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Computational drug repositioning 
with attention walking
Jong‑Hoon Park 1 & Young‑Rae Cho 1,2*

Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, 
the importance of computational drug repositioning has been highlighted because it can reduce the 
costs, development time, and risks compared to traditional drug discovery. Most approaches in this 
area use networks for systematic analysis. Inferring drug‑disease associations is then defined as a 
link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, 
we present a novel method of computational drug repositioning, named drug repositioning with 
attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for 
prediction is extracted. Second, a graph convolutional network captures the structural features of 
the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention 
mechanisms and converted into random walk profiles. Finally, a multi‑layer perceptron takes random 
walk profiles and predicts whether a target link exists. As an experiment, we constructed two 
heterogeneous networks with drug‑drug similarities based on chemical structures and anatomical 
therapeutic chemical classification (ATC) codes. Using 10‑fold cross‑validation, DRAW achieved an 
area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state‑of‑the‑
art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to 
further confirm the capability of DRAW to predict drug‑disease associations.

Although there has been enormous outgrowth over the decades in pharmacology, biology, and genomics, devel-
oping new drugs can be a lengthy, expensive, and risky  process1,2. It takes approximately 15 years and costs more 
than 1.5 billion  dollars3–5. Investments in drug discovery have increased recently; however, the number of new 
drugs approved by the US Food and Drug Administration (FDA) is declining. Therefore, drug repositioning, also 
referred to as drug repurposing, has recently gained attention. It is one of the approaches to drug discovery that 
identifies new therapeutic indications for medications already confirmed by the  FDA6. Recently, several cases 
of successful drug repositioning have been reported. For instance, thalidomide was developed as a sedative that 
was especially effective for morning sickness but had the problem of causing birth defects in pregnant women, 
so thalidomide was prohibited from sale. However, it was later discovered to be effective in the treatment of 
multiple myeloma and  leprosy7.

In the sense of the growing drug repositioning field, computational drug repositioning is attracting inter-
est from biomedical researchers and pharmaceutical  companies8–10. It efficiently guides the priority of pairs of 
drugs and diseases so that drug discovery can be accelerated compared to traditional procedures. Computational 
approaches can integrate various types of genomic information, such as protein structure, sequence, and phe-
notype, to improve accuracy. Recently, most computational drug repositioning techniques have used networks 
composed of drugs, diseases, or related  elements11,12. These networks can be organized based on biomedical 
features such as the chemical structures of drugs. The major advantage of using networks is that we can effectively 
manage and analyze data at the system level.

The drug repositioning problem can be viewed as a link prediction problem as we construct a network of 
drugs and diseases. Link prediction in networks (or graphs) is significant in diverse areas. It has already been 
adopted in recommendation  systems13, citation  networks14, and protein–protein interaction  networks15. The 
link prediction problem can be solved successfully using simple heuristics, such as the Adamic-Adar (AA)16, 
Katz  index17, and  PageRank18. However, these heuristics have clear practical limitations in that they cannot be 
applied to all universal networks.

With the advancement of deep learning models and improved computing performance, methods adopting 
graph neural networks (GNNs)19 have been proposed in recent years. They perform well in graph representation 
learning, node classification, graph classification, and link  prediction20. GNNs run not only for data in Euclidean 
space, but also for graph structures represented in non-Euclidean space. A GNN encodes hidden structural 
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features that can be extracted from the topology of the input  network21. It learns node representations based on 
information propagated from a node to its neighbors by message-passing rules, such that nodes sharing similar 
neighborhoods become similar entities.

In this study, we propose a novel method for computational drug repositioning, called Drug Repositioning 
with Attention Walking (DRAW), inspired by Walk  Pooling22. To predict drug-disease associations, we con-
structed a heterogeneous network with drug-drug similarities, disease-disease similarities, and known drug-
disease associations. A heterogeneous network is defined as a graph consisting of two or more types of nodes 
and their links, whereas a homogeneous network is composed of a single type of nodes and their links. Next, a 
subgraph enclosing the target link for prediction is extracted. This process transforms the link prediction prob-
lem into a graph-classification problem. To learn the structural features of the nodes in the subgraph, a graph 
convolutional network (GCN)21, which applies the concept of convolutional neural networks (CNNs)23 to a 
GNN, is used. Given these representations from the GCN, the attention  mechanism24 is applied to reconstruct 
a transition probability matrix and compute the random walk profile. Finally, the features computed from the 
random walk profile are fed into a multilayer perceptron (MLP)25 to generate a score of the subgraph, which 
indicates a prediction score for the target link. Our experimental results demonstrated that DRAW outperformed 
its competitors, achieving an area under the ROC curve (AUC) score higher than 0.9.

