-emitter N = 2 wQED driven by a three-photon Gaussian wavepacket. Population dynamics 
in (a) Bidirectional case Ŵir = Ŵil = 1 and (b) Chiral case Ŵir/Ŵil = 5 , ∀i = 1, 2 . In the subscripts of P, the 
first and second slots identify the state of the first and second QE, respectively. (c) Entanglement/concurrence 
evolution in both bidirectional and chiral cases. Pink and brown-colored dots have identified the location and 
the maximum value of entanglement. For the sake of simplicity, all QEs are assumed to be identical, and time 
delays have been ignored. The rest of the parameters are the same as in Fig. 2.
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also the coherence terms’ time evolution needs to be analyzed. We plan to include the discussion of coherence 
terms in the future continuation of this work.

Next, in the chiral case ( Ŵir = 5Ŵil , i=1,2), we find a marked change in the behavior of population and 
entanglement dynamics compared to the bidirectional symmetric case. On the one hand, in Fig. 3b, we observe 
Pe1g2+g1e2 (red solid curve) exhibiting a two-peak pattern with a maximum value increase by a factor of almost 
two compared to the symmetric coupling case (blue solid thick curve in Fig. 3a). On the other hand, the maxi-
mum value of both QEs excited probability Pe1e2 (brown solid thin curve in Fig. 3b) reduced more than 1/2 
compared to the symmetric problem. We find that this single QE excited probability trend extended down to the 
entanglement behavior as well, where the concurrence in the chiral case (dashed red curve in Fig. 3c) showing 
a single peak pattern but with five times higher value achieved for the maximum entanglement. Furthermore, 
we note that chirality also assisted in sustaining this entanglement for times between 8Ŵ−1 to 10Ŵ−1 even after 
the three-photon wavepacket diminishes.

Three‑QE case and tripartite entanglement
Moving on to the three-QE mixed states, it turns out that the bipartite concurrence measure doesn’t extend down 
straightforwardly to the tripartite  case46,47. To this end, we apply a recently proposed tripartite entanglement 
measure by Xie and  Eberly34. This measure is reported to quantify genuine three-party entanglement by analyz-
ing the area of the concurrence triangle (hence the name triangle measure or concurrence fill). The measure 
itself involves calculating the pairwise concurrence among all three QEs with a bipartite-split between ith qubit 
(treated as one subsystem) and j, k qubit pair (as the other subsystem) as shown in Fig. 4). For the set of qubits 
i, j, k; such a “one-to-other” concurrence is known to follow the  identity48

where, for example, C 2
1(23) is calculated  using49.

ρ̂1 in the last equation represents the reduced density matrix of the first qubit obtained by tracing out the second 
and third qubit from the total system density matrix ρ̂123 . Thus, considering C 2

1(23) , C
2

2(31) , and C 2
3(12) as lengths 

of the side of a triangle, Xie and Eberly used Heron’s expression for the area of such a triangle and arrived at the 
following formula that describes the triangle measure:

where the prefactor (16/3)1/4 ensures that F� remains bounded between 0 and 1, again 1 referring to the maxi-
mum of genuinely entangled tripartite state (such as W or GHZ  state30) and 0 indicates a fully unentangled state. 
Furthermore, consistent with Fig. 4, Q is also called the half-perimeter of the concurrence triangle.

