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Surface roughness prediction 
of AISI D2 tool steel during powder 
mixed EDM using supervised 
machine learning
Amreeta R. Kaigude 1, Nitin K. Khedkar 1, Vijaykumar S. Jatti 1, Sachin Salunkhe 2,3*, 
Robert Cep 4 & Emad Abouel Nasr 5

Surface integrity is one of the key elements used to judge the quality of machined surfaces, and 
surface roughness is one such quality parameter that determines the pass level of the machined 
product. In the present study, AISI D2 steel was machined with electric discharge at different process 
parameters using Jatropha and EDM oil. Titanium dioxide  (TiO2) nanopowder was added to the 
dielectric to improve surface integrity. Experiments were performed using the one variable at a time 
(OVAT) approach for EDM oil and Jatropha oil as dielectric media. From the experimental results, it 
was observed that response trends of surface roughness (SR) using Jatropha oil are similar to those 
of commercially available EDM oil, which proves that Jatropha oil is a technically and operationally 
feasible dielectric and can be efficiently replaced as dielectric fluid in the EDM process. The lowest 
value of S.R. (i.e., 4.5 microns) for EDM and Jatropha oil was achieved at current = 9 A, Ton = 30 μs, 
Toff = 12 μs, and Gap voltage = 50 V. As the values of current and pulse on time increase, the S.R. also 
increases. Current and pulse-on-time were the most significant parameters affecting S.R. Machine 
learning methods like linear regression, decision trees, and random forests were used to predict the 
surface roughness. Random forest modeling is highly accurate, with an  R2 value of 0.89 and an MSE of 
1.36% among all methods. Random forest models have better predictive capabilities and may be one 
of the best options for modeling complex EDM processes.

Keywords Surface roughness, Jatropha oil, Linear regression, Decision tree, Random forest

Electrical Discharge Machining (EDM) is an electrothermal and nonconventional machining process in which 
rapid and repetitive sparks are generated between the workpiece and tool, which are kept apart at a small gap 
of 0.001–0.5 mm and are submerged or flooded by dielectric fluid, by initiation of sparks controlled erosion of 
conductive material takes  place1. Each spark produces enough heat to melt and evaporate material. The sur-
face characteristics of the piece are significantly affected due huge amount of heat produced during the EDM 
operation. This phenomenon is inevitable but can be reduced by properly selecting machining parameters. Also, 
there are several methods to enhance EDM performance. One of the most widely used high-chromium and 
high-carbon steels in the D family, AISI D2 is distinguished by its strong wear resistance, high stability during 
hardening, high compressive strength, and good resistance to tempering back. This alloy’s special qualities have 
made it valuable across various sectors. Die, trimming, coining, punching, shear blades, fuller, Phillips head 
forming dies, thermosetting resin forming dies, cold forming dies, fine blanking, stripper plates, brick molds, 
chisels, pneumatic tools, deep drawing and forming dies, cold drawing punches, hobbing, blanking, lamination 
and stamping dies, shear blades, burnishing rolls, master tools and gauges, slitting cutters, thread rolling & wire 
is just a few of the many uses for AISI  D22–4. It was observed that the dielectric oil waste generated at the end of 
the EDM operation was very toxic and could not be reused, making the EDM process unsustainable. The use of 

OPEN

1Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India. 2Department 
of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 
India. 3Faculty of Engineering, Department of Mechanical Engineering, Gazi University, Maltepe, Ankara, 
Turkey. 4Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, 
VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic. 5Department of Industrial Engineering, 
College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia. *email: sachinsalunkhe@
gazi.edu.tr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60543-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9683  | https://doi.org/10.1038/s41598-024-60543-3