The main contributions of this work are summarized as follows:

• We proposed a graph-based deep learning method using a GCN that can predict drug-disease associations 
accurately.

• We verified that a novel random walk method using attention mechanisms outperformed state-of-the-art 
methods for link prediction.

• We demonstrated that drug-drug similarities measured using ATC codes were more effective at drug repo-
sitioning than similarities based on chemical structures.

Methods
In this section, we introduce our computational drug repositioning method, DRAW, which predicts drug-disease 
associations through the following steps. First, a drug-disease heterogeneous network is constructed in the form 
of an undirected, unweighted graph. Second, the subgraph enclosing the target link for prediction is extracted. 
This is used as the input for the binary graph classifier. Third, nodes in the subgraph are labeled as the Dual 
Radius Node Labeling (DRNL) scheme. Fourth, a GCN is adopted to extract the structural features of the sub-
graph. Fifth, a random walk profile is computed using attention mechanisms. Sixth, the features of the node-, 
edge-, and graph-level are calculated using the random walk profile. Finally, the graph classifier takes all features 
as inputs to score the subgraph for the purpose of predicting the presence of the target link. Overall, we enhanced 
the methodology to be applied to drug repositioning, incorporating refined network construction and parameter 
tuning into the original process of  WalkPooling22. Figure 1 shows the workflow of DRAW.

Figure 1.  The workflow of the proposed model, DRAW. A subgraph composed of the nodes of the target link 
and their neighbors is extracted from the original drug-disease heterogeneous network. Nodes in the subgraph 
are labeled by DRNL and fed into the GCN. Transition probabilities P+ and P− are computed by the attention 
conducted on G+ and G− with the features from the GCN. After a random walk is completed, all features are 
used as input of MLP, a binary graph classifier.
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Network construction
A drug-disease heterogeneous network is structured by connecting drug pairs, disease pairs, and known drug-
disease associations. However, including all drug-drug similarities and disease-disease similarities requires 
considerable memory usage and time. Thus, we selected drug pairs (and disease pairs) in order of the highest 
similarities as edges and adjusted the network density. We set the hyperparameters Ddr and Ddi to represent 
density thresholds of the drug and disease networks, respectively. For the drug network, node pairs are selected 
up to 0.01× Ddr × Ndr × (Ndr − 1)÷ 2 where Ndr is the number of drugs. The disease network is the same as 
the drug network. In our experiment, we set densities Ddr and Ddi to 4, empirically. The effect of network densi-
ties will be further discussed in the Results section. All edges in this heterogeneous network were weighted as 
1 to create an unweighted graph.

Subgraph extraction
To extract the subgraph enclosing the target link for prediction, a k-hop subgraph was sampled. According to pre-
vious  reports22,26, the existence of a link between two nodes depends on the connectivity of their close neighbors. 
For instance, link prediction using the Jaccard index showed good performance, even though it considered only 
the closest neighbors. In agreement with these studies, we adopted k = 2 in our experiment. When a subgraph is 
extracted, the link prediction problem can be redefined as a graph classification problem. If a graph is classified 
as true, then the target link is predicted positively and vice versa.

Node labelling by DRNL
To create topological features of the subgraph, we used the DRNL algorithm proposed by Zhang and  Chen26. 
The result involves the extent to which each node is separated from the target nodes connected by the target 
link. This is formulated as follows:

where i is the node to be labeled, x and y are the target nodes, dx and dy represent the distance between i and 
x and between i and y , respectively, d̂ = dx + dy , (d̂/2) is the quotient divided by 2, and (d̂%2) is the modulo 
operation divided by 2. If i cannot reach x or y , then i is assigned a null label, 0. This method labels x and y as 
1. The node labels are converted into one-hot encoding vectors.

