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A novel hybrid supervised 
and unsupervised hierarchical 
ensemble for COVID‑19 cases 
and mortality prediction
Vitaliy Yakovyna 1,2, Nataliya Shakhovska 2,3* & Aleksandra Szpakowska 1

Though COVID‑19 is no longer a pandemic but rather an endemic, the epidemiological situation 
related to the SARS‑CoV‑2 virus is developing at an alarming rate, impacting every corner of the 
world. The rapid escalation of the coronavirus has led to the scientific community engagement, 
continually seeking solutions to ensure the comfort and safety of society. Understanding the joint 
impact of medical and non‑medical interventions on COVID‑19 spread is essential for making public 
health decisions that control the pandemic. This paper introduces two novel hybrid machine‑learning 
ensembles that combine supervised and unsupervised learning for COVID‑19 data classification and 
regression. The study utilizes publicly available COVID‑19 outbreak and potential predictive features 
in the USA dataset, which provides information related to the outbreak of COVID‑19 disease in 
the US, including data from each of 3142 US counties from the beginning of the epidemic (January 
2020) until June 2021. The developed hybrid hierarchical classifiers outperform single classification 
algorithms. The best‑achieved performance metrics for the classification task were Accuracy = 0.912, 
ROC‑AUC = 0.916, and F1‑score = 0.916. The proposed hybrid hierarchical ensemble combining both 
supervised and unsupervised learning allows us to increase the accuracy of the regression task by 
11% in terms of MSE, 29% in terms of the area under the ROC, and 43% in terms of the MPP metric. 
Thus, using the proposed approach, it is possible to predict the number of COVID‑19 cases and deaths 
based on demographic, geographic, climatic, traffic, public health, social‑distancing‑policy adherence, 
and political characteristics with sufficiently high accuracy. The study reveals that virus pressure is 
the most important feature in COVID‑19 spread for classification and regression analysis. Five other 
significant features were identified to have the most influence on COVID‑19 spread. The combined 
ensembling approach introduced in this study can help policymakers design prevention and control 
measures to avoid or minimize public health threats in the future.

Keywords COVID-19, Machine-learning, Ensemble model, Classification, Regression, Supervised learning, 
Unsupervised learning

Since the World Health Organization (WHO) characterized COVID-19 as a pandemic on March 11, 2020, it has 
spread to 231 countries and territories, with 698,607,429 coronavirus cases and 6,946,169 deaths by December 
3, 2023. The United States is the country most affected by COVID-19, with 109,597,985 confirmed cases and 
1,183,777 deaths by the beginning of December 2023 (https:// www. world omete rs. info/ coron avirus/ count ry/ us/).

Although no specific treatment or cure for COVID-19 exists, alternatives may reduce the considerable bur-
den on limited healthcare systems and the economic sector. The most promising so far are artificial intelligence 
techniques like machine learning, data mining, deep learning, and others. Even when vaccines are available, the 
spread of COVID-19 indispensably relies on some non-medical factors, such as testing, contact tracing, facial 
coverings, protection of older people, school and workspace closing, public events and other restrictions, etc. 
Thus, it is necessary and urgent to understand the joint impact of medical, population, weather, and other factors 
and the restriction policy on COVID-19 spread to guide policymakers in controlling the pandemic.
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Since the beginning of the COVID-19 pandemic in early 2020, many machine learning and artificial intel-
ligence techniques have been examined to help fight the disease (e.g.,1–5). Though the WHO canceled the pan-
demic in 2023, COVID-19 still poses a severe risk to the population. Hence, understanding how the disease 
spreads and the factors affecting its spreading, the number of patients at risk, and the number of death cases is 
still an important task.

Machine learning (ML) is one of the most advanced artificial intelligence concepts that provides a strategic 
approach to developing complex algorithmic techniques for advanced data analysis. The ML algorithms can 
modify their structure based on observed data. There are four main classes of the ML algorithms:

1. Supervised learning. These algorithms use labeled data to predict future events. The learning process starts 
from a training dataset and develops targeted activity to predict output values.

2. Unsupervised learning. These techniques utilize non-classified or non-labeled datasets. The learning process 
deduces a function to extract hidden knowledge or a pattern from unlabeled data.

3. Semi-supervised learning. Such algorithms lie between supervised and unsupervised learning techniques, 
where labeled and non-labeled datasets are used in the training process. Semi-supervised learning can 
achieve higher accuracy, and these techniques are preferable when a labeled dataset needs appropriate 
resources for training.

4. Reinforcement learning. These techniques provide feedback to the learning environment to locate errors. 
They are used to identify the optimal behavior in a given context and increase the performance of the model.

Recently, ML techniques have been widely used to analyze biomedical structured and unstructured data 
(e.g.,6–8). In our previous studies, we studied the effect of the restriction policy on the spread of COVID-19 cases 
by developing recommendation rules based on the novel ensemble of machine-learning methods such as regres-
sion tree and  clustering1 and introduced an ensemble machine-learning model based on clinical and immuno-
logical features for severity risk assessment and post-COVID rehabilitation duration for SARS-CoV-2  patients2.

This work uses a combination of supervised and unsupervised ML techniques to develop both classification 
and regression predictive models for COVID-19 infection and the dataset for confirmed COVID-19 cases and 
deaths in the USA with a combination of supervised learning algorithms and unsupervised algorithms.

The scientific novelty of the presented work combines contributions in computer science by introducing 
novel approaches to ensemble models and understanding the risk factors, both medical and non-medical, of 
COVID-19 spreading, which is essential for making public health decisions that control the pandemic. Thus, 
we have identified the most significant features having the most influence on COVID-19 spread based on the 
46 features presented in the dataset studied. The novelty from the computer science point of view, which is the 
main focus of the paper, lies in the introduction of novel hybrid hierarchical machine-learning ensembles, which 
seamlessly integrate both unsupervised and supervised learning approaches for classification and regression 
analysis. Central to our innovation is the utilization of mathematical expectation to guide the selection of the 
cut-off coefficient for the stacking ensemble. This dynamic voting mechanism considers the individual scores 
of weak classifiers within the ensemble, allowing for context-aware decision-making. Rather than relying on a 
static threshold, our approach computes the average score for each vote, which is then subjected to mathematical 
expectation to derive an optimal cut-off coefficient. This adaptive strategy ensures that the ensembles of clas-
sification are finely tuned to the specific characteristics of the input data, resulting in improved performance 
across a range of classification tasks.