www.nature.com/scientificreports/

vegetable-based dielectrics offers significant advantages in terms of sustainability, as they are environmentally 
and operator-friendly and provide green and sustainable alternatives to hydrocarbon and water-based dielectric 
 fluids5,6. Researchers have been experimenting with alternative dielectrics to improve process performance, 
reduce environmental impact, minimize fire hazards and increase operator safety. Canola, mineral oil, Sunflower, 
Olive oil, Soybean oil, Cotton seed oil, Grape seed oil, Rice bran oil, Neem oil, Peanuts oil, Palm oil and Waste 
Vegetable oil were used as dielectrics and compared to conventional dielectrics in terms of tool wear and material 
removal  rates6–16. It was pointed out from the experimental results that vegetable and bio-oil-based dielectrics 
have great potential to replace traditional dielectrics, thus providing a more sustainable manufacturing process 
in the future.  Tapas17 checked the Feasibility of jatropha oil as a dielectric fluid. Dissolved gas analysis proved 
that transesterified Jatropha oil provides sustainable and biodegradable dielectrics for EDM. In order to improve 
the sustainability of the EDM process, Jatropha crucas oil is used in the present work. Its seed contains nearly 
30–40% oil by weight and has excellent thermal, mechanical and chemical properties. Jatropha crucas oil is non-
edible; it does not affect the food chain due to its highly toxic tokialbumin cousin.

In powder-mixed EDM (PMEDM), the powder is mixed with dielectric to enhance the EDM surface. 
 Gurpreet18 studied the effect of nano nano-size  TiO2 powder mixed EDM on stainless steel 316 L; from the 
results, the addition of  TiO2 powder contributed towards the superior surface finish (i.e., 0.266 µm). Houriyeh 
 Marashi19 added Ti nanopowder to study the effects on the AISI D2 steel surface. It was reported that surface 
roughness considerably improved for all the machining conditions. Further, it also enhanced the morphology 
of the D2 steel surface as a result of a shallower crater and less formation of low-height ridges. Furthermore, 
surface micro-defects and cracks diminished.  TiO2 powder helps with surface  modification20. In the present study, 
 TiO2 powder is mixed with the dielectric to reduce the surface’s roughness, thus enhancing the surface’s finish.

Table 1 shows the Use of ML algorithms in EDM. It was observed that S.R. can be predicted using an ML 
algorithm, so the optimum level of process parameters can be determined in advance, further reducing cost and 
time and also loss of  labor23–30. However, more articles focus on implementing ML algorithms to predict the S.R. 
of EDM processes. Machine part quality is determined and evaluated by the feature of S.R. According to Wit 
 Grzesik31, the basic characteristics of surface integrity are surface roughness/surface topography, certain metal-
lurgical and microstructural changes, and process-induced residual stresses. According to Viktor P.  Astakhov32, 
the surface integrity of a surface can be defined as a set of different characteristics (both the surface and the 
depth of the engineering surface, which influence the performance of this surface in use). These characteristics 
primarily include surface finish, texture, profile, fatigue corrosion and wear resistance, adhesion and diffusion 
properties. Surface integrity and surface texture are related to S.R., which defines the geometry of the workpiece 
 surface33. Determination of S.R. by an analytic equation is quite difficult because of the complexity of surface 
roughness formation.

The present study is carried out to verify the operational and technical feasibility of Jatropha oil as a dielectric 
in the EDM process. Surface roughness values are measured during the machining of AISI D2 steel using com-
mercially available EDM oil and Jatropha oil as a dielectric. To enhance the S.R. of the EDMed surface, titanium 
dioxide powder is mixed with the dielectrics. S.R. is predicted using different machine learning methods like 
Linear Regression, Decision Tree and Random forest. Further evaluation metrics were used to analyze the per-
formance of each model.

Materials and methods
Electronica makes Die sink type EDM machine used to perform this experiment, model C400*250, having nega-
tive polarity to the electrode. The workpiece material used in the study is AISI D2 steel of size 10 × 10 × 10 mm. 
The chemical composition of AISI D2 tool steel is (1.55% C, 0.3%Si, 0.4%Mn, 11.8% Cr, 0.8% Mo, and 0.8% V)19. 
Due to its high electrical conductivity, an electrode of copper material is selected with a radius of 12.5 mm. The 
EDM is carried out on the workpiece using two variants of dielectric fluid, i.e., Jatropha oil and commercially 
available EDM oil. The titanium dioxide  (TiO2) nanoparticles are suspended in the dielectric fluid. The machining 

Table 1.  Use of machine learning (ML) in the EDM process.