In Fig. 5, we plot population and entanglement dynamics for the three-QEs problem. In Fig. 5a and b, we 
compare the populations in bidirectional symmetric and chiral scenarios, respectively. With the presence of the 
third QE, all probabilities including single emitter being excited ( Pe1g2g3+g1e2g3+g1g2e3 ), double emitter excited 
( Pe1e2g3+e1g2e3+g1e2e3 ) and triple emitter excited ( Pe1e2e3 ) have been reported. In both bidirectional and chiral 
scenarios, we note that the corresponding probability shows a considerable reduction as the number of excited 
QEs increases. In particular, in the chiral case, Pe1e2e3 becomes too tiny such that we have to include it as the 
inset in Fig. 5b where it reaches a maximum value of merely 0.3% . As summarized in Table 1, we find that the 
maximum value probability of one- ( P1,max ) and two- ( P2,max ) QE excited in the bidirectional model shows a 
noticeable decrease for N = 3 case as compared to the respective N = 1 and N = 2 cases. However, in the chiral 
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Figure 4.  The concurrence triangle for a tripartite system (composed of QE-1, 2, and 3). Note that the length of 
each side of the triangle is equal to the square of the concurrence between different possible bipartite pairings.
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case, such a trend is broken. Additionally, by the comparison of Figs. 3b and 4b, we notice that unlike N = 2 
problem with chiral couplings, N = 3 chiral scenario fails to show any oscillatory behavior in the populations. 
But single excitation probability Pe1g2g3+g1e2g3+g1g2e3 forms an almost plateau between 5Ŵ−1 � t � 6.5Ŵ−1 which 
helps Pe1g2g3+g1e2g3+g1g2e3 to maintain a non-zero value for an additional t ∼= 1.5Ŵ−1 after the complete diminish-
ing of the three-photon pulse.

In Fig. 5c, we plot the time evolution of concurrence fill while varying the right direction emitter-waveguide 
coupling Ŵr (assumed to be the same for all QEs) from symmetric bidirectional case Ŵr = Ŵl to the maximum 
chiral case Ŵr = 5Ŵl . We notice, following the population trend observed in Fig. 5a and b, for all non-chiral 
cases, the entanglement among QEs survives for a time longer than the pulse duration. Additionally, the irregular 
oscillations in F�(t) for chiral case exhibit the phenomenon of entanglement collapse and  revival50–52 which 
is more visible for the Ŵr = 3Ŵl case (thin blue curve). Most importantly, we notice that the maximum value 
achieved by the entanglement in all chiral cases poses an upper bound on the maximum value of entanglement 
achieved in the symmetric directional case where F�

∼= 0.70 . This important finding is further emphasized in 
the inset plot in Fig. 5c, where we observe this maximum value to be elevated by more than 35% as we go from 
the symmetric bidirectional case of Ŵr to chiral cases of 3Ŵl ≤ Ŵr ≤ 5Ŵl . Note that for single-photon two-qubit 
wQED problem, Ballestero et al. have shown that the chirality can be used to enhance the maximum entangle-
ment by a factor of 3/2 as compared to the corresponding symmetric bidirectional  case19. Similarly, Mirza et al. 
(the corresponding author of this work) have reported the twice enhancement in qubit-qubit entanglement for 
the two-photon two-qubit  case23. We, on the other, in this work, have shown that this trend extends down to 
genuine tripartite entanglement where Ŵr ≥ 3Ŵl case chirality assists in increasing the concurrence fill among 
three-QEs by 35% (factor of ∼ 5/14).

The appearance of entanglement collapse and revival pattern, as observed in Fig. 5c, can be attributed to the 
non-Markovian nature of our Fock state master equation. However, in contrast to the typically studied non-
Markovian master  equations53 (for instance, the time-convolutionless type of master equations, which are local 
in time, or the Nakajima-Zwanzig master equation, which has an integro-differential form), in our case, the time 
dependence in certain terms of our Fock state master equations emerges due to the input operator’s application 
on the environment’s three-photon state. Additionally, since our three-photon wavepacket drives the system 
strongly, i.e., |

√
2Ŵg(t)|max > Ŵ with Ŵr = Ŵl = Ŵ , that can also lead to the non-Markovianity induced collapse 

and revival pattern of entanglement in our study.
Finally, we point out that the reason for achieving higher entanglement in the tripartite case compared to the 

bipartite case relies on the entanglement measure we use. In particular, in quantifying the tripartite entangle-
ment, the definition of so-called “one-to-other” concurrence (see Eq. (21)) and hence the triangle measure (see 
Eq. (22)) works only for the pure states. However, our qubit system (after eliminating the waveguide field) exists 