Furthermore, our research extends beyond the development of classification models themselves to include the 
training of the cut-off function within the ensemble algorithm. This comprehensive approach not only enhances 
the accuracy of classification outcomes but also offers insights into the underlying mechanisms driving ensemble 
decision-making.

Two ensembles are proposed in the paper. In contrast to Ensemble 1, Ensemble 2 trains the cutoff function of 
the classifier in addition to the trained weak models. The proposed cutting method increases the overall efficiency 
of the ensemble compared to classical voting, where the class cut-off is done with a constant coefficient of 0.5, 
thus sharply reducing the efficiency of the algorithm down to approx. 79%. The essence of the algorithm is the 
selection of the cut-off coefficient. In this case, the voting input contains a vector of independent classifier scores, 
which, depending on the context, will vote differently. The idea of the method is to determine the average value 
of the rating at each vote and add it to the list of average ratings. The list of average scores is a set of independent 
scores. Next, using the mathematical expectation function on this set, the cut-off coefficients are obtained at the 
output. The obtained cut-off coefficient is close to the optimal class partition coefficient.

The rest of the paper is organized in the following way: Section "Related Works" outlines some recent studies 
and their analysis, including all the papers that use the dataset examined in this study; Section "Materials and 
methods" starts with a detailed description of the dataset used and follows with the developed model; Section 
"Results and discussion" presents the obtained results and related discussion ending with the concluding section.

Related works
The rapidly evolving disease and the straightforward transmission of virus pathogens have resulted in the devel-
opment of numerous machine-learning models and applications. S. Solayman et al., in the  study9, began by 
precisely preparing knowledge obtained from the Israeli Ministry of Health open-source website for classifiers. 
Experiments demonstrated that the hybrid convolutional neural network and long short-term memory algorithm 
with the SMOTE approach achieved the best results for classifying the introduced data. Satisfactory outcomes 
led to implementing an application to forecast COVID-19 infections for users, providing feedback based on 
entered symptoms. Another application of machine learning in the fight against COVID-19 is highlighted in 
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the  paper3, where the authors predict the condition of coronavirus-infected patients. Experiments utilized two 
datasets: demographic and clinical data of patients (n = 11,712) and demographic data, clinical information, 
and patient blood test results (n = 602) to develop predictive models and identify key features. Subsequently, the 
performance of eight different machine learning algorithms was compared. The research used demographic, 
clinical, and blood data. Experiments demonstrated that C-reactive protein, lymphocyte ratio, lactic acid, and 
serum calcium significantly influence the prognostic predictions of COVID-19. A study conducted in South 
 Korea10 involving 10,237 patients revealed that factors like age over 70, moderate or severe disability, comor-
bidities, and male gender are strongly associated with an increased risk of mortality from COVID-19. Through 
machine learning analysis, Lasso and Linear Support Vector Machine (SVM) models exhibited higher sensitivity 
and specificity in predicting mortality. The developed predictive model can classify patients rapidly under limited 
medical resources during a pandemic.

One consistent observation from the ongoing research on COVID-19 data is the variability in the application 
of classification methods across different countries. Experiments in the  study11 reveal that the Prophet model 
demonstrated sufficient accuracy in predicting cases in the USA while considering Brazil or India; the Autore-
gressive Integrated Moving Average model performed better. The superiority of a deep learning model, includ-
ing the Neural Prophet model, is confirmed by the  study12 conducted in 2022. Another  research13 illustrates the 
differences in applied statistical models depending on the location. The article examined multilayer perceptron, 
vector autoregression, and linear regression to predict the epidemic caused by the SARS-CoV-2 virus, utilizing 
data from Asian countries obtained from the Johns Hopkins University data repository. Drawing on data from 
Mexico, Muhammad et al.14 developed supervised machine-learning models for COVID-19 infection using vari-
ous classification models, examining correlations between input features beforehand. According to the research, 
the highest accuracy is associated with decision trees at 94.99%, the highest sensitivity (93.34%) with the Support 
Vector Machine model, and Naive Bayes exhibits the highest specificity at 94.30%.

A lack of accurate data on COVID-19 hinders the standard techniques for predicting the consequences of 
an epidemic. Considering this knowledge, Tiwari et al.15 applied meta-analysis based on artificial intelligence, 
utilizing machine learning algorithms such as Naive Bayes, SVM, and Linear Regression to predict the trends of 
the global epidemic caused by the SARS-CoV-2 virus. Among the discussed techniques, Naive Bayes yielded the 
most satisfying results, demonstrating high effectiveness in predicting future values with less mean absolute error 
and mean squared error. A comprehensive study employing diverse artificial intelligence strategies is described in 
 reference16, where long short-term memory, multilayer perceptron, adaptive neuro-fuzzy inference system, and 
recurrent neural network were employed. The analysis of the effectiveness of the considered methods focuses on 
results obtained from calculating mean squared error (RMSE), mean absolute percentage error (MAPE), mean 
absolute error (MAE), and  R2 coefficient of determination  (R2). The results indicate that for Bidirectional long 
short-term memory (LSTM) and artificial neural network models,  R2 values range from 0.64 to 1. Autoregres-
sive Integrated Moving Average (ARIMA)and LSTM models demonstrated the highest MAPE errors. Another 
approach is characterized by the work of S. A.-F. Sayed et al.17, who built a model predicting various levels 
of severity risk for COVID-19 using the analysis of chest X-ray images. Deeply trained CheXNet model and 
hybrid feature extraction techniques were applied in experiments. The study showed that the XGBoost classifier 
performed best with combined features (PCA + RFE), generating 97% accuracy, 98% precision, 95% recall, 95% 
F1-score, and 100% ROC-AUC. In the study, SVM demonstrated results that were equally satisfying as those of 
XGBoost. In the  paper18, Atta-ur-Rahman et al. directed their attention towards a mathematical model based 
on a cloud-based smart detection algorithm using a support vector machine. The obtained solutions oscillated 
around 98.4% accuracy with a 15-fold cross-validation. The comparison conducted in the study suggests that 
the proposed model exhibits greater accuracy and efficiency.