References Year Machined materials Input parameters Response parameters Prediction method
23 2022 NiTi alloys, NiCu alloys and BCu alloys Ton, Toff, Gap current and gap voltage MRR RF, D.T., Gradient Boosting ANN

24 2020 Aluminum Voltage, Ton, Wire feed, dielectric 
pressure S.R

Support vector method (SVM), 
Extreme learning machine, Weighted 
Extreme learning machine

25 2022 Shape memory alloys (SMA) Nitinol 
rods Ton, Toff and current S.R AlexNet, KNN, MNB and DenseNet

26 2022 Memory alloy of Cu-based shape Peak current (Ip), Ton, gap voltage 
and Toff D.D. and TWR GA and TLBO techniques

27 2021 Inconel 718 wire feed rate, Ip, Ton, Toff and servo 
voltage SR ANN, SVM

28 2021 EN31 tool steel Ton, Toff, Ip, Vg, flushing pressure (P) Tool shape prediction and S .R
DT, R.F., linear model and ANN

29 2020 Hastelloy C-276 Wire tension, flushing pressure, Ton, 
Toff, servo voltage and wire feed rate Kerf width and S.R Gradient descent method

30 2022 EN31 steel Discharge current (Ip), gap voltage, 
Ton, Toff and flushing pressure (P) S.R. and prediction of tool shape Linear regression
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tank consists of a small acrylic tank that adds titanium oxide to the dielectric fluid. The powder is constantly 
stirred with a Kenwood (250 W) stirrer so that the powder gets uniformly disturbed and does not accumulate at 
the bottom of the tank. Mitutoyo surftest (SJ 201) measures S.R. using different process parameters like current, 
gap voltage, pulse on time and pulse off time (4 levels of each) as depicted in Table 2. Three readings are taken 
for S.R. measurement at different points than the average value is selected. Experiments have been performed 
using the OVAT approach. A total of 20 sets of experimental trials have been performed for each dielectric fluid, 
having 10 min of machining time for each set. Table 3 shows the properties of EDM and Jatropha oil. Table 4 
shows S.R.’s Experimental layout and observed values using commercially available EDM oil and jatropha oil.

Table 2.  Experimental process parameters and their levels.

Parameters Levels Machine setting available Constant

Pulse current (A) 3, 6, 9, 12, 15 0–40 Amperes 9

Pulse ON time (μs) 30, 50, 100, 200, 400 10 steps 100

Pulse OFF time (μs) 4, 6, 8, 10, 12 10 steps 12

Gap voltage (V) 50, 55, 60, 65, 70 0–200 V 50

Table 3.  Properties of EDM oil and Jatropha  oil12,13.

Sr. No. Properties EDM Oil Jatropha oil

1 Density (gm/ml) 0.775 0.870

2 Viscosity at (27 °C) (cSt) 2.33 6.5836

3 Thermal conductivity (W/m K) 0.139 0.147

4 Specific heat (kJ/kgK) 1.95 1.90

5 Breakdown voltage (kV) 56 26

6 Dielectric constant at (27 °C) 2.02 3.238

7 Flash point ( °C) 108 170

8 Oxygen content (wt.%) 0.070 1.11

9 Carbon content (wt.%) 94.9 85.32

Table 4.  Experimental layout and observed values of S.R.