Figure 5.   Population dynamics for the three-photon three-QE ( N = 3 ) problem. (a) Symmetric bidirectional 
case i.e. Ŵir = Ŵil = 1 ; and (b) Chiral case with Ŵir/Ŵil = 5 , ∀i = 1, 2, 3 . Similar to Fig. 3, all QEs are assumed 
to be identical, and time delays have been ignored. The plot legends follow the notation in which the first, 
second, and third slots in the subscripts represent the state of the first, second, and third QE, respectively. 
The inset in the plot (b) represents the curve of all three QEs being excited simultaneously ( Pe1e2e3 ). (c) Time 
evolution of tripartite entanglement among three QEs quantified through the concurrence fills F�(t) measure. 
Emitter-waveguide coupling strength in the right direction Ŵr has been varied in units of Ŵl . The inset shows 
the behavior of maximum entanglement ( F�,max ) achieved for each chosen value of Ŵr/Ŵl . The rest of the 
parameters in all plots are the same as used in Fig. 2.

Table 1.  Maximum excitation probability comparison.

Excitation Bidirectional Chiral

N=1 N=2 N=3 N=1 N=2 N=3

P1,max 0.52 at 5.25Ŵ−1 0.35 at 5.47Ŵ−1 0.30 at 5.31Ŵ−1 0.37 at 4.85Ŵ−1 0.61 at 6.57Ŵ−1 0.51 at 5.71Ŵ−1

P2,max 0.23 at 5.44Ŵ−1 0.13 at 5.44Ŵ−1 0.08 at 5.22Ŵ−1 0.32 at 5.20Ŵ−1

P3,max 0.05 at 5.50Ŵ−1 0.003 at 5.41Ŵ−1
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in a mixed state. From this point of view, the reported entanglement values for the tripartite case (Figs. 5c and 6 
are essentially the best possible values any mixed state can attain as soon as the mixed state reaches its pure state 
counterpart. On the other hand, for the bipartite case, we use Wootter’s definition of concurrence (see Eq. (16)), 
which is known to work for mixed states. Thus, our reported entanglement is not the best scenario value for the 
bipartite case.

Tripartite entanglement in the presence of detuning and spontaneous emission
So far, we have assumed an on-resonance scenario where the peak frequency of the three-photon wavepacket ωp 
has been set equal to the emitter transition frequency ωeg . Additionally, we have completely ignored the photon 
emissions into non-waveguide modes through spontaneous emission. We now address these two scenarios 
separately and plot the three-QE entanglement dynamics for a detuned case with no spontaneous emission (i.e., 
ωp − ωeg = Ŵ/2 and γ = 0 ) in Fig. 6a and for an on-resonance case with a non-zero spontaneous emission 
scenario ( ωp = ωeg and γ = 3Ŵ/4 ) in Fig. 6b.

From Fig. 6a, we note that for all cases, as we increase Ŵr value from Ŵl to 5Ŵl , near the peak frequency of the 
wavepacket, detuning preserves the overall profile of the entanglement observed in the on-resonance situation. 
Additionally, the inset plot shows that the maximum entanglement values follow a similar pattern as found in 
the no-detuning problem. However, we observe the novel aspect of Fig. 6a in a long time ( t � 8Ŵ−1 ) behavior of 
F�(t) where tripartite entanglement sustains for longer times and tend to produce more oscillatory behavior as 
compared to the no-detuning problem (compare, for instance, thin black ( Ŵr = 3Ŵl ) curves in Figs. 5c and 6a).

In Fig. 6b, we study the impact of spontaneous emission on the tripartite entanglement under the strong 
coupling regime of wQED ( γ < Ŵ ). As expected, we find that a finite spontaneous emission considerably reduced 
the entanglement while keeping the overall profile of entanglement more or less the same. In particular, we point 
out that for γ = 3Ŵ/4 , the maximum value of entanglement for the symmetric bidirectional case shows a 15% 
reduction compared to the γ = 0 situation. Here we emphasize that the chirality not only assists in achieving 
elevated values of maximum entanglement in the presence of spontaneous emission but also helps to decrease 
somewhat the difference in the F�,max value (see for example, the most chiral situation of Ŵr = 5Ŵl in which the 
maximum entanglement difference reduces to 10% compared to the corresponding γ = 0 problem).