In one of the reviews encompassing 160  studies19, a compilation of machine learning techniques from vari-
ous sources such as Springer, IEEE Xplore, and MedRxiv was made. Two categories of machine learning were 
outlined: deep learning and supervised learning. Statistics indicate that deep learning is employed in 79% of 
cases, with 65% utilizing convolutional neural networks (CNN) and 17% using Specialized CNN. Focusing on 
supervised learning, only 16% of analyses were observed, predominantly using Random Forest, Support Vector 
Machine, and regression algorithms. On the other hand, studies from 2021 by Kwekha-Rashid et al.5 demon-
strated that better learning results could be observed using supervised learning, characterized by high accuracy 
at 93%. A comparison of research  results4 on machine learning applications in the context of COVID-19 revealed 
that recurrent neural networks, deep diagnostic models, various contact tracing, medical diagnostics, and drug 
development-related algorithms were effective. Forecasting models achieved high correlations and diagnostic 
models analyzing computer tomography and X-ray images demonstrated accuracy at 99%. The authors empha-
sized that limitations related to the lack of full access to patient data and algorithm imperfections highlight the 
need for the involvement of government agencies in facilitating the acquisition of COVID-19-related data. Alballa 
and Al-Turaiki20 address monetary policy concerning money laundering methods in COVID-19, focusing on 
diagnosis and predicting severity and mortality risk using machine learning algorithms. The authors note that 
most machine learning algorithms are supervised learning models, which are more straightforward and more 
understandable. The referenced article states the need for further research, especially in identifying optimal 
screening models for COVID-19 and creating a comparative dataset. The limitation is the use of unbalanced 
datasets, requiring effective techniques to deal with this issue, and the potential integration of different types of 
data, necessitating further research for precise COVID-19 prediction.

Tkachenko et al.6 aimed to increase the performance of prediction tasks using combined RBF-SGTM neural-
like structures. They developed a committee of non-iterative artificial intelligence tools for regression analysis. 
Using the developed committee for insurance cost prediction allows the authors to decrease training and test 
errors and increase accuracy with a slight increase in the training procedure time. The authors conclude that 
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the developed neural-like structures can be used to solve regression and classification tasks with large volumes 
of data for different application areas.

This research uses publicly available COVID-19 outbreaks and potential predictive features in the USA 
 dataset21 (see section "Dataset description"). So far, six  papers22–27 have reported using this dataset in their studies. 
Two of  them22,23 studied a vital problem of missing and incomplete data for the medical domain. In this domain, 
the accuracy of the data is critical, while missing values are a typical occurrence there for various reasons. Pathak 
et al.22 have studied various techniques for missing data imputation using COVID-19 data  from21. They evaluated 
the performance of four mostly adopted data imputation techniques, viz., multivariate imputation by chained 
equations, expectation and maximization algorithm, mean, and KNN. The authors conclude that KNN is an 
imputation approach that is expected to be a good fit for dealing with missing data in the healthcare industry. 
Batra et al.23 developed an ensemble strategy for missing values imputation in health data. The authors introduced 
an ensemble imputation model comprising simple mean imputation, KNN imputation, and iterative imputation 
methods. The proposed ensemble combines the mentioned methods to opt for the ideal imputation strategy based 
on attribute correlations on missing value features. S. Batra et al. introduced the Ensemble Strategy for Missing 
Values to identify unbiased and accurate statistical modeling predictions. They used the performance metrics 
generated using the eXtreme gradient boosting (XGB) regressor, random forest regressor, and support vector 
regressor. The authors concluded that the proposed ensemble strategy is the most suitable option for imputing 
missing values. When passed to the XGB regressor for performance evaluation, the imputed dataset has the mean 
absolute error values of 60.81, 54.06, and 49.38 for 5000, 10,000 and 20,000 records datasets.

Paper24 identifies direct causes using the intervention target variable. As a target variable, the authors used the 
number of COVID cases from the mentioned COVID  dataset21. Du et al.24 developed the invariant prediction 
framework using the invariance principle based on linear models. They used the conditional distribution of the 
target variable, given its causal parents are invariant across multiple environments or experimental conditions. 
The developed approach outperformed various baselines for predicting COVID cases in 8 areas, mainly from 
the US East Coast.

Gholamalian et al.25 studied the problem of determining the infection status of individuals using sparse 
group-level tests by extending graph-coupled hidden Markov models with infection statuses of the individuals 
as the hidden states and the group test results as the observations. The developed  model25 was separately tested 
daily to predict the status after 15 days of the beginning of the spread. The AUC metrics value was 0.98 on day 
16 and remained above 0.80 until day 128.

The forecasting of the COVID-19 dynamics under imperfect vaccination was studied by Wang et al.26 by 
combining a mechanistic ordinary differential equation model and a generalized boosting machine learning 
model. The ordinary differential equation model was utilized for infectious class prediction. In contrast, the 
machine-learning model was used to predict how public health policies and mobility data affect the transmis-
sion rate in the former model, including the post-vaccination period. The authors reached the average mean 
absolute percentage error value of 14.88% when considering human mobility data for predicting the number of 
daily infected cases up to 35 days in the future.

Du and  Xiang27 aimed to identify different forms of invariance to facilitate prediction in unseen environments. 
They used linear structural causal models and introduced an invariant matching property, an explicit relation, 
to capture interventions through an additional feature. Such an alternative form of invariance makes it possible 
to develop a unified treatment of general interventions on the response and the predictors. The authors utilized 
the  dataset21 to predict the number of COVID cases using the 12 temporal features for the time interval from 
March 1, 2020, to September 30, 2020.