Sr. No. of sample Current (A) Pulse on time (μs) Pulse off time (μs) Gap voltage (V)

EDM oil Jatropha oil

SR (μm) SR (μm)

1 9 30 12 50 4.58 4.5

2 9 50 12 50 5.55 6.61

3 9 100 12 50 6.36 8.82

4 9 200 12 50 7.5 11.13

5 9 400 12 50 8.23 12.24

6 3 100 12 50 5.15 4.627

7 6 100 12 50 6.88 6.66

8 9 100 12 50 8.25 8.46

9 12 100 12 50 10.28 9.22

10 15 100 12 50 11.24 9.73

11 9 100 12 50 8.64 7.77

12 9 100 12 55 8.07 8.44

13 9 100 12 60 7.38 8.26

14 9 100 12 65 7.74 7.94

15 9 100 12 70 7.72 7.64

16 9 100 4 50 6.39 7.12

17 9 100 6 50 8.38 7.12

18 9 100 8 50 8.45 7.65

19 9 100 10 50 8.83 8.77

20 9 100 12 50 8.5 9.17
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Machine learning (ML) techniques
In the present work, three ML algorithms, i.e., Linear regression (L.R.), Decision Tree (D.T.) and Random forest 
(R.F.), were used to predict S.R. Figure 1 shows a flowchart for the Implementation of ML algorithms on the 
experimental datasets. Linear Regression (L.R.) establishes a linear relation between dependent and independent 
variables. L.R. provides better solutions to each problem, making its interpretation and implementation easy. It 
is only applicable for linear solutions, so that provides a limit to it. If you have many features in a small dataset 
with less distortion, L.R. may outperform D.T. and R.F.  algorithms33–38. Random Forest Regression (R.F.) is a 
supervised ML model built using multiple decision trees at random, where the number of votes of the forest 
is selected as the prediction output. R.F. models provide more accurate, robust, and reliable predictions than 
a single decision tree. In addition, random forest models are less prone to overfitting than decision  trees33–38.

Decision tree Regression (D.T.) is a supervised ML predictive model in which information is split continu-
ously based on specific parameters. In the Decision tree regression model, its branches denote the decision rules; 
internal nodes denote features of input data provided, and leaf nodes show the outcome. It is the same as a tree 
 structure23. D.T. models do not require preprocessing of data and can efficiently handle collinearity. In general, 
decision tree models have better average accuracy. D.T. models are prone to outliers and may lose valuable 
information during handling continuous  variables33–38.

Performance evaluation metrics (PEM)
It is used to analyze regression-based ML models’  performance24. Table 5 defines the equations and significance 
of each Performance Evaluation Metrics. Each of these metrics provides information from a different perspective 
about the performance of the ML model.

Figure 1.  Flowchart for implementation of ML algorithms.

Table 5.  Equations and significance of performance evaluation metrics.

Performance metrics Equations Significance

Absolute mean error (AME) ∑

n

i=1

yi−
‘
yi

n

It measures the prediction error and does not show the direction of the error, i.e., whether it is over or under-predicting the 
data

Squared mean error (SME) ∑

n

i=1

(yi−
‘
yi)2

n

Measures fitness of the model. It penalizes even small errors by squaring them, leading to overestimating errors

Root mean squared error (RMSE)
√

∑

n

i=1

(yi−
‘
yi)2

n

Measures the average error performed by the model. It handles the penalization of smaller errors done by MSE by square 
rooting, hence prone to outliers

