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Research on roller monitoring 
technology based on distributed 
fiber optic sensing system
Miao Xie 1, Bo Li 2*, Suning Ma 1, Jinnan Lu 1, Guilin Hu 3, Qingshuang Meng 1 & Jiaxing Luo 1

As one of the key components of the belt conveyor, the roller bears the task of supporting and rolling 
the conveyor belt, and monitoring its condition is very important. The traditional monitoring of the 
conveyor roller group adopts worker inspection, which has strong subjectivity. Monitoring using 
sensors necessitates the use of numerous sensors, which can pose wiring challenges. The use of 
inspection robots for monitoring results can be discontinuous, and their performance may be limited. 
This study proposes a fault diagnosis method for rollers based on a distributed fiber optic sensing 
system. By improving the traditional Isolation Forest (IForest), a framework called Incremental 
Majority Voting Isolation Forest (IMV-IForest) is proposed. By analyzing the optical signal, we 
extracted the variation patterns of roller faults over time and space, and analyzed the abnormal score 
distribution between fault data and normal data. Using the dataset collected on-site, we compared 
and analyzed IMV-IForest with the traditional IForest and the Extended Isolation Forest (E-iForest). 
The results indicate that the variation of the fault of the faulty roller with time and space can be used 
for early prediction of roller faults; determine an anomaly score threshold of 0.6; improved IForest 
have faster computation time and higher accuracy. Finally, to verify the effectiveness of the proposed 
scheme, a 3-month experiment was conducted on a 600 m long belt conveyor in a certain mine, and 
on-site monitoring results were obtained. By comparing with manual detection results, it was shown 
that the proposed method has high recognition rate for faulty idlers, with an accuracy rate of 97.92%, 
and can effectively diagnose faulty idlers.

The belt conveyor is an essential material handling equipment widely utilized in various industrial production 
fields such as mines, power plants, ports, and so on. Among its crucial components, the roller plays a vital role 
in supporting and rolling the conveyor belt. However, due to prolonged usage and environmental factors, the 
support rollers are susceptible to malfunctions. Once a malfunction occurs, it can easily lead to downtime and 
reduced production efficiency, potentially resulting in equipment damage and even casualties. Consequently, 
monitoring and diagnosing the support rollers are of utmost  importance1.

Idlers are mainly divided into two types: load-bearing idlers and non-load-bearing idlers. The roller primarily 
consists of bearings and shells, as depicted in Fig. 1. Both structures may fail, mainly due to roller skin fracture 
and bearing damage. Roller failure is one of the main causes of conveyor failures and also the primary cause of 
conveyor fires.

Therefore, monitoring the status of the rollers is crucial for ensuring smooth mining, reducing safety risks 
and economic losses in the mine. The traditional monitoring method for conveyor roller groups includes work-
ers walking along the conveyor and detecting them visually and audibly. However, this detection method has 
subjective properties and can produce unreliable diagnostic  results2. Some coal mines are monitored through 
the placement of sensors locally. However, due to rollers distributed over vast distances, many sensors need to 
be arranged, and wiring is also difficult. In addition, some coal mines install inspection robots to inspect belt 
conveyors, but the inspection robots stay near individual rollers for a short time, which may prevent timely 
detection of faults and limit their performance. Therefore, monitoring the rollers is a particularly challenging. In 
addition, it is necessary to conduct early detection of roller faults in order to arrange maintenance time reason-
ably and reduce the impact on the overall operating performance of the conveyor.

In terms of anomaly detection, based on whether the sample labels are involved, anomaly detection methods 
can be divided into supervised learning and unsupervised learning. Unsupervised learning anomaly detection 
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methods are more widely used in anomaly detection research. Niu  Gang3 et al. used traditional IForest to detect 
anomalies in the power system, but its data convergence speed was slow.  Ding4 et al. proposed a pruning histo-
gram IForest to improve the detection performance of the IForest algorithm, but it takes longer to compute in 
datasets with large amounts of data.  Gao5 et al. proposed a k-means based IForest Algorithm, which can effec-
tively detect local anomalies. However, due to some shortcomings of K-means, this algorithm cannot be applied 
to large-scale or complex datasets.  Hariri6 et al. proposed the E-IForest algorithm, which solves the problem of 
insensitivity to local outliers in the IForest algorithm. However, the E-IForest algorithm has high computational 
overhead and insufficient accuracy and stability.

