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Diffusion models for conditional 
generation of hypothetical new 
families of superconductors
Samuel Yuan 1* & S. V. Dordevic 2

Effective computational search holds great potential for aiding the discovery of high-temperature 
superconductors (HTSs), especially given the lack of systematic methods for their discovery. Recent 
progress has been made in this area with machine learning, especially with deep generative models, 
which have been able to outperform traditional manual searches at predicting new superconductors 
within existing superconductor families but have yet to be able to generate completely new families 
of superconductors. We address this limitation by implementing conditioning—a method to control 
the generation process—for our generative model and develop SuperDiff, a denoising diffusion 
probabilistic model with iterative latent variable refinement conditioning for HTS discovery—the first 
deep generative model for superconductor discovery with conditioning on reference compounds. With 
SuperDiff, by being able to control the generation process, we were able to computationally generate 
completely new families of hypothetical superconductors for the very first time. Given that SuperDiff 
also has relatively fast training and inference times, it has the potential to be a very powerful tool for 
accelerating the discovery of new superconductors and enhancing our understanding of them.

Superconductors exhibit zero resistivity and perfect diamagnetism. These traits lend them useful for various 
important technologies, including Maglev trains, MRI magnets, power transmission lines, and quantum comput-
ers. However, a major current limitation is that the superconducting transition temperatures ( Tc ) of all known 
superconductors at ambient pressures are well below room temperature, restricting their broader practical appli-
cation. Consequently, the search for superconductors with higher Tc is a very active field, as they have significant 
potential to considerably improve the efficiency of current technologies while also enabling new ones.

Currently, however, superconductivity in high Tc superconductors is not very well understood. As a result, 
there exists no systematic method for searching for new high Tc  superconductors1, and the most common 
method for searches for new high Tc superconductors is essentially trial-and-error. For instance, the study in 
Hosono et al.2 surveyed approximately 1000 compounds over four years, of which they found only about 3% to 
be superconducting. That study is a testament to the extreme inefficiency of finding new high Tc superconduc-
tors through pure manual search.

Understanding this, more recently, computational techniques have been applied to assist researchers in the 
search for new high Tc superconductors. Specifically, a number of works have applied machine learning to this 
search for superconductors. Although serving as very valuable tools in many respects, most of these  attempts3–5, 
have been limited to classification and regression models, which only search through existing databases and are 
not able to generate any new compounds. Only recently, with deep generative models applied to superconduc-
tor discovery, have new hypothetical superconductors not found in most popular compound datasets been 
 generated6–8. In Kim and  Dordevic6, a Generative Adversarial Network (GAN)9 was applied for unconditional 
high Tc superconductor generation, and in Wines et al.7, a Crystal Diffusion Variational Autoencoder (CDVAE)10 
was also applied for unconditional superconductor generation so that crystal structure could be accounted for; 
however, that work used a different dataset and focused on the different task of generating stoichiometric Bar-
deen–Cooper–Schrieffer (BCS) conventional  superconductors11 and so did not generate any superconductors 
with Tc � 20 K.

New attempts at high Tc superconductor discovery with generative models are not without limitations, how-
ever. Most notably, although past models have been able to successfully generate new superconductors within 
existing superconductor families, they have not been able to generate completely new families of superconduc-
tors, which would be particularly desirable. This is because they are only unconditional models, which learn 
only the training dataset distribution. As unconditional models, the generation process of these models cannot 
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be controlled. In other words, past models lack conditioning functionality—a method for controlling the gen-
eration process, that, in this context, means giving an example superconductor, the reference compound, and 
having the model generate similar superconductors, ideally by interpolating between the example and what the 
model has learned from the training dataset. With conditioning, the possibility of generating new families of 
superconductors can be opened, and researchers can be given control over the generation process. This can be 
especially useful for researchers looking to find only specific types of superconductors or expand on their own 
new discoveries. Parallel to our work, Zhong et al.8 also applied a diffusion model for high Tc superconductor 
discovery; however, their model was, like previous GANs, greatly limited by its lack of support for conditional 
generation with reference compounds—which is our main focus. Thus, their diffusion model shared with previ-
ous models the major limitation of being unable to generate any new families of superconductors—essentially, 
their work was only recreating the performance of the GAN in Kim and  Dordevic6 but with a diffusion model 
instead and added Tc label control only. Once again, we note that, in this work, we consider “conditioning” to 
mean conditioning the model on reference compounds only, as only this allows for the controlled generation of 
known and new families of superconductors. Moreover, Kim and  Dordevic6 also struggled at generating unique 
(distinct from others in the given generated set) pnictides because of the small number of pnictides in SuperCon, 
the training dataset.

