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Resilience of quantum 
spin fluctuations 
against Dzyaloshinskii–Moriya 
interaction
Saeed Mahdavifar 1, Mahboubeh Salehpour 1, Hadi Cheraghi 2,4 & Kourosh Afrousheh 3*

In low-dimensional systems, the lack of structural inversion symmetry combined with the spin-orbit 
coupling gives rise to an anisotropic antisymmetric superexchange known as the Dzyaloshinskii–
Moriya interaction (DMI). Various features have been reported due to the presence of DMIs in 
quantum systems. We here study the one-dimensional spin-1/2 transverse field XY chains with a DMI 
at zero temperature. Our focus is on the quantum fluctuations of the spins measured by the spin 
squeezing and the entanglement entropy. We find that these fluctuations are resistant to the effect 
of the DMI in the system. This resistance will fail as soon as the system is placed in the chiral phase 
where its state behaves as a squeezed state, suggesting the merit of the chiral phase to be used for 
quantum metrology. Remarkably, we prove that the central charge vanishes on the critical lines 
between gapless chiral and ferromagnetic/paramagnetic phases where there is no critical scaling 
versus the system size for the spin squeezing parameter. Our phenomenal results provide a further 
understanding of the effects of the DMIs in the many-body quantum systems which may be testable in 
experiments.

The ground state of a quantum many-body system determines its main characteristics. Hence, the efforts are 
focused on understanding how various interactions can change the ground state and create different phases sepa-
rated by quantum critical points. These interactions can be of different types, such as short-range or long-range1,2, 
disorder or noise3,4, or non-Hermitian or complex5,6. In magnetic systems, the interplay of broken inversion 
symmetry and spin-orbit interaction, also called Dzyaloshinskii–Moriya interaction (DMI), can give favoring 
noncollinear chiral magnetic orders such as spin spirals and skyrmions7–10. The DMI is a type of interaction that 
can induce chirality in magnetic systems. It was first discovered in oxides11, and later found in other materials, 
such as Ir/Co/Pt- and Pt/Co/Ta-based heterostructures12,13, and multiferroic materials14. The DMI has many 
potential applications in spintronics, where the spin of electrons is used to transmit information15. However, 
the DMI also poses some challenges, such as understanding its origin and effect on the magnetic properties.

Quantum phase transitions are caused by the competition between different ground-state phases of a many-
body system. Quantum information theory concepts, such as entanglement, have been widely used to identify 
quantum critical points in various complex many-body systems, as they capture the qualitative change in the 
collective many-body properties16,17. The relation between spin squeezing (SS) and entanglement has been a topic 
of much interest in the last two decades18–21. SS is a way of quantifying the quantum fluctuations of a spin system. 
It can also be used to detect and measure entanglement, which is a quantum correlation between different parts 
of a system. SS is a sufficient condition for entanglement in any system18, and there are general criteria based on 
SS to identify entangled states19. Moreover, SS implies that every pair of spins in a symmetric multiqubit state 
is entangled20. However, finding the exact amount of entanglement in complex quantum states is difficult, so SS 
can be a useful tool to estimate it21.

The total angular momentum components Jα of a system of L spin particles satisfy the commutation relation 
[Jα , Jβ ] = i�Jγ , where α,β , γ are cyclic permutations of x, y, z and Jα =

∑L
n=1 S

α
n . This implies the uncertainty 

relation
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where (�Jα)
2 = �J2α� − �Jα�2 is the variance and �Jα is the standard deviation. In the standard quantum limit, a 

coherent state is a state of the system where �Jα = �Jβ =
√

|�Jγ �|/222. As soon as �Jα or �Jβ reduces below the 
standard quantum limit, a spin-squeezed state emerges which means that the quantum spin fluctuations of one of 
the total angular momentum components are smaller than those of the others23–26. For this reason, SS is applied 
in quantum metrology27,28 and optical atomic clocks29,30 to make it possible to do high-precision measurements.