In terms of abnormal monitoring of conveyors,  Yang7 reported the successful application of DOFS for tem-
perature monitoring of mining conveyors in Queensland, Australia. Guo  Qinghua8 studied the temperature fault 
of the roller shaft of a belt conveyor using distributed fiber optic temperature measurement technology based 
on the principle of heat conduction. Temperature monitoring can effectively prevent fires from occurring, but it 
cannot detect early faults. Compared to temperature, sound signals usually have a smaller signal-to-noise ratio 
and can provide better features to detect faults. Hao  Hongtao9 et al. used LabVIEW software as the development 
platform to study a fault diagnosis method for rollers based on sound signals, and verified the effectiveness of 
the fault diagnosis method for rollers based on sound signals through experiments. Zhang  Gaoxiang10 designed 
a roller fault detection system and studied the main faults of the rollers, such as the outer ring fault of the roller 
bearing, the inner ring fault of the roller bearing, and the rolling element fault of the roller bearing. Wu  Guoping11 
collected audio signals from the rollers running along the belt conveyor using a pickup, and proposed a coal 
conveyor roller fault detection method based on fusion signal and multi input one-dimensional convolutional 
neural network.  Wijaya12 studied the application of artificial neural networks to classify conveyor faults of dif-
ferent levels under different working conditions. This study is limited to experimental environments and cannot 
represent on-site conditions.

This article proposes a fault diagnosis method for rollers based on a distributed fiber optic sensing system. 
The collected signals are processed and combined with an improved IForest algorithm to effectively detect the 
faulty rollers. Finally, on-site monitoring experiments were conducted on a 600 m long belt conveyor in a certain 
mine, and the monitoring results were obtained, indicating that the proposed method has a high recognition 
rate for faulty rollers and can effectively diagnose roller faults.

A fault monitoring method for idler based on fiber optic sensors
Fiber optic itself is made of glass fiber, which has high resistance to most harsh chemical environments. Its surface 
is covered with a polymer or metal layer, which is one of its main advantages, especially in mining environments 
containing substances such as oil and gas. Compared with other sensors, optical fibers have more distinctive 
durability. In addition, fiber optic sensors are also known as distributed sensors, and the fibers in the optical 
cable serve as sensors that can measure temperature, strain, and sound  waves13. Fiber optic sensors used for 
monitoring sound signals are commonly referred to as distributed acoustic sensors (DAS).

The working principle of this sensor is the principle of backward scattering of light. Light is emitted from the 
light source and propagates through an optical fiber. When disturbance occurs at any distance along the optical 
fiber, the light will scatter back to the receiver. For acoustic monitoring, sound or vibration signals can be meas-
ured by backscattering light intensity (Rayleigh backscattering) similar to the frequency of emitted  light14. The 
working principle of this system is based on the optical time-domain reflection method, where the position of the 
back scattered light is determined based on the time required for the receiver to receive the back scattered light 
after the light source is emitted. When the roller malfunctions, vibration occurs, and sound waves are transmitted 
to the tested optical cable, causing axial and radial strain on the fiber. The refractive index of the fiber changes 
correspondingly due to the influence of the elastic optical effect, and the phase of the Rayleigh scattering light 
in the fiber also changes, obtaining information on the phase changes of the Rayleigh scattering light in various 
parts of the fiber. Analyze the collected Rayleigh scattering light through the DAS system to determine the type 
of interference. Figure 2 illustrates the working principle of the DAS system.

