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Importance of CD8 Tex 
cell‑associated gene signatures 
in the prognosis and immunology 
of osteosarcoma
Yining Lu 1,2,4, Nana Cao 3,4, Ming Zhao 2, Guochuan Zhang 2, Qi Zhang 1* & Ling Wang 1,2*

As a highly aggressive bone malignancy, osteosarcoma poses a significant therapeutic challenge, 
especially in the setting of metastasis or recurrence. This study aimed to investigate the potential 
of CD8‑Tex cell‑associated genes as prognostic biomarkers to reveal the immunogenomic profile 
of osteosarcoma and guide therapeutic decisions. mRNA expression data and clinical details of 
osteosarcoma patients were obtained from the TCGA database (TARGET‑OS dataset). The GSE21257 
dataset (from the GEO database) was used as an external validation set to provide additional 
information on osteosarcoma specimens. 84 samples from the TARGET‑OS dataset were used 
as the training set, and 53 samples from the GSE21257 dataset served as the external validation 
cohort. Univariate Cox regression analysis was utilized to identify CD8 Tex cell genes associated 
with prognosis. The LASSO algorithm was performed for 1000 iterations to select the best subset 
to form the CD8 Tex cell gene signature (TRS). Final genes were identified using the multivariate 
Cox regression model of the LASSO algorithm. Risk scores were calculated to categorize patients 
into high‑ and low‑risk groups, and clinical differences were explored by Kaplan–Meier survival 
analysis to assess model performance. Prediction maps were constructed to estimate 1‑, 3‑, and 
5 year survival rates for osteosarcoma patients, including risk scores for CD8 Texcell gene markers 
and clinicopathologic factors. The ssGSEA algorithm was used to assess the differences in immune 
function between TRS‑defined high‑ and low‑risk groups. TME and immune cell infiltration were 
further assessed using the ESTIMATE and CIBERSORT algorithms. To explore the relationship between 
immune checkpoint gene expression levels and the two risk‑defined groups. A CD8 Tex cell‑associated 
gene signature was extracted from the TISCH database and prognostic markers including two genes 
were developed. The high‑risk group showed lower survival, and model performance was validated 
by ROC curves and C‑index. Predictive plots were constructed to demonstrate survival estimates, 
combining CD8 Tex cell gene markers and clinical factors. This study provides valuable insights into the 
molecular and immune characteristics of osteosarcoma and offers potential avenues for advances in 
therapeutic approaches.
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Osteosarcoma (OS) is a significant malignancy affecting bone tissue, particularly prevalent in the adolescent 
 population1. This disease is characterized by frequent vascular infiltration, adjacent soft tissue involvement, a 
notable tendency for local recurrence, and premature distant  metastasis2. Approximately one-fifth of OS patients 
develop metastatic lesions, while the remaining patients usually develop subclinical micrometastases. Stand-
ard treatment involves chemotherapy and surgical  resection3. Despite multimodal approaches such as conven-
tional multiagent chemotherapy, surgery, or high-dose chemotherapy combined with stem cell transplantation, 
patients diagnosed with metastatic or recurrent osteosarcoma still experience poor outcomes, with less than 30% 
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achieving long-term  survival4. Moreover, due to the young age of onset, the side effects of these treatments can 
be devastating and persistent. Even patients in remission may face long-term complications, including secondary 
malignancy, disfigurement (surgery), and psychosocial  trauma5,6. The complexity and instability of the genome 
significantly impact treatment  outcomes7, necessitating the identification of new prognostic genetic markers to 
predict OS prognosis and guide treatment options. Recently, immunotherapeutic approaches, including over-
the-counter cell therapy, vaccination, and immune checkpoint inhibitors, have emerged as potential therapeutic 
 strategies8.

While T-cell immunotherapy has demonstrated efficacy against many high-risk malignancies, its effectiveness 
against osteosarcoma remains largely unexplored. Preclinical studies utilizing immune checkpoint inhibitors 
(ICIs), antigen-specific chimeric antigen receptors (CARs), or bispecific antibodies (BsAb) have shown the 
impressive anti-tumor capacity of T cells. However, the immunosuppressive tumor microenvironment (TME) 
remains a major  obstacle9–12. Osteosarcoma and TME interact through various environmental signals, such as 
cytokines, chemokines, and soluble growth  factors13, hindering immune surveillance while promoting tumor 
growth and metastasis. This osteosarcoma-specific TME impedes T cell infiltration into the tumor, accelerates 
immune effector cell exhaustion and inactivation, and disrupts antitumor immunity, creating a significant barrier 
and potential tumor vulnerability. T cell depletion is a state of T cell dysfunction characterized by poor effector 
cell function, persistent expression of inhibitory receptors, and a different functional effector cell or memory T 
cell state than the transcriptional state, which can occur in many chronic infections and  cancers14. CD8+ T-cell 
depletion often hampers optimal control of infections and tumors, posing a major obstacle to current anticancer 
 immunotherapies15–17. An increased understanding of CD8+Tex and the underlying regulatory mechanisms may 
open new therapeutic avenues, including strategies related to stimulating and stabilizing effector states during 
the exhaustion  continuum18–20.