The ground states of quantum systems with a mass gap and short-range interactions have a special property: 
their entanglement entropy grows logarithmically with the size of the subsystem. The coefficient of this growth 
is proportional to the central charge, a parameter that characterizes the conformal field theory that describes the 
system near a quantum critical point31,32. The entanglement entropy measures how much the quantum states of 
different parts of the system are correlated. This leads to new universality behaviors of quantum systems at criti-
cal points. On the contrary, the noncritical points unveil an exponentially decaying of the EE, which satisfies an 
“area law”. These features indeed can be violated for long-range interactions33,34, fractal entanglement phases35 
as well as non-Hermitian models36, and for a given short-range interaction, i.e., DMI, as we will show.

We here consider the one-dimensional (1D) spin-1/2 XY chains in the presence of the transverse field (TF) 
and DMI, which is a mechanism for weak magnetism in some antiferromagnetic crystals37,38, with an applica-
tion in quantum work engines39. The Hamiltonian of the model can be diagonalized by the Jordan-Wigner 
transformation40–42. The anisotropic model has three different phases in its ground state: a gapless phase with chi-
rality, a gapped phase with ferromagnetism, and a gapped paramagnetic phase. These phases can be detected by 
using measures of quantum correlations, such as concurrence and quantum discord42. They can also be revealed 
by studying the work and entropy production when the system is suddenly quenched out of equilibrium43. 
Moreover, it is shown that the Berry phase of the isotropic system changes significantly with the DMI and the 
TF44. In Ref.45 although the authors studied the effect of the DMI on the quantum speed limit and orthogonality 
catastrophe under sudden quantum quenches, their results spontaneously affirmed the robustness of the initial 
quantum spin fluctuations against the DMI in a nonequilibrium quantum system which can be also interpreted 
as the persistence of the initial state versus dynamical phases46,47. This resiliency also can be observed in the 
behavior of the spin-spin correlation functions in the equilibrium48.

In this paper, we investigate the effect of the DMI on quantum spin fluctuations measured by the SS parameter 
and EE in the exactly solvable XY model which is equivalent to the Kitaev chain49, a one-dimensional topological 
superconductor. We obtain the ground-state phase diagram for the SS and the EE and study the behavior of these 
two parameters on the quantum critical lines as well as within phases. We show that the critical SS is not always 
extreme showing that on the quantum critical lines, the quantum fluctuations may not be exactly suppressed. We 
also find that the SS parameter on the critical line separating the gapped FM and PM phases scales asymptoti-
cally as the Heisenberg limit in infinite chains and as the standard quantum limit in finite chains. Moreover, our 
results for central charge expose that it will have zero value on the critical lines between the chiral phase with 
the FM and PM phases while within the chiral phase, it is one, introducing the chiral phase as a critical area.

The paper is organized as follows. In Sect. "The model", we introduce the model and using the fermionization 
approach the ground state of the system will be obtained. In Sect. "Spin squeezing and entanglement entropy", 
the SS parameter and EE will be introduced. In Sect. "Results", we represent our results on the behavior of the 
SS and EE in the whole range of the ground state phase diagram. We conclude and summarize our results in 
Sect. "Conclusions".

The model
We consider the spin-1/2 TF XY chain model with a DMI whose Hamiltonian is given by

where Sn is the spin operator on the n-th site, J > 0 is the FM exchange coupling, D is the strength of the DMI, 
0 < δ < 1 is the anisotropy parameter, h is the homogeneous TF, and L is the system size (or a number of spins). 
We use the periodic boundary condition SµL+1 = S

µ
1  ( µ = x, y, z ) and set J = 1 without loss of generality. The 

ground state phase diagram of the model (see Fig. 1a) has three phases that are separated by critical lines as 
follows: 

(1)	 When D < Dc = δ , the critical line is hc = 1.0 , which separates the gapped FM and PM phases.
(2)	 When h < hc = 1 , the critical line is Dc = δ , which separates the gapped FM phase from the gapless chiral 

phase.
(3)	 When D > Dc = δ , the critical line is hc =

√
1+ D2 − δ2 , which separates the gapped PM from the gapless 

chiral phases.