Compared with  references9,10,11, this technology can achieve real-time continuous monitoring of the rollers 
without the need for multiple sensors. The fiber itself acts as a continuous sensor and is passive.

Figure 1.  Idler structure diagram.
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Signal processing analysis
Fast Fourier Transform (FFT)
The application of Fast Fourier Transform (FFT) is very extensive, including digital signal processing, image 
processing, audio processing and other fields. It is one of the foundations of modern digital signal processing 
technology and also one of the core algorithms of many digital signal processing algorithms.

FFT is developed on the basis of Discrete Fourier Transform (DFT). Compared with DFT, FFT has a smaller 
computational complexity and is an efficient algorithm that avoids repetitive operations in DFT, greatly saving 
workload and enabling faster calculation of the signal spectrum.

The basic idea of FFT is to decompose DFT into smaller sub problems and recursively solve these sub prob-
lems. This recursive decomposition method greatly reduces the computational complexity of FFT, thereby 
improving computational efficiency.

After FFT, the discrete data signal results in the same number of complex points, and the physical meaning of 
each point changes from time and amplitude to frequency and amplitude. The amplitude and phase after Fourier 
 transform15 are respectively represented as:

where: R (w) and I (w) are the real and imaginary parts of the Fourier transform | F (w) |.
Firstly, analyze the time-domain optical signals collected by the DAS system. Then, FFT is used to convert 

the time-domain signal into a frequency-domain signal.

Short-time Fourier Transform
Short-time Fourier Transform (STFT) has been widely used in time–frequency analysis of time-varying and 
non-stationary signals, and is a collection of time-domain and frequency-domain characteristics.

Short time Fourier transform is the process of taking a certain length of time-domain signal as a window 
function, and further performing FFT on the intercepted time-domain signal to obtain the spectrogram over 
time period t. By sliding the window function over the detection time period, the collection of each spectral 
segment can be obtained. Therefore, Short time Fourier transform is a two-dimensional function of time and 
 frequency16, and the basic calculation formula is as follows:

where: h (t) is the time-domain signal, P (t- β) for the time window,with β centered, STFT is the multiplication 
of the vibration signal h (t) by a β FFT performed by the window function p(t-β) centered on the center,the area 
of the window function in the FFT is fixed. In order to improve the time-domain and frequency-domain resolu-
tion, the Hamming window function is selected for signal analysis in this paper.

Isolation forest
The IForest algorithm is an ensemble learning algorithm based on decision trees, mainly used for anomaly detec-
tion and noise suppression. It identifies outliers in the data by dividing it into isolation point, while preserving 
important features of the  data17. Compared with other anomaly detection methods such as statistics, clustering, 

(1)|F(w)| =
√

R2(w)+ I2(w)

(2)ϕ(w) = arctan[I(w)/R(w)]

(3)STFTf

(

t, f
)

=

∫ ∞

−∞

h(t)p(t − β)e−jωtdt

Figure 2.  DAS principle of work.
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nearest neighbors, etc., it neither calculates distance nor density, thus greatly reducing execution time and 
memory requirements, making this method suitable for large datasets and real-time processing.

Isolation is performed through continuous segmentation of the dataset. Figure 3 shows an example of abnor-
mal data (Xj) and normal data (Xa). It can be seen that Xj is used more times to separate, while Xa is used less 
times to separate.

The forest framework is divided into a training phase and a testing phase. During the training phase, the 
dataset is sampled based on a predetermined subsampling size and recursively segmented until the instance is 
isolated (one branch only contains one data point) or reaches the Isolation Tree(ITree) height limit. The height 
limit of ITree can be estimated using the following  expression18:

where: ψ for subsampling size.
According to  literature19, using 28 or 256 subsampling sizes can provide sufficient anomaly detection details 

for a large range of data. Therefore, the neutron sampling size in this article is set to 256. The number of trees t 
determines the overall size, and the path length usually converges before t = 100. In this article, t = 100 is used 
as the default value.