To resolve these limitations, in this work, we implement a Denoising Diffusion Probabilistic Model 
(DDPM)12,13 for superconductor generation as our unconditional model and further implement conditioning 
with the Iterative Latent Variable Refinement (ILVR)14 extension to DDPM, which allows for one-shot generation 
without additional training. With conditioning, we hope to be able to generate new families of superconductors 
for the first time, as identified by the clustering analysis proposed in Roter et al.15, by experimenting with feed-
ing the model different reference superconductors—this would mark a leap in the capabilities of computational 
searches for superconductors.

Diffusion models are a class of deep generative models that are inspired by nonequilibrium  thermodynamics13 
and have recently shown superior performance and outperformed GANs in image  synthesis16 and materials 
 discovery17. Diffusion Models are also at the heart of popular new image generation software, such as DALL· E 
 218 and Stable  Diffusion19. More recently, these models have also been implemented and shown considerable 
promise for a variety of scientific applications, such as for drug  discovery20.

We coin this first approach to conditionally generating new superconductors with reference compounds as 
“SuperDiff ”. With SuperDiff, we aim to resolve the issues found in past works as a result of the small pnictide 
training dataset with the unconditional DDPM and, as our main focus, explore how the conditional DDPM can 
adapt to new information to generate completely new families of superconductors for the first time.

Methods
As stated in the introduction, we leverage the capabilities of Denoising Diffusion Probabilistic Models and 
Iterative Latent Variable Refinement to propose a method for conditionally generating new hypothetical super-
conductors. Here, we discuss the details of the creation of SuperDiff by discussing the sourcing and processing 
of superconductor data, providing a brief overview of the details of the underlying DDPM and ILVR methods 
used, and discussing the techniques we use to evaluate the quality of SuperDiff outputs.

Data processing
All data for the model was sourced from  SuperCon21, which is the largest database for superconducting materials. 
The dataset was processed by the steps in Kim and  Dordevic6 and, like in previous  studies4,6,15, only the chemical 
composition data was used. Every compound from SuperCon was represented as a column vector for input into 
the model. As shown in Fig. 1, each compound was encoded as a 96× 1 column vector as 96 is the maximum 
atomic number present in the dataset.

Denoising diffusion probabilistic model
Denoising Diffusion Probabilistic Models (DDPMs)12,13 function by learning a Markov chain to progressively 
transform an isotropic Gaussian into a data distribution. The general structure of the DDPM used is shown in 
Fig. 2. The DDPM consists of two parts: a forwards “diffusion” process that adds noise to data, and a generative 
reverse process that learns the reverse of the forwards process—“denoising” the forwards process. The forward 
process is a fixed Markov chain that gradually adds Gaussian noise to data. Each step in the forward process is 
defined as

where β1, . . . ,βT is the variance schedule, I is the identity matrix, and x0 is dimensionally equivalent to latent 
variables x1, . . . , xT (all vectors in R96 ). In this work, we adopt the cosine variance schedule proposed in Nichol 
and  Dhariwal22.

A notable property of the forwards process is that given clean data x0 , noised data at any time-step xt can be 
sampled in closed-form:

where αt := 1− βt and αt =
∏t

s=1 αs . This can be  reparametrized23 as:

(1)q(xt |xt−1) := N(xt;
√

1− βtxt−1;βtI) ,

(2)q(xt |x0) := N(xt;
√
αtx0; (1− αt)I) ,

(3)xt =
√
αtx0 +

√
1− αtǫ ,
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where ǫ ∼ N(0, I) and is dimensionally equivalent to x0.
The reverse process is then defined to be

(4)pθ (xt−1|xt) := N(xt−1;µθ (xt , t); σ 2
t I) .

Figure 1.  The column vector encoding method used. The figure shows the chemical composition of 
HgBa2Ca2Cu3O8.27 being encoded as a vector in R96 which is fed to the diffusion model as x0.