The primary aim of this study was to explore the potential of CD8-Tex cell-associated genes as biomarkers 
for assessing risk in osteosarcoma patients. Through a comparison of gene expression patterns between high- 
and low-risk groups, we analyzed differentially expressed genes (DEGs) and investigated potential molecular 
mechanisms, regulatory pathways, and immune cell infiltration. The main objective was to elucidate the immu-
nogenomic profile of osteosarcoma and identify survival-associated genes that could serve as valuable clinical 
biomarkers, guiding treatment planning.

Result
Extraction of CD8 Tex cell‑associated gene signature
As shown in Fig. 1, we searched the single-cell RNA sequencing data of osteosarcoma in the TISCH database 
(GSE162454) and extracted differential genes for the CD8Tex cell population. Intersections were taken with 
immune-related genes extracted from the database, and 362 intersecting genes were obtained. By univariate Cox 
analysis, 10 genes associated with CD8Tex cells were considered as potential prognostic indicators (genes were 
selected based on a p-value threshold of < 0.05) (Fig. 1). To reduce the risk of overfitting, least absolute shrink-
age and selection operator (LASSO) Cox regression was subsequently performed. After applying the LASSO 
algorithm, a multivariate Cox regression model was used to identify the final gene set, which consisted of two 
robust genes (GJA1 and HLA-DQA1) that formed a prognostic signature for overall survival (Fig. 2).

Correlation between TRS and prognosis of OS patients
To investigate the relationship between TRS and the prognosis of patients with osteosarcoma, we extracted clini-
cal data of patients from the TARGET-OS database and the GEO database (GSE21257), respectively. The coef-
ficients of two T-cell-related genes were used to determine the score for each patient. Gap junction alpha 1 (GJA1) 
gene is located in 6q22.31, encoding a member of cell junction protein family (Connexin 43), Zhang et al. showed 
that Connexin 43 inhibits osteosarcoma cell proliferation by mediating cell gap junction  communication21,22. 
Comparatively, human leukocyte antigen (HLA)-DQA1 has been shown to be strongly associated with the onset 
and progression of several  cancers23,24. In the LASSO Cox regression model, after selecting the best lambda values 
through cross-validation, the model gives the genes and their corresponding coefficients that have the most sig-
nificant degree of influence on the survival data. The model formula shows the relationship between these genes 
and the survival data, describing how the survival risk can be predicted based on the gene expression, and the risk 
score is a numerical value calculated according to this formula, indicating the survival risk of an individual at a 
given moment. The risk score was calculated as follows: risk score = (− 0.169 × GJA1 expression) + (0.192 × HLA-
DQA1 expression). Subsequently, participants were assigned to either the low-risk or high-risk group based on 
the median risk score. In both datasets, we were able to find that survival was lower in the high-risk group than 
in the low-risk group (p = 0.001, in the high-risk group, median survival time = 4.43 with 95% confidence interval 
(4.12, 4.73). For the low-risk group, median survival time = 6.18 with 95% confidence interval (4.94, 7.42), at the 
same time also we found similar trends in the validation set.

We used ROC curves to assess the predictive role of risk scores for 1, 3 and 5 year survival in patients with 
osteosarcoma. The AUC values for 1, 3 and 5 year survival were 0.702, 0.655, and 0.784, respectively (Fig. 3). 
The AUC for 5 year survival showed that the risk score (0.784) had a satisfactory predictive power (Fig. 3). 
Univariate and multivariate Cox regression analyses were used to evaluate the prognostic value of risk score 
and other factors. Risk score and metastasis were significant independent prognostic factors with HR values 
of 4.387 (95% CI 1.964–9.800, p < 0.001) for univariate analysis and 6.276 (95% CI 2.044–9.979, p < 0.001) for 
multivariate analysis (Fig. 3).
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Functional analysis of high‑ and low‑risk score groups
A comprehensive analysis of the GSEA enrichment analysis methodology was performed to explore potential 
mechanisms leading to the different prognoses observed between the high- and low-risk groups. High risk was 
enriched for dilated cardiomyopathy, ECM receptor interaction, focal adhesion, hypertrophic cardiomyopathy 
(HCM), neuroactive ligand receptor interaction pathway. The low-risk group, on the other hand, was enriched 
in the base excision repair, DNA replication, homologous recombination, and peroxisome pathway (Fig. 4).