Materials and methods
Dataset description
This study used publicly available COVID-19 outbreaks and potential predictive features in the USA  dataset21. 
The dataset provides information related to the outbreak of COVID-19 disease in the United States, including 
data from each of 3142 US counties from the beginning of the outbreak (January 2020) until June 2021. This data 
was collected from many public online databases and includes the daily number of COVID-19 confirmed cases 
and deaths, as well as 46 features that may be relevant to the pandemic dynamics: demographic, geographic, 
climatic, traffic, public-health, social-distancing-policy adherence, and political characteristics of each  county21. 
The dataset contains the number of confirmed COVID-19 cases and deaths and 46 factors that may be relevant to 
the pandemic dynamics in each county and for each day since the beginning of the outbreak (Table 1). Haratian 
et al.21 also prepared a processed version of the dataset, where the missing values are imputed and the abnormal 
values, e.g., negative counting values, are fixed. The detailed description of the dataset and the data origin and 
processing are described  in21. The target variables are the COVID-19 confirmed cases and deaths numerical 
values. The 46 features can be divided into the following classes:

• Fixed features

o Demographic features.
o Health facilities and risk factors features.
o Geographic features.
o Economic and other features.

• Temporal features
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# Variable name Description
Percentage of values 
available in the dataset Type Finest spatial scale

Date of access to the data 
source

Target variables

(1) COVID-19 confirmed cases Number of daily COVID-19 
confirmed cases 100 Real County Jun 10, 2021

(2) COVID-19 deaths Number of daily COVID-19 
deaths 100 Real County Jun 10, 2021

Fixed features

(3) Total population Total population 100 Real County Apr 17, 2020

(4) Population density Population per square mile 100 Real County –

(5) Proportion female
Total number of females 
divided by the total popula-
tion

100 Real County –

(6) Age distribution

Percentage of residents in 
the age groups: 0–4, 5–9, 
10–14, 15–19, 20–24, 25–29, 
30–34, 35–39, 40–44, 45–49, 
50–54, 55–59, 60–64, 65–69, 
70–74, 75–79, 80–84, 85 
and older

100 Real vector (18 values, that 
add up to 1) County Apr 17, 2020

(7) Education level distribution

Percentage of residents 
with different levels of 
education: ’less than high 
school diploma’, ’high school 
diploma’, ’some college or 
associate’s degree’

100 Real vector (4 values, that 
sum to 1) County Aug 18, 2020

(8) Median household income – 100 Real County May 4,2020

(9) GDP per capita
Gross Domestic Product 
per capita (economic output 
divided by the population)

100 Real County Apr 27,2020

(10) Area Area in square miles 100 Real County May 6,2020

(11) Latitude Latitude of the county 
barycenter 100 Real County May 1,2020

(12) Longitude Longitude of the county 
barycenter 100 Real County May 1,2020

(13) Housing density

Number of housing units 
per square mile (Including 
houses, apartments/flats, 
mobile homes, and other 
housing units)

100 Real County Apr 17,2020

(14) Academic population ratio

Total number of residents 
who are currently university 
and college students or 
staff, divided by the total 
population

100 Real County May 4,2020

(15) Immigrant students ratio

Total number of students 
who study in this county but 
are residents of the other 
states, divided by the total 
county population

100 Real County Sep 10,2020

(16) Hospital bed ratio
Number of Hospital beds 
divided by the total popula-
tion

100 Real County May 11,2020

(17) Intensive care unit (ICU) 
bed ratio

Number of ICU beds 
divided by the total popula-
tion

98 Real County May 11,2020

(18) Ventilator capacity ratio
Number of ventilators 
divided by the total popula-
tion

98 Real County May 11,2020

(19) Percent of smokers Percentage of adult smokers 100 Real County May 11,2020

(20) Percent of diabetes Percentage of diabetic adults 100 Real County May 11,2020

(21) Religious congregation ratio
Number of active members 
of Religious congrega-
tions divided by the total 
population

99 Real County Apr 17,2020

(22) Number of meat plants Number of meat processing 
plants 100 Discrete County Aug 20,2020

(23) Airport distance
Distance to the nearest 
international airport with 
average daily passenger load 
more than ten

100 Real County May 1,2020

Continued
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# Variable name Description
Percentage of values 
available in the dataset Type Finest spatial scale

Date of access to the data 
source

(24) Passenger load ratio
Average daily passenger load 
of that nearest international 
airport divided by the total 
population

100 Real County May 20,2020

(25) Percent of insured residents Percentage of health insured 
residents 99 Real County May 11,2020

(26) Death ratio Number of deaths divided 
by the total population 97 Real County June 21,2020

(27) Political party
The political party of the 
governor of each state (0 
for Republican and 1 for 
Democratic)

100 Discrete State Apr 17, 2020

(28) Population ratio in state
Total population of the 
county, divided by its state 
population

100 Real County -

Temporal features

(29) Precipitation Daily precipitation 73 Real County June 10, 2021

(30) Temperature Daily average temperature 59 Real County June 10, 2021

(31) Daily state test

Number of total COVID-19 
tests performed at each day 
in the state of the county 
(including antibody, anti-
gen, and PCR tests)

91 Integer State June 10, 2021

(32) Percent of vaccinated 
residents

Percent of residents who 
are fully vaccinated (have 
second dose of a two-dose 
vaccine or one dose of a 
single-dose vaccine)

99 Integer County June 10, 2021

(33) Weekly admission

Weekly average number of 
adult or pediatric patients 
who were admitted to 
an inpatient bed in the 
county who had confirmed 
COVID-19 at the time of 
admission

31 Real County June 10, 2021

(34) weekly reported total ICU 
beds

Weekly average number of 
total number of staffed inpa-
tient ICU beds reported by 
the hospitals in the county

46 Real County June 10, 2021

(35) weekly occupied ICU beds

Weekly average number 
of total number of staffed 
inpatient ICU beds that are 
occupied, reported by the 
hospitals in the county

45 Real County June 10, 2021

(36) weekly reported total inpa-
tient beds

Weekly average number 
of total number of staffed 
inpatient beds (including 
ICU beds) reported by the 
hospitals in the county

46 Real County June 10, 2021

(37) weekly occupied inpatient 
beds

Weekly average number of 
total number of staffed inpa-
tient beds that are occupied, 
reported by the hospitals in 
the county

46 Real County June 10, 2021

(38) Social distancing travel 
distance grade

Percent change in average 
distance traveled compared 
to pre-COVID-19-period 
(range from A to F)
A: > 70% decrease
B: 55–70% decrease
C: 40–55% decrease
D: 25–40% decrease
F: < 25% decrease or increase

99 Nominal County June 10, 2021

(39) Social distancing visitation 
grade

Percent change in 
non-essential visitation 
compared to pre-COVID-19 
period (range from A to F)
A: > 70% decrease
B: 65–70% decrease
C: 60–65% decrease
D: 55–60% decrease
F: < 55% decrease or increase

82 Nominal County June 10, 2021

Continued
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o Climate features.
o Social distancing features.
o Other features: daily state tests, weekly admission, weekly reported total inpatient beds, weekly occupied 

inpatient beds, weekly reported total ICU beds, weekly occupied ICU beds, the percentage of vaccinated 
residents, and the virus pressure.