Figure 2.  Overview of the unconditional DDPM used. Compounds are encoded as vectors in R96 ; however, 
for illustration purposes, the vectors are represented as 16× 6 pixel images in this figure, where each pixel in 
the image represents an element of the vector, starting from the top-left corner and proceeding horizontally row 
by row. Whiter pixels represent more positive values (all values are divided by the maximum element of x0 ), 
and redder pixels represent more negative values (black is zero). Starting from noise xT , the model generates 
a compound x0 by denoising xt iteratively. Note that YBa2Cu3O6.91 was picked from SuperCon for illustration 
purposes only, and is not a compound generated by SuperDiff.
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In this work, we fix σ 2
t = βt . Then, as shown in Ho et al.12, by rewriting µθ as a linear combination of xt and ǫθ , 

a neural network that predicts ǫ from xt with input and output dimensions equal to that of the noise it predicts, 
the reverse process may be rewritten as:

where z ∼ N(0, I).
To train the DDPM, noise is added to x0 using the forward process q(xt |x0) for a randomly sampled 

t ∼ Uniform({1, . . . ,T}) , which the neural network then learns to remove through the reverse process.
Four different versions of the DDPM were trained on SuperCon: one for cuprates, one for pnictides, one for 

others, and one for all classes (“everything”). The training datasets for each version of the DDPM were randomly 
split into training and validation sets in an approximately 95%− 5% proportion. Training curves for all versions 
of the DDPM were able to converge and stabilize after around 50 epochs, and each version of the DDPM was 
trained for between 50 and 100 epochs, depending on the approximate lowest validation loss. For all versions 
of the DDPM,  NAdam24 was chosen as the optimizer, and provided satisfactory results. Moreover, like in Ho et 
al.12, T was set to 1000 and the U-Net25 neural network architecture was used for ǫθ (for this work, a 1D U-Net 
was used as opposed to the 2D U-Net used for images).

Conditioning
Iterative Latent Variable Refinement (ILVR)14 was used to condition the DDPM. Because ILVR is training-free, 
the same four trained unconditional DDPMs could be relatively easily modified for conditioning.

ILVR is a slight modification to the reverse diffusion process, and the general structure of ILVR used is shown 
in Fig. 3. At each step of the reverse “denoising” process, instead of sampling xt−1 directly from pθ (xt−1|xt) like 
in unconditional DDPM, xt−1 instead becomes

where x′t−1 ∼ pθ (x
′
t−1|xt) is the original unconditional proposal, yt−1 ∼ q(yt−1|y) is the condition encoding by 

the noising process in Eq. (2), and φN is a linear low-pass filtering operation that maintains the dimensionality 
of the input.

The goal of ILVR conditioning is to have φN (x0) = φN (y) , thereby allowing the generated output x0 to share 
high-level features with reference y . In this case, the generated superconductor should have similar chemical 
composition as the reference superconductor.

(5)xt−1 =
1

√
αt

(

xt −
1− αt√
1− αt

ǫθ (xt , t)

)

+ σtz ,

(6)xt−1 = φN (yt−1)+ x′t−1 − φN (x
′
t−1) ,

Figure 3.  Overview of the Iterative Latent Variable  Refinement14 method used. The vector image representation 
is the same as explained in Fig. 2. YBa1.4Sr0.6Cu3O6Se0.51

31 is an example of a reference superconductors and 
YBa1.4Sr0.6Cu3O6Se0.18As0.32 is an example of a generated output.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10275  | https://doi.org/10.1038/s41598-024-61040-3

www.nature.com/scientificreports/

In Choi et al.14, it was stated that the scale factor N could be changed to control the amount of information 
brought from the reference to the generated output, where lower N results in greater similarity between gener-
ated output and reference and higher N results in only coarse information from the reference being brought 
by the model to the generated output. In our work, we found that N > 4 resulted in large numbers of invalid 
compounds with negative amounts of elements. As a result, we used N = 2 up to N = 4 , but we still found the 
conclusions made about changing N in Choi et al.14 applicable.

Sampling
As mentioned previously, we trained four versions of the unconditional model, each of which was then copied 
and modified with ILVR conditioning to also create four versions of the conditional model. We thus have four 
versions of the unconditional DDPM (without ILVR), which we call “unconditional SuperDiff ”, and four versions 
of the conditional DDPM (with ILVR), which we call “conditional SuperDiff.” On a single consumer Nvidia RTX 
3060 Ti GPU, each version of SuperDiff was trained in under 2 h, and we sampled 500,000 compounds from 
each of the four unconditional SuperDiff versions, which took less than 10 h for each version. These relatively 
fast training and inference times make SuperDiff a system that can be trained and used using resources at most 
universities and even consumers. For conditional SuperDiff, we sampled varying amounts of compounds for 
different reference superconductors, and we discuss those results later.