Immune‑related analysis of high‑ and low‑risk score groups
To further investigate the relationship between risk scores and immune cell infiltration of tumors, the CIBER-
SORT algorithm was used to compare the proportions of 22 different types of immune cells between groups of 
low-risk or high-risk individuals. The results of the study showed that the low-risk group had higher proportions 
of M0 macrophages, and Mast cells resting (p < 0.05), whereas the high-risk group had higher proportions of T 
cells regulatory (Tregs), Macrophages M1, Macrophages M2, and Neutrophils ratio was higher, which correlated 
with immunosuppressive activity (p < 0.05) (Fig. 5). On this basis, the researcher employed the ssGSEA algo-
rithm to further analyze the immune function. Figure 5 presents the results of the visualization of the significant 
differences in immune function between the two groups. ssGSEA algorithm was employed to provide a more 
comprehensive and in-depth understanding of the differences in immune function. The algorithm allowed us to 

Figure 1.  Construction of risk prognostic model (A,B) UMAP plot of single-cell sequencing in osteosarcoma 
patients and bar plots (C) T-cell differential genes and immune-related genes take intersections. (D) Protein–
protein interactions interaction network of CD8-Tex-related genes. (E) Univariate Cox regression analysis 
obtained 109 candidate prognostic TRGs for OS.
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delve into the functional activity of different immune cell types in both groups. These findings suggest that the 
low-risk group had lower levels of functional immune activity. In the low-risk group, the increase in CD4 natural 
T cells and M0 macrophages could imply stronger immune responses and cell-mediated immune protection. In 
contrast, in the high-risk group, the increase in Tregs, macrophage M1 and M2 may reflect enhanced immune 
regulation as well as increased inflammatory response, which may be associated with disease development and 
progression, providing important clues for future research and treatment. We then investigated the potential 
association between risk scores and immune checkpoint gene expression levels. The expression levels of immune 
checkpoint genes belonging to the Siglec family, such as SIGLEC7, SIGLEC8, SIGLEC9, SIGLEC10, SIGLEC11, 
SIGLEC14, and SIGLEC16, were significantly elevated in patients in the high-risk group (Supplementary Figure).

Discussion
Osteosarcoma is a malignant swelling of bone tissue that occurs primarily in the adolescent and young adult pop-
ulation. Commonly used treatments include neoadjuvant chemotherapy, surgery, and adjuvant  chemotherapy25. 
In the present study, the characterization of CD8 Tex cells was generated and subsequently evaluated for its cor-
relation with overall survival in patients with osteosarcoma. Gene enrichment analysis was performed to explore 
the underlying mechanisms involved. The present study is the first to explore the genetic signature associated 
with CD8 Tex cells in osteosarcoma and marks an important step in our understanding of the immune environ-
ment of this malignancy.

The integration of the identified gene signature into clinical practice was achieved by establishing a risk score 
based on the expression of two T-cell-related genes (GJA1 and HLA-DQA1). GJA1 is the major protein expressed 
in epithelial tissues. Previous studies have shown that GJA1 expresses excellent cancer-inhibitory effects in a 
variety of cancers, which is consistent with our  findings26,27. Although there are no definitive studies supporting 
a clear link between HLA-DQA1 and osteosarcoma, several studies seem to reveal a positive correlation with 
certain  malignancies28,29. CD8 Tex cells are a special type of CD8+ T cells that play an important role in anti-
tumor immunity.GJA1 encodes the Connexin 43 protein, which plays a key role in intercellular communication 
and may influence the interaction between tumor cells and immune cells, thereby affecting immune responses 
and tumor growth. Meanwhile, HLA-DQA1 is one of the MHC-class-II molecules involved in antigen pres-
entation and immune regulation, and its variant or expression level may affect tumor recognition and attack 
by CD8Tex cells. In the biological mechanism of osteosarcoma, immune response regulation plays a key role. 
The activity of CD8Tex cells directly affects the growth and spread of tumor cells, while the expression of GJA1 
and HLA-DQA1 may regulate the strength and direction of immune response. In addition, interactions in the 
tumor microenvironment also have an important impact on tumor progression and therapeutic response. The 
Connexin 43 protein encoded by the GJA1 gene may regulate signaling between tumor cells and immune cells, 
affecting the infiltration and activity of immune cells, which in turn affects the prognosis of the patient. Vari-
ants of HLA-DQA1 may lead to an increase in immune tolerance, which may cause tumor cells to escape from 
immunosurveillance that exacerbates disease progression. The association between TRS and patient prognosis 
was investigated using clinical data from the TARGET-OS and GEO databases. The results revealed a significant 
difference in survival between the low-risk and high-risk groups, emphasizing the potential clinical relevance of 
the identified gene signature. The calculated risk score demonstrated satisfactory predictive power, as evidenced 
by the AUC values for 1, 3, and 5 year survival. Univariate and multivariate Cox regression analyses further 

Figure 2.  (A) LASSO regression analysis. (B) Selection of the optimal penalty parameter for LASSO regression.
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underscored the independent prognostic value of TRS, positioning it as a promising tool for risk stratification 
in osteosarcoma patients.