The details of the dataset are listed in Table 1.

Proposed supervised‑unsupervised ensemble model
We used R version 4.1.2 to conduct this research, run on Spark 3.0.0, 8 cores.

Since the dataset contains 46 fixed and temporal features, it could be challenging to build a good predicting 
ML model or even to select the most important features of a different nature. Since these data are of a different 
nature (demographic, geographic, economic, climate, social etc., see Section "Dataset description"), we developed 

# Variable name Description
Percentage of values 
available in the dataset Type Finest spatial scale

Date of access to the data 
source

(40) Social distancing encounters 
grade

Percent change in human 
encounters compared to 
pre-COVID-19 period 
(range from A to F)
A: > 94% decrease
B: 82%-94% decrease
C: 74%-82% decrease
D: 40%-74% decrease
F: < 40% decrease or increase

99 Nominal County June 10, 2021

(41) Social distancing total grade
Average numerical score 
of the previous three social 
distancing factors

99 Nominal County June 10, 2021

(42) Retail and recreation mobil-
ity percent change

Percent change in mobility 
trends in retail shops and 
recreation centers (includ-
ing places like restaurants, 
shopping centers, museums, 
and libraries) compared to 
pre-COVID-19 period

49 Real County June 10, 2021

(43) Grocery and pharmacy 
mobility percent change

Percent change in mobility 
trends in grocery stores 
and pharmacies (including 
places like grocery markets, 
food warehouses, farmers 
markets, specialty food 
shops, drug stores, and 
pharmacies) compared to 
pre-COVID-19 period

44 Real County June 10, 2021

(44) Parks mobility percent 
change

Percent change in mobility 
trends in parks (including 
local and national parks, 
public beaches, marinas, 
dog parks, plazas, and 
public gardens) compared to 
pre-COVID-19 period

18 Real County June 10, 2021

(45) Transit stations mobility 
percent change

Percent change in mobility 
trends in transit stations 
(representing public trans-
port hubs like taxi stands, 
bus, train, and subway 
stations) compared to pre-
COVID-19 period

28 Real County June 10, 2021

(46) Workplaces mobility percent 
change

Percent change in mobility 
trends in places of work 
compared to pre-COVID-19 
period

74 Real County June 10, 2021

(47) Residential mobility percent 
change

Percent change in mobility 
trends in places of residence 
compared to pre-COVID-19 
period

42 Real County June 10, 2021

(48) Virus pressure

A measure for virus trans-
mission from neighboring 
counties, defined as the 
weighted average of the 
number of confirmed cases 
in the adjacent counties (i.e., 
that share a border with this 
county)

100 Real County –

Table 1.  Description of the  features21.
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a naturally inspired multimodal-like ML model that combines both supervised and unsupervised learning. Like 
the human brain combines input signals of different origins, e.g., audial and visual, in the temporal lobe, our 
ensemble combines inputs from different feature clusters in a hybrid classifier. The working hypothesis is that 
it is insufficient to select important features, but we should combine them into clusters of similar impact on the 
COVID-19 spread. Next, these clustered features provide an aggregated input to an ensemble classifier to increase 
the prediction accuracy and resilience.

The following performance metrics were used to evaluate the model performance: accuracy, F1-score, the 
area under the receiver operating characteristic curve (ROC-AUC) for the classification task, and mean squared 
error (MSE), ROC-AUC, Model Performance Predictor (MPP) for the regression task. It tracks the predictive 
performance metric of the model.

In the first step of the research, data preprocessing was done. This included one-hot encoding for two fea-
tures, missing data removal and feature selection. Missing data imputation is not implemented; only missing 
data removal was used based on the low level of missing data (see Table 1). The imputed using the KNN imputer 
dataset is also available  in21, and the potential usage of this dataset will be discussed later in this paper. As a result, 
69 features were obtained. Primary Component Analysis (PCA) was used to reduce the dimensionality. PCA 
results in the 60 primary components that do not substantially affect the dimensionality. This finding confirms 
the research hypothesis on the necessity of combining unsupervised and supervised learning to reduce the 
dimensionality of the input data and potentially increase the accuracy and robustness of the prediction model.

The next step was to use a complex ensemble for the classification task with three labels: min risk for con-
firmed cases, mid risk and huge risk. Two hybrid stacking ensembles are proposed.

Stacking supervised‑unsupervised ensemble
The first ensemble is built on the classical stacking approach when only class probabilities and the corresponding 
target values are fed to a meta-classifier. A hierarchical hybrid classifier was developed (Fig. 1), which includes 
the following three levels:

1. Clustering of the input data using the k-means algorithm.
2. Selecting the most important features in each obtained cluster using Boruta, decision tree and Random forest.

Clustering with 5 clusters

feature selectors training

Weak classifiers training on selected features

Voting the features:
adding all importance values, choosing the
features with score high that mean value

Metaclassifier based on random forest

Figure 1.  The proposed hierarchical hybrid stacking classifier (Ensemble 1).
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3. Building a stacking ensemble using the selected features for each cluster using the Random Forest algorithm 
as a meta-model. Logistic regression, KNN, SVM with linear kernel, naïve Bayes, decision tree and SVM 
with RBF kernel were used as weak classifiers.

First, one-hot encoding was implemented for categorical features such as age, education level, country, state, 
etc. The elbow method was used to select the appropriate number of clusters. Fourteen features were selected 
after voting for Boruta, random forest, and decision tree feature selectors.