We diagonalize the Hamiltonian by using the Jordan-Wigner transformation50,

which maps the spin operators to fermionic operators a†n and an , and gives

(1)(�Jα)
2(�Jβ)

2 ≥ |�Jγ �|2/4 ,

(2)H = −J

L
∑

n=1

[

(1+ δ)SxnS
x
n+1 + (1− δ)S

y
nS

y
n+1

]

+ D

L
∑

n=1

(SxnS
y
n+1 − S

y
nS

x
n+1)− h

L
∑

n=1

Szn ,

(3)S+n = a†ne
iπ

∑n−1
m=1 a

†
mam , S−n = e−iπ

∑n−1
m=1 a

†
maman, Szn = a†nan −

1

2
,



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10034  | https://doi.org/10.1038/s41598-024-60502-y

www.nature.com/scientificreports/

then, applying Fourier transformation an = (1/
√
L)

∑

k e
iknak and Bogoliuobov transformation 

ak = cos(θk)βk + i sin(θk)β
†
−k lead to obtain the diagonalized Hamiltonian

with energy spectrum εk = Bk +
√

A
2
k + C

2
k  where Ak = −[cos(k)+ h] , Bk = −D sin(k) and Ck = −δ sin(k) 

are related to the Bogoliubov angle θk by tan(2θk) = −Ck/Ak . The summation in Eq. (5) runs over k = 2πm/L , 
with m = 0,±1, ...,± 1

2 (L− 1) [m = 0,±1, ...,±( 12L− 1), 12L] for odd [even] L (using periodic boundary condi-
tions for the Jordan-Wigner fermions). As we see, although DMI changes the energy spectrum of the system, 
but has no effect on the Bogoliubov angle. In this setting, a phase transition due to gap-closing originating from 
DMI will not happen in the system. Consequently, its effect just appears when the system is put in the chiral 
phase, which creates a phase transition and leads to variations in the Fermi points. One can in general read the 
Fermi points satisfying the condition εk < 0 by the way of

In addition, one can rewrite Eq. (5) as H = (1/2)
∑

k[εkβ
†
kβk + ε−kβ

†
−kβ−k − (εk + ε−k)/2] . In Fig. 1b we 

indicated ε±k for a case where it is located in the chiral phase. As seen, in this situation in two regions we face 
ε±k < 0 , as ̟ 1 = [k−F , k

+
F ] for εk and ̟ 2 = [−k+F ,−k−F ] for ε−k where ̟ 1 = −̟2 = ̟ . This helps us to write 

the ground state of the system in a general form of51

since we need to calculate the required parameters in the ground state of the system. Here |0k , 0−k� is vacuum 
of the Bogoliubov as β±k|0k , 0−k� = 0.

Spin squeezing and entanglement entropy
We use the SS parameter defined by23

where n⊥ is an axis perpendicular to the average spin direction n0 = �J�/|�J�| , and the variance (�J)2 is mini-
mized, with Jn⊥ = J · n⊥ . We note that there is another SS parameter given by ξ 2R = L(�Jn⊥)

2/|�Jn�| that was 
introduced by Wineland24,25.

The coherent state corresponds to ξ 2s = 1 , with the inequality ξ 2s < 1 indicating that the system is in a SS state. 
Considering the symmetries of the model as the unbroken Z2 invariance for finite L implies that �Jx� = �Jy� = 0 , 
and similarly,

The magnetization for h > 0 is always along the z-axis, with full polarization developing in the PM phase. As a 
result, Jn⊥ = cos(�)Jx + sin(�)Jy , with � to be chosen to minimize

(4)H =
L

∑

n=1

[

(−1+ iD)

2
a†nan+1 −

δ

2
a†na

†
n+1 + h.c.