Figure 3.  Kaplan–Meier survival analysis in OS patients and prognostic value of TRS. (A) Kaplan–Meier 
analysis of the overall survival of TARGET-OS set. (B) Kaplan–Meier analysis of the GEO set. (C) Clinical 
relevance circle chart. (D) Forest plot for univariate Cox regression analysis. (E) Forest plot for multivariate Cox 
regression analysis. (F) ROC curve and AUC at 1-year, 3-years and 5 years survival for TRS. (G) The ROC curve 
of the risk score and clinicopathological variables.
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The functional analysis of the high- and low-risk score groups provided insights into the underlying bio-
logical processes associated with the identified gene signature. Enrichment analysis revealed distinct pathways 
enriched in each group, shedding light on potential mechanisms influencing prognosis. Notably, the high-risk 
group exhibited enrichment in pathways related to cardiac conditions, focal adhesion, and neuroactive ligand-
receptor interaction, while the low-risk group showed enrichment in DNA repair and replication pathways. This 
suggests a potential connection between the immune status reflected in the gene signature and broader cellular 
processes that may influence the differential prognosis of patients with osteosarcoma.

The immune-related analysis further delved into the TME by employing the CIBERSORT algorithm to assess 
immune cell infiltration. The results highlighted significant differences in the composition of immune cells 
between low- and high-risk groups. Notably, the low-risk group demonstrated higher proportions of M0 mac-
rophages, and resting Mast cells, indicating a more active immune response. In contrast, the high-risk group 
exhibited higher proportions of immunosuppressive cell types, including Tregs and both M1 and M2 mac-
rophages, aligning with the notion of an immunosuppressive TME in high-risk osteosarcoma patients. Tregs are 
an important component of TME and are strongly associated with the prognosis of patients with  osteosarcoma30. 
Macrophages, on the other hand, appear to play an important role in the pathogenesis of osteosarcoma. Within 
the tumor microenvironment, tumor-associated macrophages (TAMs) take center stage as the predominant 
infiltrating immune cells, characterized by their ability to undergo phenotypic polarization. Initially, TAMs 
predominantly adopt an M1 proinflammatory phenotype in the early stages of tumorigenesis, instigating an 
immune response that hampers tumor  progression31. However, as the tumor advances, TAMs undergo a gradual 
shift toward an M2 functional  phenotype32. This transition enhances their involvement in tumor angiogenesis 
and immunosuppression, fostering an environment conducive to tumor growth. Furthermore, considering the 
importance of RNA modification in immune regulation, Zhang et al. conducted a study on the involvement of 
m6A regulator-mediated RNA methylation modification patterns in the regulation of the immune microenviron-
ment in periodontitis, revealing the role of RNA methylation in the immune  microenvironment33. This study 
provides an interesting perspective on the possible link between RNA methylation and immune response in 
osteosarcoma and offers new ideas for understanding the dynamics of the tumor microenvironment, and further 
studies may reveal the potential role of RNA modification in osteosarcoma immune regulation.

The ssGSEA algorithm provided additional insight into immune function, showing that the low-risk group 
exhibited higher levels of immune function activity. Moreover, the association between risk scores and immune 
checkpoint gene expression levels emphasized the immunosuppressive nature of the high-risk group. The Siglec 
family functions as checkpoints in the immune cell response in human diseases such as cancer and autoimmune 
disorders, hence their interest as targets for therapeutic  intervention34,35. They have been studied for many years 
as therapeutic targets in  cancers36, including myeloid leukemia (Siglec-6)37, pancreatic cancer (Siglec-7 and 
Siglec-9)38, and others. In recent years, the emerging role of Siglec-15 in bone biology and cancer has also been 
gradually  explored39. However, unfortunately, in the present study, Siglec-15 was not significantly different in 
the two groups. In this study, we investigated the association between risk scores and immune checkpoint gene 
expression and found that the levels of Siglec family genes (SIGLEC7, SIGLEC8, SIGLEC9, SIGLEC10, SIGLEC11, 
SIGLEC14, and SIGLEC16) were significantly elevated in the high-risk group. Together, these results suggest 
that risk scores in osteosarcoma patients may be associated with different immune profiles, which may influ-
ence the efficacy of treatment strategies. The upregulation of immune checkpoint genes in the high-risk group 
implies possible immunosuppression, highlighting the importance of considering immune-related factors when 
developing therapies for osteosarcoma.