Feature extraction by GCN
We adopted a  GCN21 to capture the structural features of the labeled nodes in the subgraph, which resulted in 
node representations. The GCN extracts not only local features but also global features, allowing us to deal with 
diverse features in the topology. The GCN updates hidden states as follows:

where X(l+1) is the result of the l  th GCN layer in the matrix form of the number of nodes by the number of 
features, A is the adjacency matrix of the input subgraph, X(l) is the results of the previous GCN layer, σ is the 
activation function, Ã is the adjacency matrix adding self-loops calculated in the form of Ã = A+ I , I is the 
identity matrix, D̃ is the diagonal matrix whose elements represent node degrees, W (l) is the trainable matrix at 
the l  th layer.

Random walk profile generation by attention
A random walk algorithm computes transition probabilities of nodes based on edge weights in a graph. Unlike 
conventional methods, we used attention mechanisms to quantify which specific nodes will be emphasized 
based on the connectivity between nodes. The resulting attention scores improve the quality of the transition 
probabilities. The attention score ωi,j between nodes i and j is calculated as follows:

where Qθ is the query function, Kθ is the key function, zi and zj are the features of i and j computed from the 
GCN layer, respectively, and Natt is the number of output dimensions of attention. This equation is also known 
as the value function in attention mechanisms. The attention scores between the nodes from this equation are 
encoded into the transition matrix P . The ( i , j)-element of P , pi,j , which indicates the transition probability from 
i to j, is computed as follows:

where N (i) is the set of neighbors of i . pi,j can be defined when i and j are linked. If i and j are not linked, then 
pi,j is zero. This framework adopts multi-head attention, as has been used in most previous studies for attention 
mechanisms. We applied 2-head attention in our experiment.

The τ-th power of P , Pτ , refers to the probability that a random walker will arrive at a walk of length-τ from 
node to node. We gather node-level, edge-level, and graph-level features for the random walk profile at length-τ 
as follows:

DRNL(i) = 1+min(dx , dy)+ (d̂/2)[(d̂/2)+ (d̂%2)− 1]
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where x and y are the nodes linked by the target edge for prediction. Node-level features represent loop struc-
tures around x and y . Because we are dealing with undirected graphs, the summation of the node-level features 
guarantees that they are independent of the ordering of x and y . Edge-level features describe the probability of 
a random walker reaching a target edge. Graph-level features are related to the self-loop probability of all nodes 
in the graph.

Node pairs without an edge are always considered negative for training and prediction. More precisely, during 
the training phase, a target link must always be present for a positive sample to be learned, and a target link must 
always be absent for a negative sample to be learned. Predictions, however, have to be made without a target link 
at all times during the prediction phase. This unfavorable situation typically causes overfitting. Thus, we train 
two distinct types of graphs: one includes the target link for prediction, while the other excludes the target link. 
These two different graphs are represented as G+ and G− , respectively. This data augmentation technique was 
applied to prevent overfitting. The attention mechanisms that are conducted in the two graphs, G+ and G− , create 
transition matrices P+ and P− and random walk profiles including nodeτ ,+ , nodeτ ,− , edgeτ ,+ , edgeτ ,− , graphτ ,+ , 
and graphτ ,− . However, a trace operation for graph-level features disturbs the structural information around the 
target link, making it unsuitable for link prediction. To solve this problem,  WalkPooling22 used the “background 
subtraction” technique defined as �graphτ = graphτ ,+ − graphτ ,− . Finally, the features are concatenated as:

where G is the subgraph enclosing the target link, Z is the features of G computed by GCN, and τc is the maximum 
walk length. In our experiment, we applied τc = 7 as a default. This equation is employed for each attention head. 
In the case of adopting multi-head attention as mentioned above, the resultant feature space forms the size of 
num_heads × ((5× τc)+ 1).

Subgraph classification by MLP
The random walk profiles computed in the above steps are fed into a multi-layer perceptron (MLP) to predict 
whether a target link exists. An MLP consists of an input layer, four hidden layers, and an output layer. The 
ReLU function was adopted for activation through the hidden layers, and the sigmoid function was adopted for 
activation in the output layer.