During the testing phase, the average path length and anomaly score are used to determine anomalies. For 
each sample x, it is necessary to comprehensively calculate the results of each tree and calculate the anomaly 
score using the following formula:

where in:

where: s (x, y) is the anomaly score of x obtained by ITree from the training data of y samples, with a range of 
[0,1], H (x) is the height of x on each tree, E (h (x)) is the average path length of x, c (y) is the average path length 
of a given number of samples y, obtained from the average search length of failed searches in a binary search 
 tree20, used to standardize h (x), H (k) is the harmonic value, e is the Euler constant, e = 0.5772156649.

According to Eq. (5), in general, if E (h (x)) approaches c (y) and s approaches 0.5, then the sample x may 
not contain any identifiable outliers; If E (h (x)) approaches 0 and s approaches 1, then data x is identified as 
abnormal data; If E (h (x)) approaches y-1 and s approaches 0, then data x is recognized as normal data. The 
schematic diagram of abnormal score allocation is shown in Fig. 4. In practice, abnormal decisions are made 
when s is greater than 0.5, which may lead to false positives because the optimal decision threshold is not always 
equal to 0.5. In order to ensure the accuracy of the model, this article will further study the threshold values.

In addition, this algorithm can be applied to various application scenarios, such as network security 
 monitoring21, diesel engine fault  monitoring17, motor fault  monitoring22, and so on.

Improved isolation forest
This article improves the traditional IForest algorithm and proposes an IMV-IForest algorithm. The improved 
forest framework is shown in Fig. 5.

Specific ideas:

(4)limit = ceiling
(

log2 ψ
)

(5)s(x, y) = 2
−

E(h(x))
c(y)

(6)c(y) = 2h(y − 1)− (2(y − 1)/y)

(7)c(y) = H(k) = e + ln(k)

Figure 3.  Normal data Xj and abnormal data Xa (a) Isolation Xj (b) Isolation Xa. 
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(1) Forest construction stage: Use traditional IForest algorithms to construct some effective ITree on the initial 
dataset as the initial model. When new data points arrive, only update the existing ITree for the newly 
added data and add a new  ITree23.

(2) During the scoring stage, calculate the score x for each tree j. This process is repeated x times in each tree 
in the forest until a majority decision is made, meaning that the majority of trees corresponds to t/2 + 1 
trees, and the final decision is made.

Compared with traditional IForest, this method avoids the need to repeatedly construct the entire forest and 
does not require calculating the paths of all trees in the forest to obtain scores. Instead, it calculates the score 
x for each tree j and compares it with the threshold score. When most trees classify data items as abnormal or 
normal, the final decision can be made, effectively reducing execution time and memory.

(8)sj(x, y) = 2
−

h(x)
c(y)

Figure 4.  Schematic diagram of abnormal score allocation.

Figure 5.  Improved IForest framework diagram.
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On site data collection and analysis
Introduction to the experimental site
Two months of data collection work has been carried out on the belt conveyor of a mine. The main parameters 
of the conveyor are shown in Table 1.

The experimental conveyor is a groove conveyor, mainly equipped with groove bearing rollers, V-shaped 
lower rollers, upper center rollers, V-shaped lower center rollers, etc. The spacing between the bearing rollers is 
about 1500 mm, and the spacing between the V-shaped lower rollers is about 3000 mm.

The supporting rollers of the belt conveyor are shown in Fig. 6.
At present, the mining company arranges transportation team personnel to patrol along the conveyor every 

day, detecting roller faults through listening to sound and visual inspection, in order to timely detect faulty rollers.

Experimental site layout
This study used a DAS acquisition system as shown in Fig. 7, which has a spatial resolution of 4 m, a transmission 
distance of about 10 km, and a sampling rate set at 16 kHz.

Due to coal falling on the test site, optical fibers were installed on the upper side of the channel steel on both 
sides of the conveyor frame in this experiment. 8 mm through-holes were drilled on the inner side of the upper 
side of the frame every 800 mm for fixing the optical fibers with zip ties, which can prevent them from being 
smashed, as shown in Fig. 8.