All sampled compounds were initially screened through various quality checks to ensure that all generated 
compounds were reasonably realistic. First, we obviously eliminated all generated compounds with negative 
amounts of elements. Note that we round all amounts of elements to two decimal places beforehand. Next, we 
eliminate compounds with either too few (only 1) or too many elements—for Cuprates, we limit outputs to 
compounds with a maximum of 7 elements, and for Pnictides and Others, we limit outputs to compounds with 
a maximum of 5 elements. After these basic checks, we removed duplicates and further evaluated compound 
validity with the charge neutrality and electronegativity checks from the SMACT   package26. Finally, we ran 
formation energy prediction with  ElemNet27,28. We will discuss the performance of model generations against 
these checks later.

Clustering
To identify if SuperDiff could generate new superconductor families, clustering analysis was performed. Cluster-
ing, which is an unsupervised machine-learning method used to find hidden patterns within data, was applied to 
the SuperCon database in Roter et al.15, which established that these methods, when applied to superconductors, 
could exceed human performance in identifying different “families” of superconductors, which are represented 
as clusters. In this work, we use the clustering method for superconductors from Roter et al.15 to evaluate gener-
ated outputs for new families. In Roter et al.15, it was also found that, for superconductors, to visualize clustering 
results, the t-SNE method worked best. t-SNE is a non-linear dimensionality reduction technique that allows 
higher dimensional data (96-dimensional superconductor data points in this case) to be represented in 2D or 
 3D29 (which do not have any physical meaning).

As discussed in the introduction, a major objective of this work was to generate new families of supercon-
ductors, as identified by the clustering model—that is, to generate new clusters of superconductors. This was 
something not accomplished by previous works, including the GAN in Kim and  Dordevic6 and the diffusion 
model in Zhong et al.8. In order to achieve this goal, we experimented with the conditional model’s ability to 
interpolate between the reference compound and the training dataset. This idea of experimenting with a con-
ditional DDPM’s ability to interpolate between the reference set and training set was proposed in Giannone et 
al.30 to attempt to achieve few-shot generation on image classes never seen during training. We attempt to do 
this with superconductors in this work. For instance, we experiment with conditioning the cuprate version of 
conditional SuperDiff on new, different reference cuprates not in the families of cuprate superconductors in the 
training dataset. We examine the model’s ability to generate new clusters or families of superconductors using 
information from the reference compound with this technique, and we report our clustering results below.

Results
In this section we report the performance of SuperDiff on various checks and discuss some interesting new find-
ings. We first evaluate the performance of unconditional SuperDiff with the 500,000 compounds we generated 
for each of the four classes by performing various computational tests, which included some general compound 
checks as well as checks for superconductivity. We use the same computational tests for unconditional SuperDiff 
as used for the GAN in Kim and  Dordevic6 and are thus able to directly compare unconditional performance. 
Afterward, as our most notable results, we evaluate the performance of both the unconditional and conditional 
versions of SuperDiff on clustering and manually identify and present some promising new families of super-
conductors generated by the conditional SuperDiff.

Duplicates and validity
For the 500,000 compounds generated by each version of unconditional SuperDiff, we first screened for duplicates 
between the generated set and the training set (the portion of the SuperCon database of the same class) and for 
duplicates within the generated set itself. After this, we ran the charge neutrality and electronegativity checks 
on the generated compounds with the SMACT   package26. We present the results of these general tests in Table 1, 
and then we remove all duplicates from the generated sets.

We notice that the novelty % and uniqueness % of generated results are all very high, which means that 
unconditional SuperDiff is able to successfully generate both diverse and novel compounds. Unconditional 
SuperDiff, here, outperforms the GAN in Kim and  Dordevic6 in all metrics regarding generation novelty and 
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uniqueness, and, similar to as proposed in their work, we also speculate that the high novelty percentage is due 
to the non-stoichiometric nature of the compounds we generate, which opens up a large composition space for 
the model. Notably, unconditional SuperDiff maintains a very high uniqueness % for pnictides despite the small 
training set, something not accomplished by the Wasserstein GAN in Kim and  Dordevic6. This corroborates 
the observation of the superior ability of DDPMs to generate diverse results when compared to a GAN in other 
 disciplines16. Lastly, although the SMACT   check26 results varied greatly between classes and the proportion of 
valid compounds for some classes was fairly low, the fast inference time justifies that SuperDiff is still able to 
generate valid compounds reasonably well for all classes.