Experimental data
Drug similarity networks
DrugBank27 was used to collect the drug datasets. This database includes a wide range of drug-related features, 
such as drug indications, drug targets, chemical structures, and drug-drug interactions. In this study, similari-
ties between drugs were calculated using two salient characteristics: chemical structures and ATC codes. First, 
drug structural similarity was determined using simplified molecular-input line-entry specification (SMILES)28, 
which is a line notation system used to represent chemical compound structures. The Chemistry Development 
Kit (CDK)29 was employed to convert a pair of structures in SMILES format into a Tanimoto similarity score. 
Second, the similarities between drugs were measured based on their ATC  codes30, a system to classify drugs 
in a hierarchy of pharmacological, therapeutic, and chemical categories. The similarity between ATC codes was 
calculated as follows:

where ATC indicates each ATC code, and C(ATC) is the set of codes from all ATC levels. It is noted that a drug 
may have multiple ATC codes, thus we used the average similarity of all ATC code pairs to calculate the similar-
ity between drugs as follows:

where dr represents each drug, X and Y  indicate the sets of ATC codes of each drug, and |X| and |Y | is the size of X 
and Y  , respectively. Each of the two drug similarity networks was merged with the disease similarity network and 
drug-disease associations to create two different heterogeneous networks, named network-CS and network-ATC.

Disease similarity networks
Online Mendelian Inheritance in Man (OMIM)31 is an extensive collection of human genes and genetic diseases. 
It is continuously updated with a focus on disease-associated genes. To measure similarities between diseases, 
many previous studies have used  MimMiner32, which provides a convention for representing phenotype net-
works. However, to analyze and quantify the relationships between diseases more accurately, we employed an 
ontology, which is a conceptual representation of entities with a standardized structure that links them based 
on the relationships between their meanings. We used Human Phenotype Ontology (HPO)33, a comprehensive 
phenotype ontology consisting of phenotypic abnormality terms linked by parent–child relationships. HPO also 
provides human disease annotations originating from the  OMIM31,  OrphaNet34, and  DECIPHER35 databases. 
For our experiment, diseases from OMIM were extracted from HPO annotations. We adopted an approach to 
measure semantic similarity as suggested  previously36. The following describes the calculation of the semantic 
similarity between two diseases:
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where d1 and d2 are diseases annotated to HPO terms and T(d) is the set of HPO terms annotating d , Note that 
a single disease can be annotated to multiple HPO terms. Finally, simT denotes the semantic similarity between 
the two HPO terms Ci and Cj , which is calculated as follows:

where At(C) is a set of ancestor terms of C and P(C) is the ratio of annotations as the number of annotations to 
C over the number of annotations to all terms in HPO.

Drug‑disease associations
The  Cdataset37 is one of the most widely used benchmark datasets for drug-disease associations in recent drug 
repositioning research. This benchmark, which contains 663 drugs, 409 diseases, and 2352 drug-disease asso-
ciations, is an upgraded version of the initial ground-truth,  Fdataset38, and was created by appending clinically 
validated data from the  DNdataset10. From the Cdataset, we selected only drugs and diseases available in the 
constructed drug and disease similarity networks. Finally, 659 drugs, 285 diseases, and 1728 drug-disease asso-
ciations were selected for network-CS, and 636 drugs, 285 diseases, and 1681 drug-disease associations were 
selected for network-ATC, as shown in Table 1.

Results
Experimental setting
The predictive results of drug-disease associations were assessed individually on the drug side and disease side. 
Prediction on the drug side identifies new diseases that each medication could treat, whereas prediction on the 
disease side identifies medications with the potential to treat each disease. We applied 10-fold cross-validation 
for this assessment. The folds were evenly divided based on the number of drugs, diseases, and their associations 
to ensure impartial analysis.

While the sigmoid function in the output layer is typically applied for binary classification, for ranking 
potential target links, we opt not to use the sigmoid activation, thereby leveraging the model’s raw scores. To 
maintain the integrity of the training process and ensure a balanced representation, negative samples were 
selected to mirror the quantity of positive training data, explicitly excluding any instances from the test dataset. 
The optimization of this model is guided by minimizing the binary cross-entropy loss function.

The AUC was used to compare predictive performance. An ROC curve was created by plotting the true posi-
tive rate (TPR) against the false positive rate (FPR) as the threshold settings were changed. The AUC is typically 
regarded as the most effective metric for quantifying predictive power. We also used AUPR*, a transformed 
version of the area under the precision-recall curve (AUPR) described  previously11. The precision-recall curve 
plots precision against recall as the threshold settings change. However, drug-disease associations were remark-
ably sparse in our experimental dataset. This generally causes very low precision because of the extremely large 
number of false positives (FP) compared to true positives (TP), where precision is TP/(TP + FP) . To resolve 
the biased results from AUPR, we adopted AUPR* using precision* instead of precision, where precision* was 
defined as TPR/(TPR + FPR).