Regression (R-square coefficient) 1−
∑

n

i=1
(yi−

‘
yi)2

∑

n

i=1
(yi−y)2

Measures the performance of your model. It shows how well the model fits the dependent variables
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Results and discussion
Effects of various process parameters on S.R.
The influence of various process parameters like Gap current, Gap voltage, Pulse ON time (Ton) and Pulse OFF 
time (Toff) on S.R. have been investigated and discussed below. Table 4 shows Experimental Data. Surface Rough-
ness is associated with an average roughness of the surfaces produced. The lower value of S.R. is desirable as it is 
directly associated with the part quality. Figure 2a–d shows the effect of various process parameters on the S.R. 
Figure 2a shows the influence of current on S.R. It was observed that as current increases, the surface roughness 
value also increases for both dielectric fluids. Figure 3b depicts surface morphology at machining conditions 
(current = 15 A, Ton = 100 μs, Toff = 12 μs and Gap voltage = 50 V), yielding S.R. of 11.54 microns using EDM oil 
as a dielectric fluid. The high value of S.R. is observed at the maximum value of Current. The spark discharge 
expands, as the pulse current to the work material, and the collision force generated in the crater increases the 
strength at high Current, affecting more work materials. Furthermore, the increased energy from the increased 
current penetrates the material surface, eventually forming deeper and wider craters and resulting in a rough 
 surface11–14. It was also observed that using jatropha oil as a dielectric yields similar results to EDM oil. Figure 2b 
shows the influence of gap voltage on S.R. It was observed that gap voltage had a limited influence on the S.R.

Figure 2c) shows the influence of pulse on time (Ton) on S.R. S.R. increases as Ton increases for both the 
dielectric fluid. Optical micrographs are taken at 200 X magnificent. Figure 3a) depicts surface morphology at 
machining condition (current = 9A, Ton = 30 μs, Toff = 12 μs and Gap voltage = 50 V) using EDM oil as a dielectric 
which yield S.R. of 4.508 microns, which is the lowest value of S.R. measured and Fig. 3c) depicts surface mor-
phology at machining condition (current = 9A, Ton = 30 μs, Toff = 12 μs and Gap voltage = 50 V) using Jatropha 
oil as a dielectric which yield S.R. of 4.5 microns. It was observed that both dielectric at the lowest levels of Ton 
(i.e., 30) minimum value of S.R. (i.e., 4.5 microns) is achieved. Further, Fig. 3d) depicts surface morphology at 
machining conditions (current = 9A, Ton = 400 μs, Toff = 12 μs and Gap voltage = 50 V) using Jatropha oil as a 
dielectric, which yields S.R. of 12.24 microns, which shows that the value of S.R. goes on increasing as levels Ton 
increases. At the same time, other process parameters are kept constant. This is attributed to more prolonged 
sparking time causing more prolonged melting and vaporization, which causes deeper and wider crater formation 
resulting in higher value of S.R., also can be seen from the surface morphology of the  specimen11–14. Figure 2d) 
shows the influence of Toff on S.R. It was observed that as the interval of Toff increases, the value of S.R. also 
increases. Also, from Fig. 4a,b Correlation heat map between the Toff and S.R., it can be seen that Toff has less 
significance on S.R. for both dielectric fluids. Figure 4 shows a correlation heat map for the process parameters 
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with S.R. obtained using EDM oil and jatropha oil. Using EDM oil as dielectric, S.R. obtained was noticed to have 
a moderately strong positive correlation with gap current, Ton, mildly related Toff and be negatively correlated 
with gap voltage. Using jatropha oil as dielectric, S.R. obtained was noticed to have a somewhat positive correla-
tion with Ton, gap current, mildly related Toff and be negatively correlated with gap voltage. It is observed that 
Gap current and Ton significantly influence the S.R. in the case of both dielectric fluids.

Prediction of S.R. using linear regression (L.R.)
During Linear Regression the dataset was normalized further; it was split into a set of training and testing in 
which a dataset of training was used to construct a model and for evaluation testing dataset was utilized. The 
regression model for S.R. prediction using oil of EDM and Jatropha is shown in Eqs. (1) and (2), respectively.

where,  x1 is current,  x2 is Ton,  x3 is Toff and  x4 is Gap voltage.