After the installation of the collection system is completed, on-site calibration is carried out to determine 
the position of each frame of the conveyor in the system, with the first and last frame numbers being 9 and 184, 
respectively. To ensure the accuracy of positioning, calibration tests are conducted every 10 racks on site, and 
random calibration tests are conducted between every 10 racks.

Table 1.  Main technical parameters of conveyor.

Serial number Project Unit Vertical

One Bandwidth mm 1600

Two Volume t/h 2400

Three Belt speed m/s 4

Four Angle ° 0 ~ 14

Five Length m 600

Figure 6.  Roller type. (a) Carrying roller, (b) V-shaped lower rollers, (c) V-shaped lower center rollers, (d) 
upper center rollers.
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Analysis of manual inspection records
According to the manual inspection records in Table 2, the main faults on site were the detachment of the roller 
bearings and the breakage of the roller cylinder skin, with the most common being the detachment of the roller 
bearings. The following will mainly focus on specific analysis of these two types of faults.

Roller bearing failure
During manual inspection, it can be heard that the sound of the rack here is different from that of a normal rack. 
Pedestrian side shelf 58 reported a bearing detachment fault, as shown in Fig. 9 for the faulty roller.

Further analyze the collected fault data and normal data of shelf 58. Firstly, normalize the data and generate 
a time-domain graph, as shown in Fig. 10.

Figure 7.  DAS acquisition system.

Figure 8.  Fiber optic installation position and fixing method.

Table 2.  Manual inspection records. Extract data from the data collected over the past 2 months for 1 week 
before and after the malfunction of shelves 58 and 24 for specific analysis.

Inspection time Number of inspection racks Number of manual inspection failures Fault type

First month 5456
2 Roller skin malfunction

35 Roller bearing failure

Second month 5456
5 Roller skin malfunction

28 Roller bearing failure
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Figure 9.  Malfunction roller of rack 58.

Figure 10.  Time domain signal of rack 58. (a) 1 week before fault confirmation, (b) On the day of fault 
confirmation, (c) 1 week after replacement.
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From Fig. 10a, b, it can be seen that when the supporting roller malfunctions, the amplitude changes dramati-
cally within [− 1,1], and there is an oversaturation situation. The vibration amplitude in Fig. 10c is smaller than 
the variation in (a, b), but there is still no obvious distinguishing feature, which needs further analysis.

Perform FFT transformation on it to obtain its frequency domain diagram, as shown in Fig. 11. It can be seen 
that there is no variation pattern in the vibration amplitude at three different times at low frequencies. At high 
frequencies, after the replacement of the faulty roller, the overall amplitude of the frequency domain diagram 
of frame 58 was small. Before the confirmation of the roller fault, the overall amplitude increased, and a small 
amount of high-frequency components appeared. On the day of fault confirmation, it was found that the overall 
amplitude significantly increased, and the high-frequency components increased. The high-frequency compo-
nents were mainly concentrated in 500–2500 Hz.

Due to the fact that FFT belongs to static analysis, it is impossible to determine the occurrence time of a 
certain high-frequency component. In order to obtain the dynamic information of the signal, a short-time 
Fourier transform is used to perform time–frequency domain analysis on the above three signals, as shown in 
Fig. 12. From the graph, it can be seen that before the fault was confirmed, the frequency of the vibration signal 
significantly increased compared to the normal frequency spectrum of the supporting roller at various times. 
On the day of fault confirmation, the difference in low-frequency energy was not significant compared to before 
confirmation, while the difference in high-frequency energy was significant. On the day of fault confirmation, 
the vibration signal frequency did not differ significantly at different times.

Roller skin malfunction
The main reason for the failure of the roller skin is due to the high friction resistance between the roller and the 
conveyor belt, and the wear of the edge or middle contact area, which leads to the thinning of the contact area 
skin and causes the roller skin to break. Secondly, the operating environment of the rollers is harsh, and coal falls 
seriously on site. When the coal at the bottom of the conveyor reaches a certain height, it will directly contact 
and friction with the rollers, causing damage to the roller skin. This type of malfunction is detected through 
auditory and visual inspection during inspections.