Predictive accuracy comparison
Recent network-based approaches for drug-disease association prediction can be divided into three categories: 
graph-mining algorithms, matrix factorization, and deep learning models. In this section, we compare the pre-
dictive performance of DRAW with that of five state-of-the-art methods: three methods using deep-learning 
models (deepDR, ANMF, and LAGCN), and the most recent methods in the other two categories (BGMSDDA 
and MSBMF), as listed below. The best hyperparameter values recommended in the previous studies were used 
to implement each method. To compare the predictive performance, we applied 10-fold cross-validation for all 
the methods.

• BGMSDDA39 applies a graph diffusion technique to a bipartite graph that integrates multiple similarities 
using Gaussian interaction profiles.

• MSBMF40 is based on bi-linear matrix factorization using multiple similarities as latent features.
• deepDR41 constructs multiple positive point-wise mutual information (PPMI) matrices from multiple sources, 

and applies a multi-modal deep autoencoder (MDA) to combine these matrices.

sim(di1, di2) =

∑
Ci∈T(di1)

maxCj∈T(di2)simT (Ci ,Cj)+
∑

Cj∈T(di2)
maxCi∈T(di1)simT (Ci ,Cj)

|T(d1)| + |T(d2)|

simT (C1,C2) =

∑
Ci∈At (C1)∩At (C2)

logP(Ci)∑
Cj∈At (C1)∪At (C2)

logP(Cj)

Table 1.  Statistics of the two datasets that we used for our experiment on drug-disease association prediction.

Number of drugs Number of diseases Number of associations Sparsity

Network-CS 659 285 1728 9.20× 10
−3

Network-ATC 636 285 1681 9.27× 10
−3
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• ANMF42 uses an autoencoder with the similarities including Gaussian noise to extract the features of drugs 
and diseases.

• LAGCN43 adopts the attention mechanism for layers in a GCN to predict drug-disease associations.

Table 2 shows the predictive accuracy of the selected methods in terms of AUC and AUPR* when network-
ATC was used. The proposed method, DRAW, had the highest AUC and AUPR* in both drug and disease side 
predictions. On the drug side, the AUC of DRAW was 0.903, which was 2.5% higher than that of the second-
ranked BGMSDDA. DRAW also had the highest AUPR* score (0.915). On the disease side, the gap between 
DRAW and the second class widened. DRAW achieved an AUC of 0.807, which was 8.8% higher than that of 
the second-ranked LAGCN, and an AUPR* of 0.807, which was 7.7% higher than that of the second-ranked 
BGMSDDA. Figure 2 shows the ROC and precision*-recall curves for predicting drug-disease associations with 
network-ATC. These curves verify that DRAW was superior to the other methods, especially for disease side 
prediction as shown in Figs. 2c and d.

Table 3 shows the predictive accuracy of the selected methods in terms of AUC and AUPR* when network-CS 
was used. For disease side prediction, DRAW performed better than the other methods. DRAW achieved an AUC 
of 0.752 and an AUPR* of 0.784, which were 8.3% and 3.2% higher, respectively, than those of the second-ranked 
BGMSDDA. However, for drug side prediction, DRAW had slightly lower accuracy than BGMSDDA, which is 
a graph-mining algorithm, and MSBMF, which is a matrix factorization algorithm, in terms of both AUC and 
AUPR*. Figure 3 shows the ROC and precision*-recall curves for predicting drug-disease associations with 
network-CS. Figure 3c and d show that DRAW was more accurate than the others for disease side prediction, 
whereas BGMSDDA was better than DRAW for drug side prediction in Fig. 3a and b.

Overall, DRAW outperformed the competitive methods. However, the previously proposed deep learning 
methods generally showed slightly lower accuracy than the graph mining and matrix factorization algorithms, 
particularly for drug side prediction. Typically, approaches based on deep learning models are highly sensitive 
to the quality and quantity of input data. For this reason, the deep learning methods, including DRAW, showed 
relatively low predictive accuracy on the drug side with network-CS, although DRAW always achieved first place 
among the deep learning methods selected for this experiment.