Overall, these results indicate that all versions of unconditional SuperDiff are able to generate both novel and 
unique compounds—overcoming the past issues faced by Kim and  Dordevic6—as well as valid compounds. As 
conditional SuperDiff maintains much of the same components as the unconditional model, it was unsurpris-
ing that—in most cases—conditional SuperDiff was also able to generate novel, unique, and valid compounds; 
however, for conditional SuperDiff, these qualities were very much dependent on the reference compound—we 
still run these checks on all compounds generated by conditional SuperDiff and filter out invalid compounds.

Formation energy
We further validated the performance of SuperDiff on generating synthesizable compounds by predicting the 
formation energies of the generated compounds with  ElemNet27,28, which is a deep neural network model for 
predicting material properties from only elemental compositions. We chose ElemNet for our formation energy 
prediction because of its ability to use only chemical composition, as we do not consider crystal structure in our 
generation process. Because ElemNet does not take in compounds as column vectors in R96 , as SuperDiff does, 
but instead takes them in as column vectors in R86 with certain elements removed, we ran the ElemNet formation 
energy prediction on only the compounds generated by SuperDiff that ElemNet would directly support—this did 
constitute the great majority of generated compounds. We display the distributions for the predicted formation 
energies of generated compounds in Fig. 4.

As shown in the figure, unconditional SuperDiff generated a majority of compounds with negative formation 
energy for all classes of superconductors, with the mean formation energy for all classes predicted to be negative 
as well. In Jha et al.27, it was stated that negative formation energy values for compounds are a good indicator 
of their stability and synthesizability; therefore, although these predictions are not definitive proof—experi-
mentation validation would be necessary—these predictions provide an indication that most of the compounds 
generated by unconditional SuperDiff are plausibly stable and synthesizable.

For conditional SuperDiff, the distribution of formation energies for generated compounds is heavily depend-
ent on the reference compound. However, given a reasonable reference compound—that is, a valid reference 
compound that belongs to the class of superconductor that the version of SuperDiff was trained on—we demon-
strate that conditional SuperDiff is able to generate compounds predicted to be stable by ElemNet. Specifically, as 
shown in Fig. 4, for the cuprates version of conditional SuperDiff conditioned on YBa1.4Sr0.6Cu3O6Se0.51

31 and 
the pnictides version of conditional SuperDiff conditioned on BaFe1.7Ni0.3As232—some of the compounds we 
conditioned conditional SuperDiff on to find new families of superconductors later—the predicted distribution of 
formation energies for generated compounds show all generated compounds to have negative formation energy. 
These results indicate that, given reasonable reference compounds, conditional SuperDiff can generate plausibly 
stable and synthesizable compounds, which is not surprising given the fundamental architecture similarities 
between conditional and unconditional SuperDiff.

Superconductivity
After those general checks, we performed some computational checks for superconductivity in order to verify 
that unconditional SuperDiff is indeed able to generate probable superconductors. We ran the compounds gener-
ated by unconditional SuperDiff through the K-Nearest Neighbors (KNN) classification model and regression 
model from Roter and  Dordevic4 for predicting superconductivity and critical temperature, respectively, based 
on elemental composition.

Table 1.  Summary of unconditional SuperDiff performance for the four versions we trained from the 500,000 
compounds we sampled from each version. Shown are the percentage of generated compounds that were novel 
(not in the training set) and unique (distinct from others in the given generated set) before SMACT 26 filters, 
the number of generated compounds that were valid (passed SMACT  filters), the percentages of generated 
compounds determined to be superconducting by the classification model along with the estimated true 
percentages according to Eq. (7), and summary Tc statistics from the predictions by the regression model. 
We note that although the novelty percentage is 100.00%, this is due to rounding, and the model does, on 
extremely rare occasions, exactly reconstruct superconductors from the training dataset.