(1)
S.R = 1.3433+ 0.4683 x1 + 0.0045x2 + 0.0142 x3 + 0.0233x4

R2
= 0.611Adj R2

= 0.438

(2)
S.R = 0.5062+ .0.4186 x1 + 0.0182 x2 + 0.0891 x3 + 0.0119 x4

R2
= 0.825Adj R2

= 0.748

Figure 3.  (a) Surface morphology under (current = 9A, Ton = 30 μs, Toff = 12 μs and Gap voltage = 50 V) 
using EDM oil as a dielectric. (b) Surface morphology under (current = 15A, Ton = 100 μs, Toff = 12 μs and 
Gap voltage = 50 V) using EDM oil as a dielectric. (c) Surface morphology under (current = 9A, Ton = 30 μs, 
Toff = 12 μs and Gap voltage = 50 V) using Jatropha oil as a dielectric. (d) Surface morphology under 
(current = 9A, Ton = 400 μs, Toff = 12 μs and Gap voltage = 50 V) using Jatropha oil as a dielectric.
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The  R2 values showed that the linear regression model using Jatropha oil captured 82% of the variance in the 
target variable, while for EDM oil, only 61%.

Prediction of S.R. using decision tree (D.T.)
The Decision Tree algorithm dataset of 20 samples was randomly split into training sets where 7 and 14 samples 
were selected for testing. Figure 5a,b show the obtained Decision Tree plot using EDM and Jatropha, respectively.

From the  R2 values, it was observed that the regression model using Jatropha oil captured 82% of the vari-
ance in the target variable, while EDM oil captured only 72%. It was also noticed that decision tree algorithms 
give a lower value of Mean Squared Error and Mean Absolute Error value using Jatropha oil than EDM oil, as 
seen in Table 6.

Figure 4.  (a) Correlation heat map into responses and process parameters for EDM oil. (b) Correlation heat 
map into responses and process parameters for Jatropha Oil.

Figure 5.  (a) Decision Tree Regression plot using EDM oil as a dielectric. (b) Decision Tree Regression plot 
using Jatropha oil as a dielectric.
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Prediction of S.R. using Random Forest (R.F.)
Table 7 shows Performance Evaluation Metrics using the Random Forest regression model for EDM and Jatropha 
oil. From the  R2 values, it was observed that the regression model using Jatropha oil captured 89% of the variance 
in the target variable, while for EDM oil, only 55%. It was also noticed that the random forest algorithm gives a 
lower value of Mean Squared Error and Mean Absolute Error value using Jatropha oil than EDM oil.

Shanmugasundar36 carried out a comparative analysis of Linear, Random Forest, and AdaBoost Regres-
sions where regression models were developed for MRR, EWR and S.R. For S.R., the value of  R2 by L.R. model 
predicted was only 56.8% and for R.F. regression model 86.5%.  Jatti23 predicted the value of MRR using four 
supervised machine learning regression models: Random Forest, Decision Tree, Gradient Boosting and Artificial 
Neural Network. For MRR, the value of  R2 by the D.T. model predicted was only 0.814, and the R.F. regression 
model was 0.856. Based on the comprehensive evaluation, it is observed that although L.R. is simple and quick, 
it needs to be more adequate to explain all the variances in the dataset and can accurately map the complex 
relationship between the process parameters and responses. R.F. regression was found to be suitable for predic-
tive modeling.

Table 8 shows the predicted  R2 for each ML method using commercially available EDM oil and Jatropha oil. 
R.F. algorithm provides better results than D.T. and L.R. using jatropha as a dielectric media. From the  R2 values, 
it was observed that regression models using Jatropha oil were able to capture more variance in the target variable 
when compared with EDM oil. R.F. model provides S.R. with a  R2 value of 0.89 and gives excellent performance. 
This study shows that machine learning methods can forecast the S.R. of AISI D2 tool steel with EDM.

Analysis of variance
This section explains the analysis of variance for the surface roughness considering EDM oil and Jatropha oil 
separately. Table 9 depicts the ANOVA for SR-Jatropha oil. Considering level of significance (α) as 0.05, any value 
less than 0.05 is considered as most significant parameter. Table 9 showed that gap current and pule on time are 
most significant parameter that affects the surface roughness.

Table 10 depicts the ANOVA for SR-EDM oil. Considering level of significance (α) as 0.1, any value less than 
0.1 is considered as most significant parameter. Table 10 showed that gap current is the most significant parameter 
that affects the surface roughness.