Effects of network density
In network-based approaches for drug-disease association prediction, the density of input networks significantly 
affects predictive accuracy. We assessed the effect of the density of the drug and disease networks in our 10-fold 
cross-validation experiments. Figure 4 shows the distributions of AUC values from 10 folds when DRAW predicts 
drug-disease associations on the drug side with network-ATC. The four boxplots in this figure show the results 
when the network density thresholds were 2%, 3%, 4%, and 5%. The highest median AUC was achieved when 
the density threshold was 4%, indicating that the densities of both the drug and disease networks were 4%. When 
the density threshold is 5%, the median AUC decreased, and AUC values were more widely dispersed, includ-
ing an AUC lower than 0.86 as an outlier. Selecting a higher density threshold implies that the input network 
contains more edges with lower similarity scores. It can be verified that selecting a density threshold higher than 
4% negatively affects predictive performance. Therefore, we used a density threshold of 4% in our experiments.

Case studies
In this section, we present exploratory case studies of drug repositioning for specific drugs and diseases. We cre-
ated a training set including all known drug-disease associations and a test set comprising the other drug-disease 
pairs in network-ATC. DRAW learned the training set to extract features and computed the prediction scores 
for drug-disease pairs in the test set. For each drug, all diseases were listed in descending order of their predic-
tion scores. For each disease, all drugs were administered in the same manner. Finally, we validated the results 
using publicly available databases, such as The Comparative Toxicogenomics Database (CTD)44,  DrugBank27, 
and  KEGG45. Tables 4, 5, 6 and 7 show the high-ranked prediction results for selected drugs: doxorubicin, 
gabapentin, levodopa, and flecainide. From these results, we identified 10 evidences out of 10 for doxorubicin, 
8 out of 9 for gabapentin, 6 out of 9 for levodopa, and 6 out of 8 for flecainide. Tables 8, 9, 10 and 11 show the 
high-ranked prediction results for selected diseases: type 2 diabetes mellitus, ischemic stroke, Alzheimer’s disease, 

Table 2.  Accuracy comparison for drug-disease association prediction by 10-fold cross-validation when 
network-ATC is used. The highest score in each evaluation category is in bold.

Method

prediction on the 
drug-side

prediction on the 
disease-side

AUC AUPR* AUC AUPR*

BGMSDDA 0.881 0.701 0.705 0.765

MSBMF 0.872 0.902 0.702 0.735

deepDR 0.730 0.714 0.614 0.62

ANMF 0.845 0.868 0.739 0.743

LAGCN 0.842 0.843 0.742 0.753

DRAW (the proposed) 0.903 0.915 0.807 0.824
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and Parkinson’s disease. From these results, we identified 9 evidences out of 10 for type 2 diabetes mellitus, 6 out 
of 9 for ischemic stroke, 8 out of 10 for Alzheimer’s disease, and 8 out of 10 for Parkinson’s disease.

The drugs listed in Table 8 serve therapeutic purposes across various medical conditions, including gastro-
intestinal disorders (ranked 2, 6 and 7), hypercholesterolemia (ranked 3 and 8), and obesity (ranked 4, 5, and 
9). Canagliflozin, initially indicated for type-1 diabetes and occupying the first rank, has been used for type-2 
diabetes management. Recent advancements have extended the utility of several medications originally intended 
for diabetes treatment, such as liraglutide and semaglutide, to address obesity. These results provide insights into 
the appropriateness of the pharmaceuticals listed by our model, in accordance with evolving therapeutic trends.

Figure 2.  Accuracy comparison of the proposed method, DRAW, and the five state-of-the-art methods 
for drug-disease association prediction when network-ATC is used: (a) ROC curves on the drug-side, (b) 
Precision*-recall curves on the drug-side, (c) ROC curves on the disease-side, and (d) Precision*-recall curves 
on the disease-side.

Table 3.  Accuracy comparison for drug-disease association prediction by 10-fold cross-validation when 
network-CS is used. The highest score in each evaluation category is in bold.

Method

prediction on the 
drug-side

prediction on the 
disease-side

AUC AUPR* AUC AUPR*

BGMSDDA 0.790 0.804 0.694 0.760

MSBMF 0.805 0.842 0.669 0.708

deepDR 0.685 0.686 0.606 0.613

ANMF 0.646 0.678 0.673 0.692

LAGCN 0.751 0.756 0.643 0.677

DRAW (the proposed) 0.774 0.800 0.752 0.784
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Figure 3.  Accuracy comparison of the proposed method, DRAW, and the five state-of-the-art methods for 
drug-disease association prediction when network-CS is used: (a) ROC curves on the drug-side, (b) Precision*-
recall curves on the drug-side, (c) ROC curves on the disease-side, and (d) Precision*-recall curves on the 
disease-side.