The findings of this study hold several implications for the future treatment of osteosarcoma. Firstly, the 
identified CD8 Tex cell-associated gene signature serves as a potential biomarker for risk stratification, aiding 
clinicians in predicting patient outcomes and guiding treatment decisions. The integration of this signature 
into routine clinical practice could enhance the precision of prognostic assessments, enabling more tailored 

Figure 4.  GSEA enrichment analysis.
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and effective therapeutic strategies. Moreover, the study emphasizes the importance of considering the immune 
landscape in osteosarcoma, particularly the role of CD8 Tex cells. The identified genes associated with CD8 Tex 
cells provide potential targets for immunotherapeutic interventions. Strategies that modulate these genes or 

Figure 5.  Immune related analysis in high- and low-risk groups. (A,B) Differences in the infiltration of 
immune cells between the high- and low- risk groups. (C) The correlation between the signature and immune 
functions.
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enhance the immune response may be explored to overcome the immunosuppressive TME observed in high-risk 
patients. The functional and immune-related analyses shed light on the molecular and cellular processes that 
underlie the observed differences in prognosis. This knowledge opens avenues for the development of targeted 
therapies that address not only the tumor cells but also the broader microenvironment, potentially improving 
treatment outcomes.

The current study has several limitations that should be acknowledged. Firstly, the prognostic model was 
developed and validated using a single retrospective data source, which may introduce inherent biases and limit 
the generalizability of the findings. Secondly, due to the small sample size, there may be a risk of sample bias, 
resulting in compromised generalizability of the findings. In addition, the retrospective collection of data may 
have resulted in incomplete or inaccurate information, thus limiting a comprehensive understanding of the 
genetic characteristics of CD8 Tex cells. Future studies should aim to validate these findings in larger prospective 
cohorts. By expanding the sample size and employing a prospective design, the prevalence of CD8 Tex cell gene 
characterization can be better captured and the clinical applicability of the findings can be improved. In addition, 
it is recommended that future studies focus on a more comprehensive assessment of the function and impact of 
CD8 Tex cells to further understand their role in the immune response. Lastly, the available database provided 
only limited clinical information, restricting the depth of our analysis. Therefore, to strengthen the validity 
and applicability of our prognostic signature, future research should involve a larger and more diverse cohort, 
preferably through a prospective study design. This would allow for a more comprehensive assessment of the 
predictive value of the signature across various clinical contexts and improve the overall reliability of our findings.

In summary, this study contributes valuable insights into the molecular and immune characteristics of osteo-
sarcoma, paving the way for a more nuanced understanding of the disease and offering potential avenues for 
therapeutic advancements. The integration of the identified gene signature and risk score into clinical practice 
could significantly impact patient care by facilitating personalized treatment approaches and improving overall 
outcomes for osteosarcoma patients. Further validation and prospective studies are warranted to solidify the 
clinical applicability of these findings and to explore the full potential of the identified gene signature in shaping 
the future landscape of osteosarcoma treatment.

Method
Single cell analysis
CD8 Tex cells in osteosarcoma were analyzed at the single-cell subset level using data from the Tumor Immu-
nology Single Cell Center (TISCH) at http:// tisch. comp- genom ics. org/, a comprehensive scRNA-seq database 
dedicated to the study of the tumor microenvironment. Notably, TISCH provides detailed single-cell level annota-
tions for various cell types, facilitating the exploration of different cancer  types40. Major cell types in this dataset 
include immune cells, stromal cells, and malignant cells. The data quality control process was analyzed using 
the Seurat package (version 3.1.1; https:// satij alab. org/ seurat/ insta ll. html)41,42. The single-cell data had a gene 
number < 300 and > 4500; those with a mitochondrial gene number of > 10% were considered to be low-quality 
cells, and these were directly filtered out. The Harmony package (version 1.0; https:// github. com/ immun ogeno 
mics/ Harmo ny) was then used to eliminate the batch effect of the cellular  data43. Primary cell cluster analysis was 
performed using the FindClusters function of the Seurat package (resolution = 0.15), and the visual clustering 
results were presented through performing uniform manifold approximation and projection (UMAP) dimen-
sion reduction analysis.

Construction of PPI network
The search tool for the retrieval of interacting genes (STRING) is an online tool that assesses protein–protein 
interaction (PPI) network  information44. STRING (version 10.5) was used to evaluate the potential PPI relation-
ships among those DEGs.