Figure 6a,b shows the trend line for SR with respect to EDM process parameters. Figure 6a shows that gap 
current is most significant parameter followed by pulse on time, pulse off time and gap voltage. Figure 6b depicts 
that gap current and pulse on time are the most significant parameter.

Conclusion
The present study depicts the utilization of Jatropha oil as dielectric to technically and operationally feasible 
aspects of the EDM process. Results obtained using Jatropha oil were almost in line with those obtained using 
commercially available EDM oil.

Table 6.  PEM using decision tree.

Sr. No. Evaluation metrics Values with EDM oil metrics Values with Jatropha oil

1 Mean absolute error 1.16 0.97

2 Mean squared error 1.75 1.36

3 Root mean squared error 1.3 1.16

4 Regression  (R2) coefficient 0.72 0.82

Table 7.  Performance evaluation metrics using Random Forest.

Sr. No. Evaluation metrics Value with EDM oil Value with Jatropha oil

1 Mean absolute error 1.39 0.61

2 Mean squared error 2.70 0.44

3 Root mean squared error 1.64 0.66

4 Regression  (R2) coefficient 0.55 0.89

Table 8.  Performance evaluation metrics of regression-based models.

Sr. No. Model R2 value with EDM oil R2 value with Jatropha oil

1 LR (Linear Regression) 0.61 0.82

2 DT (Decision Tree) 0.72 0.82

3 RF (Random Forest) 0.55 0.89
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• Response trends of S.R. using Jatropha oil under the influence of process parameters are similar to those of 
EDM oil, which proves Jatropha oil is a technically and operationally feasible dielectric.

• For EDM and Jatropha oil, the lowest value of S.R. (i.e., 4.5 microns) was obtained at current = 9, Ton = 30, 
Toff = 12, and gap voltage = 50. It was found that the S.R. increases along with the current and Ton values. 
Current and Ton was observed to be the most important factor influencing S.R.

• For predicting S.R., supervised ML algorithms based on regression models were implemented. Random forest 
modeling is highly accurate, with an  R2 value of 0.89 and an MSE of 1.36% among all methods. Subsequently, 
linear regression and decision tree models also show good accuracy, with an  R2 value of 0.82.

• Random forest models have better predictive capabilities and may be one of the best options for modeling 
complex EDM processes.

• ML algorithms can analyze and model EDM processes, potentially replacing time-consuming and costly 
experiments.

Future scope will be to investigate how jatropha oil as a dielectric can improve the sustainability of the EDM 
process. Also, more ML modeling and simulation research is needed to analyze material removal rate, crater 
depth, surface crack density, and residual stress.

Table 9.  Analysis of variance for SR-Jatropha oil, using adjusted SS for tests.

Source DF Seq SS Adj SS Adj MS F P

Ig 4 18.3060 18.8600 4.7150 13.17 0.030

Ton 4 41.2406 40.4275 10.1069 28.24 0.010

Toff 4 2.9333 3.3995 0.8499 2.37 0.252

Vg 4 0.8452 0.8452 0.2113 0.59 0.695

Error 3 1.0737 1.0737 0.3579

Total 19 64.3989

S = 0.598247 R-Sq = 98.33% R-Sq (adj) = 89.44%

Table 10.  Analysis of variance for SR-EDM oil, using adjusted SS for tests.

Source DF Seq SS Adj SS Adj MS F P

Ig 4 26.794 24.877 6.219 5.49 0.097

Ton 4 14.690 12.913 3.228 2.85 0.208

Toff 4 3.714 3.639 0.910 0.80 0.596

Vg 4 0.326 0.326 0.082 0.07 0.986

Error 3 3.396 3.396 1.132

Total 19 48.921

S = 1.06397 R-Sq = 93.06% R-Sq (adj) = 86.03%
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Figure 6.  (a) Effect of EDM input process parameters on SR using EDM oil. (b) Effect of EDM input process 
parameters on SR using Jatropha oil.
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