The decision tree returns the feature weight as the criterion for evaluating features. It allows building a ranked 
list of selected features using different measures. In our case, CART was used for feature selection, with the Gini 
index as a measure.

Random Forest is an ensemble of numerous training-sensitive algorithms (decision trees). These algorithms 
have a slight offset. The bias of the training method is the deviation of the average response of the trained algo-
rithm from the response of the ideal algorithm. Each of these classifiers is built on a random subset of objects 
and a random subset of features.

Boruta is a heuristic algorithm for selecting significant features based on the use of Random Forest. At each 
iteration, those features are removed for which the Z-measure is less than the maximum Z-measure among the 
added features. To get the Z-measure of a feature, it is necessary to calculate its importance, obtained using the 
built-in algorithm in Random Forest, and divide it by the standard deviation of the feature importance. Added 
features are obtained as follows: the characteristics available in the selection are copied, and then each new 
attribute is filled by shuffling its values. This procedure is repeated several times to get statistically significant 
results, and variables are generated independently at each iteration.

Next, the Jaccard index is used for feature selector voting.
Next, voting for the features is developed. First, all important values are added. Next, the features with scores 

higher than the mean value are chosen. After that, 15 diverse classifiers were used, and 9 of the strongest were 
selected.

Modified stacking supervised‑unsupervised ensemble
The second ensemble utilizes a modified stacking approach when all datasets and transformed outputs of the 
weak classifiers are fed to a meta-classifier. Figure 2 depicts the structure of the proposed ensemble and the data 
transformation.

In contrast to Ensemble 1, Ensemble 2 trains the cutoff function of the classifier in addition to the trained 
weak models. The proposed cutting method increases the overall efficiency of the ensemble compared to classi-
cal voting, where the class cut-off is done with a constant coefficient of 0.5, thus sharply reducing the efficiency 
of the algorithm to approx. 79%. The essence of the algorithm is the selection of the cut-off coefficient. In this 
case, the voting input contains a vector of independent classifier scores, which will vote differently depending on 
the context. The idea of the method is to determine the average value of the rating at each vote and add it to the 
list of average ratings. The list of average scores is a set of independent scores. Next, the cut-off coefficients are 
obtained at the output using the mathematical expectation function on this set. The obtained cut-off coefficient 
is close to the optimal class partition coefficient.

For each classifier and regressor, fivefold nested cross-validation was used. Each fold is constituted by two 
arrays: the first one is related to the training set, and the second one is related to the test set.

The general pipeline is given in Fig. 3.

Results and discussion
Classification task
The target classes for this task were three classes with a risk of new COVID cases. Nine single classifiers, viz., 
Logistic Regression (GM), Decision Tree, SVM with linear kernel, k-nearest neighbors (KNN), eXtreme Gradient 
Boosting (XGBoost), SVM with Radial kernel (RBF), Random Forest, Naïve Bayes, and Multilayered percep-
tron with three hidden layers and four neurons inside of each layer (Ml (c(4, 3, 3)), were used to compare the 
performance of the proposed ensembles.

Table 2 lists the most important features for the new COVID-19 case classification according to Boruta, Ran-
dom Forest, and Decision Tree feature selectors (for each feature description, see Table 1). The listed features can 
help decision-makers select factors affecting COVID-19 spread and thus optimize medical care and/or restriction 
policy to minimize the epidemic impact, considering all aspects of human well-being.

The classification performance metrics for 9 weak classifiers and the proposed ensembles are summarized in 
Table 3. As one can see from the table, the best classification results were obtained in the case of the KNN model, 
with Accuracy = 0.816, ROC-AUC = 0.797, and F1-score = 0.814. Using the developed ensembles allows us to 
increase all the metrics substantially. Thus, in the case of Ensemble 1, Accuracy was raised to 0.895, ROC-AUC 
to 0.897, and F1-score to 0.897. The proposed cut-off voting improvement in Ensemble 2 further increased all 
the metrics compared to Ensemble 1 by approx. 2% (Accuracy, ROC-AUC, and F1-score values are 0.912, 0.916, 
and 0.916 correspondingly). Hence, the developed hybrid hierarchical classifiers outperform single classification 
algorithms by more than 10% and are well-suited for COVID-19 spread prediction in real life.

Dynamic voting based on mathematical expectation is used. In addition to the trained models themselves, 
the cutoff function of the classifier is trained in this algorithm. The traditional stacking is based on averaging 
indicators, and there is a cut-off by class with a constant coefficient of 0.5; then, the efficiency of the algorithm 
drops sharply to ~ 79%. The proposed cutting method increases the overall efficiency of the ensemble by several 
percent. The essence of the algorithm is to choose a cut-off coefficient. In the case of this work, the voting input 
contains a vector of independent classifier scores, which will vote differently depending on the context. The idea 



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9782  | https://doi.org/10.1038/s41598-024-60637-y

www.nature.com/scientificreports/

of the method is to calculate the average score for each vote and add it to the list of average scores. The list of 
average grades is a set of independent grades on which the mathematical expectation function is applied. We 
got a cut-off coefficient close to the optimal class separation coefficient at the output.

We used the nested fivefold cross-validation technique to perform additional tests, as described  in28. Nested 
cross-validation was used to validate the findings obtained using the proposed approach in addition to the 
usual fivefold cross-validation. Though this approach has its limitations, e.g., the assumption of the data split 
independence, it is widely used across the ML community. The difference between the Accuracy values across 
the five folds was 0.018. Next, we performed a more robust statistical test, viz. Kolmogorov–Smirnov normality 
test. The obtained p-value was 0.793.

Table 4 shows the efficiency of proposed ensembles for the whole dataset and for selected features. Selecting 
features allows for increasing the total analyzed metrics.

Clustering with 5 clusters

feature selectors training

Weak classifiers training on selected features

Voting the features:
adding all importance values, choosing the
features with score high that mean value

Voting

Mathematical expectation

Classifier Cut off

Output vector

Figure 2.  Modified hierarchical hybrid stacking classifier (Ensemble 2).
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Figure 3.  The general pipeline.

Table 2.  Important classification features after voting Boruta, Random Forest and Decision Tree feature 
selectors.