Data collection and processing
Publicly available datasets were analyzed in this study. This data can be found here: the Tumor Immunology 
Single Cell Center (TISCH) (http:// tisch. comp- genom ics. org/), The Cancer Genome Atlas (https:// portal. gdc. 
cancer. gov/), and the Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) for the 
GSE21257 dataset. The mRNA expression data and clinical details for osteosarcoma patients (TARGET-OS 
dataset) were obtained from the Cancer Genome Atlas Program (TCGA) database (https:// portal. gdc. cancer. 
gov/). The GSE21257 dataset from the Gene Expression Omnibus database supplied as an external validation 
set mRNA expression data and clinical information for osteosarcoma specimens.

Development of prognostic genes signature
A training set of 84 samples consisting of survival and expression data from the TARGET-OS dataset was used 
as the training set. The GSE21257 dataset provided 53 samples for an external validation cohort. Univariate Cox 
analysis was used as an initial screen for CD8Tex cell-associated genes associated with prognosis (selection of 
genes was based on a p-value threshold of < 0.05). To ensure convergence to an optimal solution during training, 
we chose to perform 1000 iterations in the LASSO algorithm to ensure robust gene selection. Using the LASSO 
Cox regression model to select the optimal subset of prognostic genes, by iterating the LASSO algorithm 1000 
times in the training set, we identified the optimal subset of genes that form the CD8 Tex cell gene signature 
(TRS).

Lasso Cox regression analysis involves first screening variables using Lasso regression and then con-
structing Cox regression models to analyze prognostic effects. Regression modeling was performed using the 
“glmnet”package45. The LASSO regression was used first for variable selection, and then the Cox regression model 

http://tisch.comp-genomics.org/
https://satijalab.org/seurat/install.html)
https://github.com/immunogenomics/Harmony
https://github.com/immunogenomics/Harmony
http://tisch.comp-genomics.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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was constructed to analyze the prognostic effects. Lasso can realize variable selection while model parameter 
estimation, which can better solve the problem of multiple covariance in the regression analysis and explain the 
results well. The Lasso regression algorithm uses L1 paradigm for shrinkage penalization, and penalization cor-
rection is applied to the coefficients of variables that do not contribute much to the dependent variable, and the 
coefficients of variables that do not contribute much to the dependent variable will be penalized. The coefficients 
of the variables are penalized to correct the coefficients of some less important variables, and the coefficients of 
the important variables are kept greater than 0, in order to reduce the number of covariates in Cox regression. 
Compared with traditional survival analysis, the LASSO Cox regression model can effectively prevent the prob-
lem of multicollinearity between variables or the number of variables is larger than the sample  size46.

LASSO Cox regression can be regarded as a stand-alone model that combines the properties of LASSO 
regression and Cox regression. Instead of just applying LASSO to the effects of univariate Cox regression outputs, 
it simultaneously performs variable selection and regression coefficient estimation by means of L1-paradigm 
regularization to optimize the performance of the model.

Subsequently, risk scores were computed using the linear combination of each selected gene, employing the 
formula: Risk score = ∑ (coef (β) * EXP(β)), where β signifies the regression coefficient. Patients were stratified 
into high- and low-risk groups based on the median risk score as the threshold. Kaplan–Meier survival analysis 
was employed to explore clinical differences between these groups. Model performance was assessed through 
ROC curve analysis and C-index calculations. Additionally, stratified analysis was conducted to evaluate the 
additional prognostic value of the TRS.

Construction of nomogram
A predictive nomogram was developed to estimate the 1-, 3-, and 5 year survival rates for osteosarcoma (OS) 
patients, incorporating the risk score derived from the CD8 Tex cell gene signature and relevant clinicopatho-
logical factors such as age, gender, race, and metastasis. The accuracy of the nomogram’s predictions was sub-
sequently assessed through the construction of a calibration curve, comparing the actual overall survival with 
the predicted survival rates.

Functional enrichment analysis in the TARGET‑OS cohort
The cohort was stratified into high- and low-risk groups based on the predefined risk score threshold. Following 
this partitioning, gene expression fold changes were examined using the “limma” R package. Subsequently, path-
way analysis was conducted with the “clusterProfiler” R package, focusing on the identification of significantly 
enriched pathways within the reference gene set for both the high- and low-risk groups. The reference gene set 
was specifically defined as the hallmark gene sets described by Subramanian et al47.