SuperDiff Version Novel % Unique % # Valid Raw Output % True % Estimate Mean Tc SD Max Tc

Everything 100.00% 99.32% 79,828 67.81% 62.22% 8.51K 8.79K 97.0 K

Cuprates 100.00% 99.92% 10,971 64.53% 58.22% 64.68K 14.61K 110.5 K

Pnictides 100.00% 99.98% 2,184 95.74% 96.39% 22.00K 2.43K 29.5 K

Others 100.00% 99.39% 172,739 55.82% 47.56% 6.33K 2.50K 30.5 K
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For the predicted proportion of generated compounds that were superconducting, we accounted for the inher-
ent probabilistic error of the classification model by using Bayesian statistics to estimate the true proportion of 
superconducting generated compounds given the classification model’s predicted proportion psc and the true 
positive tp and false positive rates fp of the classification model. The true proportion of generated compounds 
that are superconductors ρsc may be estimated  as6

where tp = 98.69% and fp = 16.94% are reported by Roter and  Dordevic4.
For the generated compounds that were predicted to be superconducting, we used the regression model in 

Roter and  Dordevic4 to predict their critical temperatures. Like all other tests done so far, this computational 
prediction is only an approximation. We tabulated the results of the classification and regression predictions on 
the compounds generated by unconditional SuperDiff in Table 1. We will discuss the predicted superconductivity 
of compounds generated by conditional SuperDiff later.

As seen in the table, all versions of unconditional SuperDiff were able to generate predicted superconduc-
tors at a rate comparable to the GAN in Kim and  Dordevic6 and much higher than the 3% achieved by manual 
search in Hosono et al.2—notably, unconditional SuperDiff seems to perform much better on pnictides despite 
the small training set. This is further indication of the effectiveness of computational search for superconductors 
when compared to manual searches. Moreover, unconditional SuperDiff seems to capture the critical temperature 
distribution of the SuperCon training dataset much better than the GAN in Kim and  Dordevic6.

Although actual synthesis and testing in a lab are required to confirm superconductivity, these checks, com-
bined with the clustering analysis results that we will discuss later, provide a general indication that unconditional 
SuperDiff is able to generate highly plausible superconductors.

Clustering results
We ran the clustering analysis described previously on both unconditional and conditional SuperDiff. We dis-
play the clustering results for the cuprates version of unconditional SuperDiff in Fig. 5. Superconductors from 
the SuperCon database are shown with full circles of different colors, whereas our predictions are shown with 
open black circles. Although unconditional SuperDiff generated compounds in all known clusters or families 
of superconductors, no new families of superconductors were generated by unconditional SuperDiff—this was 
true for the other versions of unconditional SuperDiff as well. This was the expected result for unconditional 
SuperDiff as the underlying DDPM’s goal is to just find a mapping from Gaussian noise to the training data 
distribution, not some other new distribution. However, superconductor discovery has a particular interest in 
the generation of new families of superconductors, so a method to control the generation process to change the 

(7)ρsc ≈
psc − fp

tp − fp
,

Figure 4.  Distribution of  ElemNet27,28 predicted formation energies of the generated compounds from the four 
versions of unconditional SuperDiff—(a) Everything, (b) Cuprates, (c) Pnictides, and (d) Others—as well as (e) 
Cuprates version of conditional SuperDiff conditioned on YBa1.4Sr0.6Cu3O6Se0.51

31 and (f) Pnictides version of 
conditional SuperDiff conditioned on BaFe1.7Ni0.3As232. Also shown are the average formation energy for each 
distribution.
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generated data distribution is desirable. With conditional SuperDiff, we are able to control the generation process 
to computationally generate new families of superconductors for the first time.

In Fig. 5, we also display a sample clustering result from the “others” version of conditional SuperDiff condi-
tioned on various compounds. As seen in the plot, we identified two new clusters: Li1−xBexGa2Rh , which was 
generated by conditioning SuperDiff on LiGa2Rh33, and Na1−xAl1−yMgx+yGe1−zGaz , which was generated by 
conditioning SuperDiff on NaAlGe34. Those and other predicted families will be discussed in more detail below.

These clustering results show that, with this ability to control generation, and by conditioning SuperDiff 
on compounds not in the SuperCon training set, SuperDiff is able to use information from various reference 
compounds to generate completely new families of superconductors. As expected, due to the nature of the con-
ditioning method, we note that for these generated new families, the reference compound does belong to the new 
cluster generated based on it; however, one of the main contributions presented in this work is that we are able 
to extrapolate a new family of superconductors from an otherwise single reference compound. We performed 
this clustering analysis on all versions of conditional SuperDiff conditioned on a variety of different reference 
compounds, and we discuss the promising new families of superconductors generated by conditional SuperDiff 
in more detail and verify their superconductivity below.