The non pedestrian side shelf No. 24 has been confirmed to have a broken cylinder skin fault, and the faulty 
roller is shown in Fig. 13.

Using the same processing method as in section "Roller bearing failure", generate a time-domain graph as 
shown in Fig. 14.

From Fig. 14, it can be seen that the vibration amplitude before and on the day of fault confirmation was 
smaller than the vibration amplitude of bearing detachment. After replacing the faulty roller, the vibration 
amplitude was not significantly different from that of frame 58.

Perform FFT transformation on it to obtain its frequency domain diagram, as shown in Fig. 15. It can be 
seen that there is no obvious change pattern in the low frequency under these three types of times. The overall 
amplitude of the frequency domain diagram of the replaced roller at the high frequency is small, while the overall 
amplitude before the roller fault confirmation increases. On the day of fault confirmation, it is found that the 
overall amplitude significantly increases, and the high frequency component increases, mainly concentrated in 
500–3000 Hz.

Using short-time Fourier transform to perform time–frequency domain analysis on the above three signals, 
as shown in Fig. 16. From the graph, it can be seen that before the fault was confirmed, the frequency of the 
vibration signal significantly increased compared to the normal frequency spectrum of the supporting roller 
at various times. On the day of fault confirmation, the difference in low-frequency energy was not significant 
compared to before, while the difference in high-frequency energy was significant. Compared with the failure of 
the roller bearing detachment, the vibration energy of the roller fracture fault at high frequencies is significantly 
smaller than that of the roller bearing detachment fault.

Figure 11.  Frequency domain signal of fault on shelf 58.
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Figure 12.  Time frequency domain signal of shelf 58. (a) 1 week before fault confirmation, (b) On the day of 
fault confirmation, (c) 1 week after replacement.
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Figure 13.  Malfunction roller of rack 24.

Figure 14.  Time domain signal of rack 24. (a) One week before fault confirmation, (b) On the day of fault 
confirmation, (c) One week after replacement.
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Abnormal score analysis
In practice, abnormal score analysis involves making decisions when the score exceeds a certain threshold, typi-
cally 0.5. However, this rule can lead to false positives or false negatives, as the optimal decision threshold is not 
always equal to 0.5. To determine the optimal alarm threshold, we selected 5000 normal samples and 70 faulty 
samples from the collected data to form a dataset. Among these, 30 faulty samples and 1000 normal samples 
were used to analyze the distribution of anomaly scores, as depicted in Fig. 17.

The abnormal score distribution of these data is shown in Fig. 17, where (a) is the normal data score distri-
bution, and (b) is the abnormal data score distribution. The normal data scores are concentrated between 0.175 
and 0.675, and the abnormal data scores are concentrated between 0.525 and 0.925. Therefore, a threshold was 
selected between 0.525 and 0.675, and after repeated experiments, the threshold was ultimately set to 0.60.

Algorithm comparison
Evaluating indicator
ROC (Receiver Operating Characteristic) characteristic curve refers to the line connecting multiple points 
obtained under specific conditions, with the False Positive Rate (FPR) obtained under different judgment cri-
teria as the x-axis and the True Positive Rate (TPR) as the y-axis. AUC is a single number that summarizes the 
overall performance of a classifier, with higher values indicating better performance.

True positive (Tp), false negative (Fn), true negative (Tn), false positive (Fp), so precision (P) and recall (R) 
can be  defined24:

The higher the accuracy, the fewer false alarms; The higher the recall rate, the fewer missed alarms, which 
is a contradictory measure. In order to comprehensively consider these two indicators, the F1  indicator17 is 
introduced:

Evaluate results
The above datasets were used for comparative experiments in the traditional IForest, E-IForest, and improved 
IForest framework, and the results are shown in Table 3.