Figure 4.  The distributions of AUC values from 10 folds when the network density thresholds are 2%, 3%, 4%, 
and 5%. Drug-disease associations were predicted on the drug side with network-ATC by DRAW. The highest 
median AUC was achieved when the density threshold was 4%.
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Table 4.  The top 10 candidate diseases to be treated by doxorubicin.

Rank Candidate disease (OMIM ID) Evidence

1 Small cell cancer of the lung (182,280) CTD

2 Dohle bodies and leukemia (223,350) CTD

3 Testicular germ cell tumor; TGCT (273,300) CTD

4 Myeloproliferative disorder, chronic, with eosinophilia (131,440) CTD

5 Kaposi sarcoma, susceptibility to (148,000) KEGG

6 Hypereosinophilic syndrome, idiopathic; HES (607,685) CTD

7 Glioma Susceptibility 1; GLM1 (137,800) CTD

8 Leukemia, acute myelocytic, with polyposis coli and colon cancer (264,670) CTD

9 Prostate cancer (176,807) CTD

10 Pheochromocytoma (171,300) CTD

Table 5.  The top 9 candidate diseases to be treated by gabapentin.

Rank Candidate disease (OMIM ID) Evidence

1 Hyperphosphatemia, polyuria, and seizures (239,350) CTD/DrugBank

2 Myoclonic epilepsy, familial infantile; FIME (605,021) CTD/DrugBank

3 Epilepsy, myoclonic juvenile; EJM (254,770) CTD/DrugBank

4 Seizures, benign familial neonatal, 2; BFNS2 (121,201) CTD/DrugBank

5 Macrocephaly and epileptic encephalopathy (606,369)

6 Seizures, benign familial neonatal, 1; BFNS1 (121,200) CTD

7 Acromegaloid changes, cutis verticis gyrate, and corneal leukoma (102,100) CTD

8 Schizophrenia; SCZD (181,500) CTD

9 Developmental and epileptic encephalopathy 1; DEE1 (308,350) CTD

Table 6.  The top 9 candidate diseases to be treated by levodopa.

Rank Candidate disease (OMIM ID) Evidence

1 Attention deficit-hyperactivity disorder; ADHD (143,465) CTD

2 Insensitivity to pain with hyperplastic myelinopathy (147,530)

3 Dementia; Parkinsonism with non-alzheimer amyloid plaques (125,320) CTD/DrugBank

4 Hyperthermia, cutaneous, with headaches and nausea (145,590)

5 Alcohol dependence (103,780) CTD

6 Tremor, nystagmus, and duodenal ulcer (190,310)

7 Alzheimer disease, familial, 1; AD1 (104,300) CTD

8 Narcolepsy 1; NRCLP1 (161,400) CTD

9 Alzheimer disease 4 (606,889) CTD

Table 7.  The top 8 candidate diseases to be treated by flecainide.

Rank Candidate disease (OMIM ID) Evidence

1 Ventricular arrhythmias due to cardiac ryanodine receptor calcium release deficiency syndrome; VACRDS (115,500) CTD/DrugBank

2 Cataract, aberrant oral frenula, and growth retardation (115,645)

3 Renal failure, progressive, with hypertension; RFH1 (161,900) CTD

4 Portal vein, cavernous transformation of (601,004)

5 Insensitivity to pain with hyperplastic myelinopathy (147,530) CTD

6 Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 1; CADASIL1 (125,310)

7 Renal cell carcinoma, nonpapillary; RCC (144,700) CTD

8 Heart block, congenital (234,700) CTD
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The drugs to treat ischemic stroke in Table 9 belong to several groups, including blood pressure manage-
ment, antithrombotic agents, antiplatelet medications, and vasodilators. These medications play a crucial role 
in reducing the risks associated with ischemic stroke, which occurs when blood flow to the brain is blocked 
or reduced. The strong correlation between these drugs and ischemic stroke underscores their significance in 
managing this condition. Furthermore, most of the medications listed in Tables 10 and 11 are known as treat-
ing Parkinson’s disease and Alzheimer’s disease, respectively. These results demonstrate the strong correlation 
between Parkinson’s and Alzheimer’s diseases.