]

− h

L
∑

n=1

a†nan.

(5)H =
∑

k

εk

[

β†
kβk −

1

2

]

,

(6)k±F = arccos

[

h∓
√

(D2 − δ2)(1+ D2 − δ2 − h2)

1+ D2 − δ2

]

(7)|GS� =





�

k/∈̟1,̟2

|0k , 0−k�



⊗

�

�

̟1

β†
k |0k , 0−k�

�

⊗

�

�

̟2

β†
−k|0k , 0−k�

�

(8)ξ 2s =
4(�Jn⊥)

2

L
,

(9)�JαJz� = �JzJα� = 0, α = x, y.

Figure 1.   (a) The ground state phase diagram of the model for δ = 0.8 . Three phases with three critical lines are 
observed. (b) The quasiparticle energy spectra ε±k in the chiral phase. The energy spectra will be negative in the 
regions ̟ 1 = [k−F , k

+
F ] for εk and ̟ 2 = [−k+F ,−k−F ] for ε−k . Thus, one can write ̟ 1 = −̟2 = ̟.
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One can easily show that52,53

A key quantity entering the characterization of entanglement is the entanglement entropy (EE) described by 
bipartite54 and disconnected55 partitions, which is widely used in quantum information theory. The former case is 
defined as the von Neumann entropy of a reduced density matrix of a subsystem56–58 so that for the pure ground 
state |ψ� with the density matrix ρ = |ψ��ψ | , it is expressed by

where ρA = TrB(ρ) is the reduced density matrix of A obtained by tracing over the rest of the system B. The 
EE usually grows like the boundary area of the subsystem A, and not like its volume, which is different from 
expected extensive behavior, known as the “area law”, with an extensive study in recent years. Noncritical ground-
states of spin chains with a finite correlation length have a constant EE. At a quantum critical point, when 
subsystem A is a finite interval of length L/2, the EE slightly violates the area law by a logarithmic correction as, 
SL/2(L) = (ceff /3) log(L)+ b , where ceff  is the central charge31,32, and b is a non-universal constant. In general, 
the EE of a finite block of lb sites in an infinite system of free spinless fermions can be computed by59

where �j are the eigenvalues of the 2lb × 2lb correlation matrix M constructing as

where F, Q and R are lb × lb matrices build up by two-point correlators Pnm = �a†nam� , Qnm = �a†na†m� , and 
Rnm = δn,m − Pmn respectively. The two-point correlators are calculated through

in which ̟  denotes a k-space region with εk < 0 , and L is the total system size. With these two in hand, we can 
now calculate the required parameters to obtain the SS parameter. By introducing Ar = a†r + ar and Br = a†r − ar , 
and also Gαβ

r  that denotes two-point correlation functions, a direct calculation shows that

These equations may be written in the generic form, Gαβ
r = D

αβ
r �φ1φ2φ3...φ2r−2φ2r−1φ2r� , with

where each operator φj , j = 1, 2, . . . , 2r , is identified with either an Ar or a Br operator. Using the Wick theorem60, 
the 2r-point functions can be expressed as Pfaffians

where we have written the skew-symmetric matrix in the standard abbreviated form. Our calculations unveil that

(10)(�Jn⊥)
2 = �(J−→n ⊥)

2� − �J−→n ⊥�
2

(11)
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2

L
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In addition, on the one hand,

and on the other hand, from the Hamiltonian (2) one can extract that �SxnS
y
m� = −�SynSxm� . Hence, �JxJy + JyJx� = 0 . 

Accordingly, the SS parameter is obtained by

Results and discussions
We first study how the SS parameter changes with the TF and DMI in the lowest energy state of the system, for 
the case δ = 0.8 . The results for other values of the anisotropy as 0 < δ < 1 are similar.