Promising generated new families
After running clustering analysis for the different versions of conditional SuperDiff conditioned on a variety 
of reference compounds, we manually identified the most promising new families of superconductors gener-
ated by conditional SuperDiff. Beyond the novelty, uniqueness, and SMACT  checks, we further checked for 
the novelty of these newly generated families by searching on the internet and through other databases—these 
newly generated families could not be found anywhere else. We tabulated these most promising new families of 
superconductors generated by conditional SuperDiff in Table 2. There, we identified the reference compound 
used as well as a few output examples and their respective predicted Tc using the regression model in Roter and 
 Dordevic4, and determined the general formula for the new family. We notice that most compounds generated 
with conditional SuperDiff are predicted to be superconducting, with predicted Tc being reasonable for each 
class. Additionally, a particularly interesting result to note was that our model seemed to generate some new 
families of superconductors with double or, in one case, even triple doping. This is an interesting new avenue for 
superconductor discovery that has not been extensively studied, which our model suggests should be explored 
in more detail by material scientists.

We further demonstrate that conditional SuperDiff is able to generate realistic new families of superconduc-
tors by plotting the predicted Tc using the regression model in Roter and  Dordevic4 against the Cesium doping 
content for the newly generated Ba2−xCsxCuO3.3 family in Fig. 6. We notice that the generated Ba2−xCsxCuO3.3 
family is predicted to exhibit the expected parabolic Tc doping dependence relationship for this type of cuprate 
superconductor, which was observed previously in other cuprate  families35.

Figure 5.  Clustering of the (a) valid generated compounds from the Cuprates version of unconditional 
SuperDiff and (b) valid generated compounds from the Others version of conditional SuperDiff conditioned 
on various different compounds. Colored full circles represent data points from SuperCon (cuprates only 
for (a) and others only for (b)), with each color representing a different cluster, or family, of superconductor 
as identified by the model from Roter et al.15; black open circles are compounds generated by SuperDiff. We 
notice that unconditional SuperDiff did not generate any new families of superconductors, as all generated 
compounds fall within the existing clusters of superconductors from SuperCon. However, for conditional 
SuperDiff, although some generated superconductors fall within the existing SuperCon clusters, we were able 
to identify two new clusters consisting of only generated superconductors (marked with arrows). These two 
new clusters correspond to two new families of superconductors generated by SuperDiff: Li1−xBexGa2Rh and 
Na1−xAl1−yMgx+yGe1−zGaz.
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Table 2.  Promising new families of superconductors generated by conditional SuperDiff. Shown are the 
reference compound used to condition the SuperDiff, the version of conditional SuperDiff used, a few output 
examples from the family and their predicted critical  temperatures4, and the general formula for the new 
family.

Reference compound SuperDiff version Output examples Predicted Tc (K) General formula