Discussion and conclusion
Computational drug repositioning is a promising research area because it remarkably reduces the time, costs, 
and risk associated with traditional drug discovery. Particularly, network-based computational approaches have 
widely been applied because they can effectively predict and validate drug-disease associations in a system 
level. In this article, we presented a novel method to predict drug-disease associations using a drug-disease 

Table 8.  The top 10 candidate medications to treat type 2 diabetes mellitus.

Rank Candidate drug Evidence

1 Canagliflozin CTD

2 Lansoprazole CTD

3 Simvastatin CTD

4 Orlistat CTD

5 Diethylpropion

6 Pantoprazole CTD

7 Omeprazole CTD

8 Rosuvastatin CTD

9 Sibutramine CTD

10 Metamfetamine CTD

Table 9.  The top 9 candidate medications to treat Ischemic stroke.

Rank Candidate drug Evidence

1 Ticlopidine CTD

2 Tirofiban

3 Fondaparinux

4 Epoprostenol CTD

5 Lisinopril CTD

6 Isradipine CTD

7 Hydrocodone

8 Nisoldipine CTD

9 Norepinephrine CTD

Table 10.  The top 10 candidate medications to treat Alzheimer’s disease.

Rank Candidate drug Evidence

1 Pramipexole CTD

2 Procyclidine CTD

3 Ropinirole CTD

4 Trihexyphenidyl CTD

5 Scopolamine CTD

6 Apomorphine

7 Benzatropine CTD

8 Levodopa CTD

9 Orphenadrine CTD

10 Lisuride
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heterogeneous network. Unlike other methods, our approach adopted a random walk algorithm and recalculated 
transition probabilities based on attention mechanisms. The experimental results revealed that the proposed 
method outperformed state-of-the-art methods. DRAW also had substantially higher predictive accuracy than 
the deep learning algorithms proposed previously. The proposed model has several significant advantages. First, 
it demonstrates efficiency in memory usage by conducting a random walk on a subgraph enclosing each pair for 
association prediction, rather than on an entire heterogeneous network. Consequently, it is applicable to large 
networks on an omics scale. Second, our model eliminates the need for re-training even when new drugs or 
diseases are added because it takes a subgraph as input, regardless of the number of nodes and edges.

Our experimental results showed that all methods performed better for drug side prediction rather than 
disease side prediction regardless of the input network. This suggests that computational drug repositioning 
may be better suited for identifying additional diseases that can be treated by new drugs. This result might be 
obtained because of inaccuracy of the measured similarities between drugs, or the unbalanced numbers of drugs 
and diseases in the input network. Nevertheless, DRAW had the highest predictive accuracy on the disease side.

All methods in our experiment also performed better with the network constructed by the similarities based 
on ATC codes rather than that by structural similarities. Utilizing ATC codes for classifying drug-disease asso-
ciations leverages the therapeutic and pharmacological properties of their active ingredients, offering a more 
relevant measure of efficacy than chemical structure analysis. Furthermore, because the hyperparameter of 
network density was optimized on 4\% in our experiment, it was validated that incorporating higher densities, 
i.e., including connections with lower similarity scores, detracts from the effectiveness of network-based meth-
odologies. In other words, a limited number of drug or disease pairs with high similarities provide sufficient 
information for drug-disease association prediction.

Several future directions for this research are suggested to enhance the effectiveness of computational drug 
repositioning. First, multiple biological, therapeutic features regarding diseases and medications can be integrated 
to improve the predictive accuracy of drug-disease associations. In particular, the integration with additional 
data of drug-target interactions might have a great influence on association prediction. Because of recent active 
research of drug-target interaction prediction, the number of open-source databases containing putative drug 
targets has been rapidly increased, such as  DrugBank27,  BindingDB46,  SuperTarget47, and  STITCH48. Next, the 
proposed model might be improved further by discriminating between node types in a drug-disease heterogene-
ous network. For example,  node2vec49, one of the most widely used node embedding methods, did not differenti-
ate between node types. However,  HIN2vec50, an extension of node2vec, facilitated performance improvement 
by including the features of the graph heterogeneity.

Data availability
The source code is available at https:// ads. yonsei. ac. kr/ DRAW.
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