As seen in Fig. 2a, in the absence of the TF, the ground state of the system can be an unsqueezed state in the 
FM phase ( D ≤ Dc ) or a squeezed state in the chiral ( D ≥ Dc ) phase. This reveals that the quantum systems 
with chiral phases in their ground states are good candidates for quantum metrology61. By applying TF, the SS 
parameter shows a decreasing behavior up to the extreme SS value for D < Dc occurring slightly after critical TF 
hc = 1 , or a quantum critical TF hc for D ≥ Dc . This means that the extreme point is not only a property of the 
PM phase. In contrast, it depends on phases on both sides of a given critical line. However, with more increasing 
TF, the SS parameter behaves inversely. In the large value of the TF, the SS parameter tends to have a value near 
one, to be a coherent state.

The crossover between squeezing and non-squeezing emerges in the FM phase at the value of ξ 2s = 1 where 
supports a coherent state at the factorized point h =

√
1− δ262. This is because, at this point, the ground state 

becomes twofold-degenerate again due to a finite size effect63. Therefore, in general, in the ground state phase 
diagram, the PM and the chiral phases are always squeezed. The ground state is unsqueezed only in the region 
D < δ and h <

√
1− δ2  of the FM phase. As we obviously viewed in Fig. 2a and b, the FM and PM phases 

unveil robustness versus the impact of DMI, independent of its amount, as all values of the SS parameter are 
the same in these phases. Resistance is broken and a response will be exposed as soon as the system is located 
in the chiral phase where the quantum spin fluctuations are dependent on the DMI. See Fig. 2b. Note that all 
fluctuations in the chiral region are merely finite-size effects. To get a confirmation, in Supplementary Fig. 1a, 
we plotted the SS parameter for size L = 800 where we explicitly indicated a reduction of the fluctuations by 
increasing the system size.

Finally, we calculated the quantum critical SS at hc = 1 and D < Dc i.e., on the critical line between the FM 
and PM phases, for different system sizes. The results are shown in Fig. 2c, clearly illustrating that the quantum 

(19)
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Figure 2.   (a) and (b) belong to the SS parameter versus TF for different values of DMI and a chain with size 
L = 200 . In contrast to the FM and PM phases, as explicitly seen, the effective size in the chiral phase is intense. 
The horizontal black dashed line is for ξ 2s = 1 . The inset in (a) clearly shows the critical TF where the system is 
put in the PM phase that for D = 1.5 it happens at hc ≈ 1.62 . (c) The SS parameter as a function of the chain 
size L on the critical line hc = 1 for D < δ where the gapped FM and PM phases are separated. The inset in (c) 
shows the lack of scaling for the other two quantum critical lines. Here and also in other figures, we fix J = 1.0 , 
δ = 0.8.
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critical SS increases with the system size L. We found two different scaling behaviors depending on the system 
size. For very large systems the critical SS parameter scales in the form of

which is known as the standard quantum limit. Based on the Heisenberg limit, precision scales no better than 
L−1/2 with the total number of probes used in an experiment64–66. For small systems, the critical SS parameter 
scales linearly with inverse system size as,

in compliance with the Heisenberg limit67,68. The standard quantum limit is the bound on the sensitivity that 
can be achieved by using classical states such as coherent states. Notably, as is illustrated in the inset in Fig. 2c, 
for the other two critical lines, no scaling is observed, ξ 2s ∝ O (L0) . Furthermore, it is noteworthy to mention 
that the value of the SS parameter within the FM and PM phases are independent of the system size, contrary 
to the chiral phase where its value is affected by the size of the system although goes to a constant value at the 
thermodynamics limit. See in Supplementary Fig. 1c.

Ramsey interferometers can use entangled particles to achieve higher metrological sensitivity, as shown by 
some quantitative relations69,70. By manipulating the interactions among the particles, one can create entan-
gled multipartite quantum states that are suitable for enhancing interferometric measurements. To distinguish 
between different kinds of entangled multipartite states, one can use the EE as a measure71. The EE indicates how 
much information is missing when one part of the system is ignored and only the rest is observed72. Moreover, 
the EE can reveal how the entanglement between different regions of a quantum system varies across different 
phases with signaling on phase boundaries.