Feature Importance

Virus pressure 0.7093872

Total population 0.1176112

Country fips 0.1094524

Percentage of residents in the age group 25–29 0.0126625

Temperature 0.0124976

Social distancing encounters grade 0.0099895

Immigrant students ratio 0.0068993

Airport distance 0.0063710

Housing density 0.0040341

Daily state test 0.0033927

Longitude 0.0032784

Intensive care unit (ICU) bed ratio 0.0031758

Population ratio in state 0.0011955

Workplaces mobility percent change 0.0000528

Table 3.  Classification performance of the weak and ensemble classifiers. Significant values are given in bold.

Model Accuracy ROC-AUC F1-score

GM 0.614 0.616 0.616

Decision tree 0.713 0.715 0.715

SVM linear 0.733 0.732 0.735

KNN + 10-folds cross-validation 0.816 0.797 0.814

XGBoost 0.797 0.797 0.806

RBF 0.675 0.719 0.716

Random forest 0.725 0.728 0.728

Naïve Bayes 0.721 Nfble0.728 0.724

Ml (c(4, 3, 3)) 0.733 0.732 0.735

Ensemble 1 0.895 0.897 0.897

Ensemble 2 0.912 0.916 0.916
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Regression task
For the regression task, the following regression models were used: linear model, polynomial regression, regres-
sion tree with CART algorithm, Gradient boosted tree, random forest, l1 regularization for the linear model, and 
l2 regularization for the linear model. These models aimed to predict the number of confirmed COVID-19 cases 
and deaths. Table 5 summarizes the most important features affecting the prediction of the COVID-19 spread.

As it follows from the comparison of Tables 2 and 5, virus pressure, i.e., a measure for virus transmission 
from neighboring counties, defined as the weighted average of the number of confirmed cases in the adjacent 
counties, is the most important feature for classification and regression analysis. Besides, there is a subset of 
common features, which were recognized as the most important in these two studies, viz., (i) the total population 
of the county—the second most important common feature, (ii) distance to the nearest international airport 
with average daily passenger load more than ten, (iii) daily average temperature, (iv) the longitude of the county 
barycenter, (v) number of total COVID-19 tests performed at each day in the state of the county, and (vi) popu-
lation ratio in the state. As we can see, the COVID-19 spread is affected by various factors: epidemiological, like 
the virus pressure; demographic, like the total population and population density; social, like the distance to 
the nearest international airport; climate, like daily average temperature; geographical, like the longitude of the 
county barycenter, and medical like the number of total COVID-19 tests performed at each day. These findings 
can help epidemiologists to analyze the spread and lifecycle of the virus and decision makers to select the most 
important restriction factors and limitations to prevent the spread of the disease.

Other factors affecting the number of COVID-19 cases and deaths—as seen in Table 4—are mainly social 
features, like social distancing, percentage of health-insured residents, median household income, and percent 
change in mobility trends in retail shops and recreation centers. The analysis of Table 2 reveals that while speaking 
on the classification, there are some additional factors affecting the chance of getting infected with coronavirus, 
viz., percentage of residents in the age group 25–29, immigrant student ratio, intensive care unit bed ratio, and 
the percent change in human encounters compared to pre-COVID-19 period.

Table 6 lists the regression task performance evaluation for the six most common regression models and the 
proposed ensemble.

The proposed hybrid hierarchical ensemble combining both supervised and unsupervised learning allows us 
to increase the accuracy of the regression task by 11% in terms of MSE, 29% in terms of the area under the ROC, 
and 43% in terms of the MPP metric. Indeed, the ROC-AUC value increased from 0.609 for the best traditional 
regression model (Gradient Boosted Tree) up to 0.790 in the case of the proposed Ensemble; MSE decreased 
from 112.6 down to 101.3, and MPP from 18.8 to 13.1 respectively. Thus, using the proposed approach, it is pos-
sible to predict the number of COVID-19 cases and deaths based on demographic, geographic, climatic, traffic, 
public health, social-distancing-policy adherence, and political characteristics with sufficiently high accuracy.

Besides, we used a nested fivefold cross-validation  technique28 to perform a grid search hyperparameters 
optimization. The tuning parameter α was set to a constant value of 1. RMSE was used to select the optimal model 

Table 4.  Classification performance of the whole dataset and selected features.

Model

For the whole dataset For selected features

Accuracy ROC-AUC F1-score Accuracy ROC-AUC F1-score

Ensemble 1 0.884 0.881 0.885 0.895 0.897 0.897

Ensemble 2 0.882 0.884 0.883 0.912 0.916 0.916

Table 5.  Important features for the regression task after voting Boruta, Random Forest and Decision Tree 
feature selectors.

Feature Importance

Virus pressure 0.3774971

Social distancing total grade 0.2506208

Total population 0.1412967

Area 0.1068608

Retail and recreation mobility percent change 0.0627281

Number of meat plants 0.0159237

Percent of insured residents 0.0129029

Airport distance 0.0099794

Median household income 0.0072303

Longitude 0.0050858

Daily state test 0.0045425

Temperature 0.0043822

Population ratio in state 0.0009497
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using the smallest value. The final values used for the model were α = 1 and λ = 0.211 with the MAE metrics of 
9.51, RMSE of 20.11 and  R2 value of 0.76.

The developed way of cutting off the classifier or regressor, which is the part of the ensemble, increases the 
overall efficiency of the ensemble by several percent. A vector of models with different contextual characteristics 
can provide reasonable generalized estimates.

Table 7 shows the efficiency of proposed ensembles for the whole dataset and for selected features. Feature 
selection allows for increasing all the analyzed metrics.

Conclusions
This paper introduces two hybrid hierarchical machine-learning ensembles, which combine supervised and 
unsupervised learning algorithms for classification and regression predictions of the COVID-19 spread. The 
developed ensembles are based on a combination of supervised learning algorithms and unsupervised algorithms 
with a new method of selecting the cut-off coefficient based on the mathematical expectation of the weak classi-
fier predictors. The study utilizes publicly available COVID-19 outbreak and potential predictive features in the 
USA dataset, which provides daily information related to the outbreak of COVID-19 disease in the US, including 
data from each of 3142 US counties from the beginning of the epidemic (January 22, 2020) until June 10, 2021.