YBa1.4Sr0.6Cu3O6Se0.51
31 Cuprates

YBa1.4Sr0.6Cu3O6Se0.35As0.12 55

YBa1.4Sr0.6Cu3O6SexAsyYBa1.4Sr0.6Cu3O6Se0.28As0.21 41

YBa1.4Sr0.6Cu3O6Se0.18As0.32 46

YBa1.4Sr0.6Cu3O6Se0.51
31 Cuprates

YBa1.4Sr0.6Cu3O6Se0.18Br0.19 54

YBa1.4Sr0.6Cu3O6SexBryYBa1.4Sr0.6Cu3O6Se0.11Br0.25 33

YBa1.4Sr0.6Cu3O6Se0.17Br0.25 41

SrCu2O3
37 Cuprates

SrCu1.77Ni0.08Zn0.15O3 31

SrCu2−x−yZnxNiyO3SrCu1.58Ni0.11Zn0.31O3 10

SrCu1.85Ni0.08Zn0.07O3 28

Ba2CuO3.25
38 Cuprates

Ba1.88Cs0.12CuO3.28 30

Ba2−xCsxCuO3.3Ba1.91Cs0.09CuO3.28 28

Ba1.77Cs0.23CuO3.3 13

LiCu2O2
39 Cuprates

Li0.67Be0.34Cu2O2 33

Li1−xBexCu2O2Li0.89Be0.11Cu2O2 22

Li0.72Be0.28Cu2O2 34

LiGa2Rh
33 Others

Li0.67Be0.34Ga2Rh 9

Li1−xBexGa2RhLi0.87Be0.13Ga2Rh 33

Li0.71Be0.29Ga2Rh 27

NaAlGe34 Others

Na0.8Al0.92Mg0.28Ge0.84Ga0.16 10

Na1−xAl1−yMgx+yGe1−zGazNa0.36Al0.63Mg0.99Ge0.88Ga0.12 12

Na0.79Al0.75Mg0.46Ge0.68Ga0.32 8

BaFe1.7Ni0.3As2
32 Pnictides

BaFe1.72Co0.13Ni0.15As2 24

BaFe2−x−yCoxNiyAs2BaFe1.74Co0.08Ni0.08As2 16

BaFe1.7Co0.12Ni0.11As2 30

BaFe1.7Ni0.3As2
32 Pnictides

BaFe1.84Co0.16As1.8Ge0.2 17

BaFe2−xCoxAs2−yGeyBaFe1.77Co0.23As1.81Ge0.19 24

BaFe1.82Co0.18As1.79Ge0.21 27

Figure 6.  Plot of Tc predicted by the regression model in Roter and  Dordevic4 versus Cesium content (x) for 
Ba2−xCsxCuO3.3 family generated by conditional SuperDiff (see Table 2). We notice a characteristic parabolic 
dependence of Tc versus doping, observed previously in other cuprate  families35.
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These findings again show that SuperDiff is not only able to generate new superconductors within known 
families but is also able to overcome the limitations of previous generative models to generate completely new 
families of superconductors that are also realistic—although we note that for some reference compounds, Super-
Diff was also unable to generate new families of superconductors.

Discussion
With the lack of a systematic approach, the discovery of new high Tc superconductors has long depended on 
material scientists’ serendipity. Recently, machine learning has been applied to this field to help assist scientists, 
but past works still lacked many key capabilities, for instance, the ability to computationally find new families 
of superconductors. Moreover, recent generative model approaches applied to this field also lacked methods of 
controlling the generation process by incorporating information from reference  compounds6–8.

In this paper, we have introduced a novel method for superconductor discovery using diffusion models with 
conditioning functionality that has addressed these major issues. Like previous works applying generative models 
to superconductor discovery, we were able to generate novel, realistic, and highly plausible superconductors that 
lie outside of existing databases—leveraging this “inverse design” approach to significantly outperform manual 
search and previous classification model approaches. With our unconditional model, we were also able to address 
the low generated compound uniqueness issues that plagued previous works due to the small training data set for 
pnictides. Most importantly, however, beyond the unconditional performance improvements the diffusion model 
brought, our contribution of implementing conditioning with ILVR for superconductor discovery to allow the 
generation process to be controlled enabled the creation of a tool for computationally generating completely new 
families of superconductors. We verified the generation of new families of superconductors with our clustering 
analysis, and we presented several of these promising new families of generated superconductors for several 
different classes of superconductors in Table 2. Once again, we point out that no previous computational model 
for superconductor discovery would have been capable of generating these new families of superconductors as 
they attempt to produce only samples that match the training data.

The application of deep generative models for superconductor discovery continues to be a very promising and 
exciting approach. Future studies can benefit from possible improvements that can be made to SuperDiff, includ-
ing implementing a physics-informed diffusion model and creating and utilizing a better, more comprehensive 
training dataset of superconductors. Nevertheless, SuperDiff in its current form is still very powerful as a tool 
for superconductor discovery, and researchers can currently benefit from it in a myriad of ways, such as by using 
its novel generations as inspiration—starting with the new families introduced here, using it to expand on their 
own new discoveries, or by simply experimenting with many more reference compounds (such as high-pressure 
superconductors) to continue using it to generate completely new families of hypothetical superconductors or 
hypothetical superconductors with even higher Tc.

Data availability
The SuperCon  dataset21 used in this study to train the SuperDiff model is publicly available at https:// doi. org/ 
10. 48505/ nims. 3739, and a copy of the processed dataset used is available at https:// github. com/ sdkyu anpan da/ 
Super Diff/ tree/ 54f05 20a67 bf830 8fbf4 37b2b 66aa3 6beee 52acd/ datas ets. The 265,722 valid compounds generated 
by the four versions of unconditional SuperDiff and the 270 valid compounds generated by conditional SuperDiff 
conditioned on YBa1.4Sr0.6Cu3O6Se0.51

31 are available at https:// github. com/ sdkyu anpan da/ Super Diff/ tree/ 54f05 
20a67 bf830 8fbf4 37b2b 66aa3 6beee 52acd/ outpu ts. Other data that support the results of this study are available 
from the corresponding author upon reasonable request.

Code availability
An implementation of the proposed model, SuperDiff, is publicly available online at https:// github. com/ sdkyu 
anpan da/ Super Diff and is citable on Zenodo at https:// doi. org/ 10. 5281/ zenodo. 10699 90636.
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