In this part, we study the EE in two scenarios: (i) fixing the system size to a given value L and computing the 
EE for different subsystems lb , (ii) calculating the EE for different system sizes where the subsystem for each size 
is the half of the given chain, lb = L/2 . For the former case, it is illustrated that for the anisotropic XY model 
at the critical lines73, S(lb) will be maximized at the lb = L/2 . In addition, the central charge at the critical line 
between the FM and PM phases is 0.5, and the rest is zero. Moreover, in systems with a gap, the SL/2(L) quickly 
reaches a constant value, which is called the “area law”. In continuing, we investigate three critical lines as well 
as points within three phases.

In Fig. 3a and b, we have presented our results on SL/2(L) for a chain size system L = 200 for different values 
of DMI. As reflected, the chiral phase of the system shows more entanglement than the FM and PM phases. 
Moreover, signals on the critical points unveil the ability of the EE to detect quantum phase transitions. Although 
there is a sudden jump at h = 1 in the chiral phase, it originates from the effective size and thus will vanish in 
high system sizes (see in Supplementary Fig. 1b). The inset in Fig. 3a shows the results of EE in the region close 
to a coherent state. The coherent state in this model is a separable state, so the EE should be zero. However, it is 
ln(2) instead of zero. This is because the ground state of the system at h = 0.6 does not break any symmetry in 
a finite-size system, and it has the form |GS� = (| ↑↓↑↓ · · · � + | ↓↑↓↑ · · · �)/

√
2 , which gives the value ln(2) 

for the EE. We again can conclude that the FM and PM phases are robust against the presence of DMI. On the 
other hand, Fig. 3c exposes an exotic behavior of the EE within the chiral phase when different subsystems are 
considered. In the cases of the FM and PM phases, the EE for each one has a constant value, independent of the 
subsystem sizes while it changes for the chiral phase, and becomes maximized at lb = L/2 . This behavior is the 
same as the critical lines in the anisotropic XY model. For this reason, one can claim that the chiral phase is a 
critical region48.

The evolution of the EE with respect to the different subsystem sizes for a fixed size L = 200 when the system 
is on the critical lines is shown in Fig. 4a. As expected for the anisotropic XY model, we see changes in the EE 
versus lb on the critical lines between the FM phase with the PM phase and also the chiral phase, all are maxi-
mized at lb = L/2 . In contrast, the EE on the critical line between the PM and chiral phases does not feel any 
effects when lb changes. In order to detect the values of the central charge within the phases as well as the criti-
cal lines, in Fig. 4b and c, we focus on the behavior of the SL/2(L) for different system sizes. As obvious, the EE 
only changes within the chiral phase, revealing ceff = 1.0 while its values keep constant within the FM and PM 

(22)ξ 2s ∼ L−1/2,

(23)ξ 2s ∼ L−1,

Figure 3.   (a) and (b) correspond to the EE versus TF for different values of DMI. As obvious, the effective size 
for EE in the chiral phase is around h = 1 as a jump. The inset in (a) clearly illustrates the value of the EE in the 
coherent state, h = 0.6 , as S(L/2) = ln(2) . (c) is for the EE as a function of the different subsystems lb within the 
three phases. Here sizes of all chains are fixed to L = 200.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10034  | https://doi.org/10.1038/s41598-024-60502-y

www.nature.com/scientificreports/

phases, indicating for both ceff = 0.0 . On the other side, on the critical lines, the central charge tends to be 0.5 
for hc = 1 , D < δ , the same as the anisotropic XY model, while becomes zero on the other critical lines which 
separate the chiral phase with the FM or the PM phases.

It should be noted that in systems with long-range interactions, the central charge can depend on the decay 
exponent of the interactions and can deviate from the short-range value. For example, in the long-range Kitaev 
chains, the central charge is 0.5 on the critical line and zero within the phases with short-range interactions, 
but it becomes 1.0 on the other critical lines and 0.5 within the phases with long-range interactions74. Here, we 
explicitly showed that the central charge can be also zero on critical lines or one within phases even in systems 
with short-range interactions.