The developed hybrid hierarchical classifiers outperform single classification algorithms by more than 10% 
and are well-suited for COVID-19 spread prediction in real life. In the case of Ensemble 1, the achieved Accu-
racy metric was 0.895, ROC-AUC—0.897, and F1-score—0.897. The proposed cut-off voting improvement in 
Ensemble 2 further increased all the metrics compared to Ensemble 1 (Accuracy, ROC-AUC, and F1-score values 
are 0.912, 0.916, and 0.916, respectively).

Central to our innovation is using mathematical expectation to guide the selection of the cut-off coefficient 
in Ensemble 2. This dynamic voting mechanism considers the individual scores of weak classifiers within the 
ensemble, allowing context-aware decision-making. Rather than relying on a static threshold, our approach 
computes the average score for each vote, which is then subjected to mathematical expectation to derive an opti-
mal cut-off coefficient. This adaptive strategy ensures that the ensembles of classification are finely tuned to the 
specific characteristics of the input data, resulting in improved performance across a range of classification tasks.

The proposed hybrid hierarchical ensemble combining both supervised and unsupervised learning allows 
us to increase the accuracy of the regression task by 11% in terms of MSE, 29% in terms of the area under the 
ROC, and 43% in terms of the MPP metric. The ROC-AUC value increased from 0.609 to 0.790; MSE decreased 
from 112.6 to 101.3, and MPP from 18.8 to 13.1, respectively. Thus, using the proposed approach, it is possible 
to predict the number of COVID-19 cases and deaths based on demographic, geographic, climatic, traffic, public 
health, social-distancing-policy adherence, and political characteristics with sufficiently high accuracy.

The model described  in26 was able to predict the number of daily infected cases up to 35 days in the future, 
with an average mean absolute percentage error of 20.15% with further improvement to 14.88% if combined with 
human mobility data. In our study, we used the MSE metric instead, so the results cannot be compared directly. 
MAE value obtained during nested cross-validation is 9.51. The obtained AUC value for this research is 0.916 for 
the classification task and 0.795 for the case of regression analysis. A similar AUC value (0.80) was also reported 
by Zahra Gholamalian et al. to predict the statuses over time, viz. for the classification,  in25.

Wang et al.26 determined the policies of restrictions on gatherings, testing and school closing as the most 
influential predictor variables. In this paper, the most influential predictor variables are virus pressure, social 

Table 6.  Regression task performance metrics for weak and ensemble classifiers. Significant values are given 
in bold.

Model MSE ROC-AUC MPP

Lm linear model 133.0 0.455 28.4

regression tree 131.3 0.469 22.7

Grad boosted tree 112.6 0.609 18.8

Random forest 126.4 0.507 17.73

L1 lm 121.3 0.491 23.6

L2 lm 125.3 0.509 17.7

Ensemble 1 101.3 0.790 13.1

Ensemble 2 101.1 0.795 12.9

Table 7.  Regression performance of the whole dataset and selected features.

Model

For the whole dataset For selected features

MSE ROC-AUC MPP MSE ROC-AUC MPP

Ensemble 1 111.2 0.509 17.73 101.3 0.790 13.1

Ensemble 2 109.8 0.607 16.6 101.1 0.795 12.9
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distancing total grade, total population, area, and retail and recreation mobility percent change. Virus pressure 
was also reported as the key indicator for the number of COVID-19 cases in each  county24.

The study shows that the most important feature in COVID-19 spread is virus pressure for classification and 
regression analysis. Besides, there is a subset of common features which were recognized as the most important 
in these two studies:

• the total population of the county—the second most important common feature,
• distance to the nearest international airport,
• daily average temperature,
• the longitude of the county barycenter,
• number of total COVID-19 tests performed each day in the state of the county,
• population ratio in the state.

These findings can help practitioners analyze the spread and lifecycle of the virus, and decision-makers select 
the most critical restriction factors and limitations to prevent the spread of the disease. COVID-19 model predic-
tions play a crucial role in shaping public health practices and informing policy decisions, offering insights into 
the potential trajectory of the pandemic and the effectiveness of various interventions. Models can help predict 
the demand for healthcare resources such as hospital beds, ventilators, and medical staff in different scenarios. 
This information allows policymakers to allocate resources efficiently, ensuring that healthcare systems are 
adequately prepared to handle surges in cases. The model and the findings of the paper allow for the integration 
of both medical and non-medical interventions into the decision-making policy to prevent the virus spread. Thus, 
for example, social distancing and retail and recreation mobility percent change (as can be seen from Table 5) 
are the most important factors resulting in the total number of new cases and mortality ratio, while additional 
non-medical factors like temperature, immigrant students ratio, airport distance or housing density are among 
the most important features derived from the classification model (see Table 2). Hence, while developing the 
virus prevention (restriction) policy, the policymakers can consider such factors as the current and forecasted 
temperature, airport distance, and house density in the specific region etc., to restrict social distancing or retail 
or recreation closing or limitations.

Our work represents a significant advancement in classification ensemble methodologies. It offers a novel 
approach to cut-off determination that improves classification accuracy and adaptability in real-world applica-
tions. Future research will be related to using the developed ensembles for multimodal data analysis. Another 
possible approach is to use the imputed dataset, available  in21. The authors used the KNN imputer to impute 
the missing values of a feature based on the other non-missing values of that feature for that county, with a few 
exceptions. However, in our opinion, this procedure makes the dataset to be an artificial one and not the real-
world data. That’s why we do not examine the imputed dataset in this research. The comparison of the findings 
of this paper with the results of the machine-learning models applied to the imputed dataset will be carried out 
in future studies. Besides, other weak predictors could be used for ensembles as well as calibrated predictions 
of individual base models to ensure that their confidence estimates are well-calibrated and consistent across the 
ensemble. We plan to explore techniques for fusing the predictions of different models or datasets at various 
stages of the prediction process, such as feature fusion, decision fusion, or late fusion.

Data availability
The datasets generated and/or analysed during the current study are available in Figshare repository, https:// 
figsh are. com/ artic les/ datas et/ USA_ covid- 19_ data/ 12986 069/1.
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