Immune‑related analysis of TRS
To delve into the immune-related implications of the developed TRS (CD8 Tex cell gene signature), a comprehen-
sive analysis was conducted. The single-sample gene set enrichment analysis (ssGSEA) algorithm, implemented 
through R packages such as limma, GSVA, and GSEABase, was employed to assess the differences in immune 
function between the high- and low-risk groups as defined by  TRS48. The TME and immune cell infiltration 
were further evaluated using the ESTIMATE and CIBERSORT algorithms, respectively, allowing for a nuanced 
understanding of the proportions of their  components49,50. Additionally, the study delved into the association 
between the expression levels of immune checkpoint genes and the two risk-defined groups.

Received: 15 January 2024; Accepted: 24 April 2024

References
 1. Zhu, Y., Zhou, J., Ji, Y. & Yu, B. Elevated expression of AKT2 correlates with disease severity and poor prognosis in human osteo-

sarcoma. Mol. Med. Rep. 10, 737–742 (2014).
 2. Jaffe, N. Adjuvant chemotherapy in osteosarcoma: An odyssey of rejection and vindication. Cancer Treat. Res. 152, 219–237 (2009).
 3. Bu, X., Liu, J., Ding, R. & Li, Z. Prognostic value of a pyroptosis-related long noncoding RNA signature associated with osteosar-

coma microenvironment. J. Oncol. 2021, 2182761 (2021).
 4. Luetke, A., Meyers, P. A., Lewis, I. & Juergens, H. Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer 

Treat. Rev. 40, 523–532 (2014).
 5. Longhi, A. et al. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: The Italian sarcoma 

group experience (1983–2006). Cancer 118, 5050–5059 (2012).
 6. Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. 

Clin. Oncol. 33, 3029–3035 (2015).
 7. Wu, C. C. & Livingston, J. A. Genomics and the immune landscape of osteosarcoma. Adv. Exp. Med. Biol. 1258, 21–36 (2020).
 8. Chen, C. et al. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 

500, 1–10 (2021).
 9. Sacconi, A. et al. Immunosignatures associated with TP53 status and co-mutations classify prognostically head and neck cancer 

patients. Mol. Cancer 22, 192 (2023).
 10. Iacoboni, G., Dietrich, S. & Liebers, N. CAR T-cell therapy versus allogeneic HSCT for relapsed or refractory mantle cell lymphoma. 

Lancet Haematol. 10, e951–e952 (2023).
 11. Ploeg, E. M. et al. Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer 

cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR. J. Immunother. Cancer 11, e006837 (2023).
 12. Fang, T. et al. Bioresponsive and immunotherapeutic nanomaterials to remodel tumor microenvironment for enhanced immune 

checkpoint blockade. Bioact. Mater. 32, 530–542 (2024).



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9769  | https://doi.org/10.1038/s41598-024-60539-z

www.nature.com/scientificreports/

 13. Edelman, M. et al. The anti-disialoganglioside (GD2) antibody dinutuximab (D) for second-line treatment (2LT) of patients (pts) 
with relapsed/refractory small cell lung cancer (RR SCLC): Results from part II of the open-label, randomized, phase II/III distinct 
study. J. Clin. Oncol. 38, 9017–9017 (2020).

 14. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. 
Rev. Clin. Oncol. 19, 775–790 (2022).

 15. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. 
Immunol. 37, 457–495 (2019).

 16. Dolina, J. S., Van Braeckel-Budimir, N., Thomas, G. D. & Salek-Ardakani, S. CD8(+) T cell exhaustion in cancer. Front. Immunol. 
12, 715234 (2021).

 17. Lukhele, S. et al. The transcription factor IRF2 drives interferon-mediated CD8(+) T cell exhaustion to restrict anti-tumor immu-
nity. Immunity 55, 2369-2385.e2310 (2022).

 18. Kwon, H. et al. Androgen conspires with the CD8(+) T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 
7, eabq2630 (2022).

 19. Liu, Y. et al. IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 
22, 358–369 (2021).

 20. Yang, C. et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer micro-
environments. Mol. Ther. 30, 1054–1070 (2022).

 21. Zhang, Y. W., Morita, I., Ikeda, M., Ma, K. W. & Murota, S. Connexin43 suppresses proliferation of osteosarcoma U2OS cells 
through post-transcriptional regulation of p27. Oncogene 20, 4138–4149 (2001).

 22. Paznekas, W. A. et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia 
phenotype. Hum. Mutat. 30, 724–733 (2009).

 23. Shen, F. F. et al. High expression of HLA-DQA1 predicts poor outcome in patients with esophageal squamous cell carcinoma in 
Northern China. Medicine 98, e14454 (2019).

 24. Spraggs, C. F. et al. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast 
cancer. J. Clin. Oncol. 29, 667–673 (2011).

 25. Gianferante, D. M., Mirabello, L. & Savage, S. A. Germline and somatic genetics of osteosarcoma—Connecting aetiology, biology 
and therapy. Nat. Rev. Endocrinol. 13, 480–491 (2017).