Conclusions and outlook
In this paper, we studied the generation and control of three-photon Gaussian wavepacket-induced entanglement 
between two to three QEs side-coupled to chiral and symmetric bidirectional waveguides. Through the numeri-
cal solution of three-photon Fock state master equations, we calculated population dynamics and entanglement 
evolution which were quantified via bipartite concurrence and concurrence fill for two- and three-QE, cases 
respectively. At the single QE level, we found that chiral light-matter interaction was able to achieve ∼ 37% 
maximum excitation percentage probability which is smaller than ∼ 52% percentage probability obtained for 
the bidirectional symmetric coupling case. However, starting from 2 QE case chirality began to exhibit consider-
able improvement in both gaining higher entanglement values as well as single-QE excitation probability. More 
importantly, this trend extends down to the emitter-emitter entanglement where the bipartite concurrence 
reached maximum values that were five times larger than the symmetric case.

For the N = 3 QE problem, we found that the chirality helps to sustain (at least) the single excitation prob-
ability (and hence the entanglement) for longer times. Furthermore, in the chiral case, we notice the phenomenon 
of tripartite entanglement death and revival. Importantly we point out that the maximum value achieved by the 
entanglement in all chiral cases (starting from Ŵr = 2Ŵl to Ŵr = 5Ŵl ) posed an upper bound on the maximum 
value of entanglement attained in the symmetric bidirectional problem ( Ŵr = Ŵl ). Compared to earlier studies 
of one and two-photon wQED where for two-qubit problem chirality is known to increase entanglement by a 

Figure 6.   (a) Time evolution of tripartite entanglement when all QEs’ transition frequency is detuned by 
Ŵ/2 from the peak frequency of the three-photon wavepacket. Here, we have set Ŵl ≡ Ŵ . (b) Entanglement 
dynamics in the presence of spontaneous emission rate γ , which is assumed to be the same for all QEs with a 
value of 3Ŵ/4 . Insets in both plots show the maximum entanglement as a function of Ŵr . Besides detuning and 
spontaneous emission rate, all parameters are the same as previously.
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factor of 3/2 and 2, respectively; here for the three-photon case we have shown this enhancement to be 35% (or 
by a factor of ∼ 5/14 ). Finally, we discuss the impact of detuning and spontaneous emission on the generated 
tripartite entanglement. There we concluded both small detunings ( ωp − ωeg = Ŵ/2 ) and spontaneous emission 
rate ( γ = 3Ŵ/4 ) retain the overall temporal profile of the entanglement. Detuning helps to sustain entanglement 
for longer times, while spontaneous emission rate results in a considerable reduction in the maximum value of 
entanglement. However, chirality still helped entanglement to show somewhat robustness against spontaneous 
emission loss.

The rich nature of the problem studied in this work allows the possibility of increasing the number of QEs 
and analyzing the impact of collective atomic effects on the generation of multipartite entanglement in the same 
setup. Also, we assumed in the present model that the inter-emitter separation was negligible. This assumption 
will be physically valid if the field’s wavelength is much larger than the atomic separation, which we inherently 
assume here. Note that these inter-emitter separations can also be presented in terms of the time retardation 
effect (the time it takes a photon to travel from one emitter to another as it propagates through the waveguide). 
There have been studies in the past where such effects have been  ignored54 along with studies where such effects 
are taken into consideration (see Ref.55 where a wavefunction approach has been adopted). Because in our model, 
inter-emitter separations are negligible, consequently, such time retarded effects also don’t raise in our calcula-
tions. Examining the distance between emitters (or equivalently speaking the time retarded effects), which can 
lead to the potential non-Markovianity-induced revival of entanglement, could also be an exciting avenue of 
exploration. We leave these directions as the possible future extension of this work.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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