The knowledge of the correlation matrix enables us to calculate the entanglement spectrum. The entanglement 
spectrum is a generalization of the entanglement entropy, which quantifies the quantum correlations between 
different parts of a system obtained by the set of eigenvalues of the reduced density matrix of a subsystem, which 
is a trace out the rest of the system. It can reveal important information about the quantum phases, transitions, 
and dynamics of the system, as well as its topological order and symmetry properties75,76. We here studied the 
entanglement spectrum for some eigenvalues of the correlation matrix shown in Fig. 5. The size of the chain is 
L = 200 and we plotted the results for two values of the DMI as D = 0.5 , and D = 2.0 . For the former case, the TF 
makes a phase transition from the FM to PM phases. On the contrary, for the latter case, the TF constructs a phase 
transition from the chiral to PM phases. In both situations, as seen, the power of the entanglement spectrum on 
signaling at the critical points is clear. As evidence, two middle eigenvalues of the correlation matrix, �100, �101 , 
are degenerate at the FM and chiral regions where the topological phases emerge resulting in degeneracies of 
low-lying entanglement spectrum. In this situation, the low-lying entanglement spectrum will be 1/2. Hence, 
the entanglement spectrum is able to detect the topological phase77.

Conclusion
We investigated the zero-temperature behavior of the 1D spin-1/2 TF XY model with the DMI using the SS 
parameter and the EE. The model has a rich ground state phase diagram, with gapped FM and PM phases and a 
gapless chiral phase separated by three quantum critical lines for the anisotropic case. We computed the ground 
state SS and EE for the whole phase diagram and showed that they can detect all the quantum critical lines. We 
directly indicated that the FM and PM phases do not respond to the presence of the DMI. As soon as the system 
is located in the chiral phase, the effects of the DMI in the system emerge. Albeit in the systems with finite size, 
the quantum fluctuations will arise in the chiral phase but in the thermodynamics limit, one can participate 
they will fade.

We found that the quantum spin fluctuations are not critically suppressed on the quantum critical line that 
separates the gapped FM and PM phases. On this line, the critical SS parameter scales as the Heisenberg limit 
( ∼ L−1/2 ) for an infinite-size system and as the standard quantum limit ( ∼ L−1 ) for finite-size chains.

We also studied the EE on the critical lines and within the phases. Our outcomes disclosed that it does not 
deviate from the area law on the critical line that separates the gapless chiral and FM or PM phases. On this line, 

Figure 4.   (a) is for the EE as a function of the different subsystems lb on the three critical lines for a system with 
size L = 200 . (b) is for the EE as a function of the chain size L within the three phases. (c) is for the EE divided 
by the logarithm of the system size L versus 1/ log(L) on three critical lines. The effective central charge ceff  can 
be read out from the intercept, 3SL/2(L)/ log(L) = b/ log(L)+ ceff .

Figure 5.   Entanglement spectrum versus the TF for a system with size L = 200 as (a) and (c) �99 , �102 , and (b) 
and (d) for �100 , �101 . Furthermore, (a) and (b) are for D = 0.5 , and (c) and (d) are for D = 2.0.
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the central charge is zero. Interestingly, within the chiral phase, a central change with ceff = 1.0 appears show-
ing a critical behavior of this phase. On the other hand, the central charge is 0.5 on the critical line between the 
gapped FM and PM phases, which is the same as the anisotropic XY chain model. We also illustrated that the 
entanglement spectrum can identify quantum critical lines and topological phases in the system.

We hope that our work will stimulate further research on the critical SS parameter and EE in other 1D spin 
systems with short-range interactions and attract the opinion of researchers in the field of quantum metrology 
to the quantum systems including gapless phases.

Data availability
The data sets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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