 26. Hu, W. et al. GJA1 is a prognostic biomarker and correlated with immune infiltrates in colorectal cancer. Cancer Manag. Res. 12, 
11649–11661 (2020).

 27. Chen, K. et al. Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expres-
sion. Int. J. Biol. Sci. 18, 1220–1237 (2022).

 28. Kozuka, R. et al. Association between HLA-DQA1/DRB1 polymorphism and development of hepatocellular carcinoma during 
entecavir treatment. J. Gastroenterol. Hepatol. 34, 937–946 (2019).

 29. Kohno, T. et al. Individuals susceptible to lung adenocarcinoma defined by combined HLA-DQA1 and TERT genotypes. Carcino‑
genesis 31, 834–841 (2010).

 30. Li, F. et al. Interaction gene set between osteoclasts and regulatory CD4(+) T cells can accurately predict the prognosis of patients 
with osteosarcoma. Cancer Sci. 114, 3014–3026 (2023).

 31. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 
11, 889–896 (2010).

 32. Wildes, T. J. et al. Immune escape after adoptive T-cell therapy for malignant gliomas. Clin. Cancer Res. 26, 5689–5700 (2020).
 33. Zhang, X. et al. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment 

regulation of periodontitis. J. Cell. Mol. Med. 25, 3634–3645 (2021).
 34. Lin, C. H., Yeh, Y. C. & Yang, K. D. Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. 

J. Formos. Med. Assoc. 120, 5–24 (2021).
 35. Duan, S. & Paulson, J. C. Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol. 38, 365–395 (2020).
 36. Läubli, H., Nalle, S. C. & Maslyar, D. Targeting the siglec-sialic acid immune axis in cancer: Current and future approaches. Cancer 

Immunol. Res. 10, 1423–1432 (2022).
 37. Jetani, H. et al. Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia. Blood 138, 1830–1842 (2021).
 38. Rodriguez, E. et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec recep-

tors Siglec-7 and Siglec-9. Nat. Commun. 12, 1270 (2021).
 39. Fan, M. K. et al. Siglec-15 promotes tumor progression in osteosarcoma via DUSP1/MAPK pathway. Front. Oncol. 11, 710689 

(2021).
 40. Sun, D. et al. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor micro-

environment. Nucleic Acids Res. 49, D1420-d1430 (2021).
 41. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Bio‑

technol. 33, 495–502 (2015).
 42. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888-1902.e1821 (2019).
 43. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
 44. Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 

D447–D452 (2015).
 45. Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 16, 385–395 (1997).
 46. Sohn, I., Kim, J., Jung, S. H. & Park, C. Gradient lasso for Cox proportional hazards model. Bioinformatics 25, 1775–1781 (2009).
 47. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 

profiles. Proc. Natl. Acad. Sci. USA. 102, 15545–15550 (2005).
 48. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: Dene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 

14, 7 (2013).
 49. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
 50. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 

(2013).

Acknowledgements
We are grateful to all those who took part in or assisted with this study project.

Author contributions
Conceptualization, Ling Wang. and Qi Zhang.; methodology, Yining Lu.; software, Yining Lu; formal analysis, 
Yining Lu.; investigation, Nana Cao.; resources, Guochuan Zhang.; data curation, Ming Zhao.; Writing—origi-
nal draft preparation, Yining Lu.; Writing—review and editing, Ling Wang. and Qi Zhang.; supervision, Ling 
Wang. and Qi Zhang.; project administration, Ling Wang. and Qi Zhang.; funding acquisition, Ling Wang. and 
Qi Zhang. All authors have read and agreed to the published version of the manuscript.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9769  | https://doi.org/10.1038/s41598-024-60539-z

www.nature.com/scientificreports/

Funding
This work was supported by several grants from the National Natural Science Foundation of China (82173210) 
and outstanding medical talents project supported by Hebei Province in 2022.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 60539-z.

Correspondence and requests for materials should be addressed to Q.Z. or L.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-60539-z
https://doi.org/10.1038/s41598-024-60539-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Importance of CD8 Tex cell-associated gene signatures in the prognosis and immunology of osteosarcoma
	Result
	Extraction of CD8 Tex cell-associated gene signature
	Correlation between TRS and prognosis of OS patients
	Functional analysis of high- and low-risk score groups

	Immune-related analysis of high- and low-risk score groups

	Discussion
	Method
	Single cell analysis
	Construction of PPI network
	Data collection and processing
	Development of prognostic genes signature
	Construction of nomogram
	Functional enrichment analysis in the TARGET-OS cohort
	Immune-related analysis of TRS

	References
	Acknowledgements