Table 3 shows the actual running time and F1 scores of the three methods. It can be seen that the IMV-IForest 
algorithm proposed in this paper has significant advantages in computational time and algorithm accuracy 
compared to the other two algorithms.

On site test verification
In order to verify the effectiveness of the proposed scheme, a three-month monitoring experiment was conducted.

The on-site testing results are shown in Table 4. Through statistical analysis of the on-site testing situation, 
the confusion matrix for evaluating the effectiveness is obtained, as shown in Fig. 18. As shown in Fig. 18, the 

(9)P =
Tp

Tp + Fp

(10)R =
Tp

Tp + Fn

(11)F1 = 2×
PR

P + R

Figure 15.  Frequency domain signal of fault on shelf 24.
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accuracy rate of detecting faulty idlers during these three months is 97.92%. The actual failure that was not 
reported was due to a small part of the cylinder skin falling off, which was discovered through manual visual 
inspection. There was no obvious vibration or abnormal sound during on-site operation, as shown in Fig. 19. 

Figure 16.  Time frequency domain signal of shelf 24. (a) One week before fault confirmation, (b) On the day of 
fault confirmation, (c) 1 week after replacement.
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The actual fault reported was due to the deviation of the on-site belt, which caused severe coal accumulation in 
the local area, as shown in Fig. 20. At the same time, there was also a phenomenon of scratches between the side 
of the roller and the roller frame, as shown in Fig. 21.

Economic benefits
This method can monitor the belt conveyor system in real-time, and after application, it can detect faulty roll-
ers about a week in advance. At the same time, it can reduce or even eliminate economic losses and production 
accidents caused by delayed detection of roller faults. It can effectively reduce the intensity of manual inspec-
tions, reduce unplanned shutdowns of belt conveyors, and reduce belt wear and loss. Moreover, the monitoring 
system is passive on site and does not introduce additional risk sources, Suitable for the needs of coal mining 
application scenarios, it is of great significance for promoting the construction of intelligent, safe, and efficient 
mining production systems.

Figure 17.  Distribution of data scores. (a) Normal data score distribution (b) Abnormal data score distribution.

Table 3.  Comparison results.

Algorithm IForest E-IForest IMV-IForest

Time(s) 8.32 2.45 1.02

F1 score 0.81 0.85 0.98

Table 4.  On site inspection results.

Inspection time Number of inspection racks Number of manual inspection failures
The method in this article accurately reports the 
number of faults and the number of false alarms Number of faults not reported

First month 5280 37 36 1

Second month 5456 33 33 1

Third month 5280 26 25 0

Figure 18.  Confusion matrix.



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10048  | https://doi.org/10.1038/s41598-024-60884-z

www.nature.com/scientificreports/

Conclusion
This article proposes a fault diagnosis method for rollers based on a distributed fiber optic sensing system. Firstly, 
the collected signal is processed and combined with an improved IForest algorithm. At the same time, it is com-
pared with other IForest algorithms to effectively detect faulty rollers. Finally, on-site monitoring experiments 
were conducted on a 600 m long belt conveyor in a certain mine, and the monitoring results were obtained. The 
specific conclusions are as follows:

(1) A framework based on IMV-IForest is proposed, which has higher efficiency and accuracy compared to 
traditional IForest and E-IForest.

(2) The variation pattern of roller data over time and space can be used for early prediction of roller faults.
(3) By comparing the results of on-site experiments with manual testing, it has been proven that the proposed 

method has a high accuracy, with a detection accuracy of 97.92%, and can effectively detect roller faults.

In the future, we plan to conduct more in-depth research on fiber optic micro vibration monitoring, in order 
to better monitor the rollers of belt conveyors and contribute to the coal mining industry.

Figure 19.  Dropping roller skin.

Figure 20.  Belt deviation and coal falling.

Figure 21.  Roller friction frame.
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Data availability
All data generated or analyzed in this study are included in this article. For more information, please contact 
the corresponding author.
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