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Predicting postoperative 
rehemorrhage in hypertensive 
intracerebral hemorrhage 
using noncontrast CT 
radiomics and clinical data 
with an interpretable machine 
learning approach
Weigong Wang , Jinlong Dai , Jibo Li  & Xiangyang Du *

In hypertensive intracerebral hemorrhage (HICH) patients, while emergency surgeries effectively 
reduce intracranial pressure and hematoma volume, their significant risk of causing postoperative 
rehemorrhage necessitates early detection and management to improve patient prognosis. This 
study sought to develop and validate machine learning (ML) models leveraging clinical data and 
noncontrast CT radiomics to pinpoint patients at risk of postoperative rehemorrhage, equipping 
clinicians with an early detection tool for prompt intervention. The study conducted a retrospective 
analysis on 609 HICH patients, dividing them into training and external verification cohorts. These 
patients were categorized into groups with and without postoperative rehemorrhage. Radiomics 
features from noncontrast CT images were extracted, standardized, and employed to create several 
ML models. These models underwent internal validation using both radiomics and clinical data, 
with the best model’s feature significance assessed via the Shapley additive explanations (SHAP) 
method, then externally validated. In the study of 609 patients, postoperative rehemorrhage rates 
were similar in the training (18.8%, 80/426) and external verification (17.5%, 32/183) cohorts. Six 
significant noncontrast CT radiomics features were identified, with the support vector machine (SVM) 
model outperforming others in both internal and external validations. SHAP analysis highlighted 
five critical predictors of postoperative rehemorrhage risk, encompassing three radiomics features 
from noncontrast CT and two clinical data indicators. This study highlights the effectiveness of an 
SVM model combining radiomics features from noncontrast CT and clinical parameters in predicting 
postoperative rehemorrhage among HICH patients. This approach enables timely and effective 
interventions, thereby improving patient outcomes.
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The modern lifestyle has led to a surge in hypertension prevalence, a condition that poses significant risks to the 
cardiovascular  system1,2. A common and severe complication of hypertension is hypertensive intracerebral hem-
orrhage (HICH), characterized by its sudden onset, rapid progression, and associated  complications3,4. HICH, a 
subtype of spontaneous intracerebral hemorrhage (sICH), has the highest mortality rate among cerebrovascular 
 diseases5. HICH accounts for about 30% of stroke  incidences6. Currently, there is no specific treatment for HICH. 
However, emergency surgical interventions, such as craniotomy with hematoma evacuation, have shown potential 
in reducing mortality  rates7. This procedure effectively alleviates intracranial pressure and reduces hematoma 
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volume in HICH  patients8. Despite these benefits, the risk of postoperative rehemorrhage remains a significant 
concern, often leading to neurological deterioration and increased  mortality9,10. Thus, the early prediction and 
identification of postoperative rehemorrhage are critical for improving HICH patient prognosis.

Previous studies highlight the importance of closely examining hematoma characteristics, such as heteroge-
neity, shape, and volume, in evaluating intracerebral hemorrhage  outcomes11. Furthermore, recent reports have 
shown that the spot sign on computed tomography (CT) angiography is an important predictor of rehemorrhage 
after craniotomy or endoscopic surgery in patients with  sICH12–14. The spot sign helps to define the vulnerabil-
ity of sICH, but there are limitations to the use of CT angiography. First, there is no time for the examination 
because some patients have emergency surgery. Second, an iodinated contrast agent utilized in CT angiography 
is contraindicated in patients with asthma, kidney dysfunction, or others. Thus, the noncontrast CT marker 
for rehemorrhage prediction is needed. The noncontrast CT signs, such as blend sign and black hole sign, are 
strongly related to postoperative rehemorrhage in patients with  HICH15; however, the recognition of these signs 
is susceptible to the subjective assessment of  doctors16.

Radiomics is a noninvasive approach for high-throughput extraction and evaluation of huge amounts of 
quantitative features from medical  images17. Its strength is the conversion of visual image information into deep-
seated data for quantitative  analysis18. This method’s integration into medical diagnostics has proven invaluable 
across various fields, including but not limited to oncology and  cardiology19–21. Recent advancements further 
highlight its effectiveness in non-invasively predicting outcomes for patients with HICH, showcasing its broad 
applicability and potential in medical  prognostication5,22,23. However, the complex and frequently nonlinear 
connections between the myriad subtle features identified by radiomics and their clinical outcomes pose a 
substantial analytical challenge. This complexity constrains the efficacy of linear predictive models, like logistic 
regression (Logit), from reaching optimal predictive precision. In this context, the deployment of machine learn-
ing (ML)—a branch of artificial intelligence celebrated for its exceptional ability to decode complex patterns in 
vast and detailed datasets—is crucial for developing an effective predictive  model24. Popular ML classifiers, such 
as random forest (RF) and extreme gradient boosting (XGBoost), have shown their adaptability in applications 
from detecting intracerebral hemorrhage (ICH) to predicting outcomes in patients with  sICH25,26. However, 
there is limited research on ML models that use noncontrast CT radiomics to predict postoperative rehemor-
rhage in HICH patients.

With this background, our study is dedicated to developing and validating an interpretable ML model that 
utilizes radiomics features from noncontrast CT scans. Our objective is to forecast the risk of postoperative 
rehemorrhage in HICH patients following craniotomy, providing clinicians with a tool for early detection and 
enabling prompt intervention.

Methods
This study was approved by the Ethics Committee of Lu’an Hospital of Traditional Chinese Medicine (LASZYY-
LL-2023013) and carried out in accordance with the Declaration of Helsinki. Due to its retrospective nature, 
informed consent requirements were waived by the Ethics Committee of Lu’an Hospital of Traditional Chinese 
Medicine.

Study population
A retrospective review of all patients diagnosed with ICH from Lu’an Hospital of Traditional Chinese Medi-
cine between February 2017 and January 2023 was conducted. ICH was determined using noncontrast CT 
images showing parenchymal hemorrhage. The inclusion criteria: (1) age > 18 years old; (2) with a history of 
hypertension; (3) ICH on a noncontrast CT scan; (4) underwent craniotomy no more than 72 h of onset; (5) 
no history of head trauma; (6) complete clinical data. Exclusion criteria: (1) history of nervous system diseases 
such as brain tumors, cerebral infarction, cerebral aneurysms and other nervous system diseases; (2) ICH due 
to non-hypertensive factors; (3) poor quality images that cannot be assessed; (4) with hemophilia, leukemia, 
and other blood diseases; (5) treated with anticoagulant or antiplatelet drugs; (6) with primary and secondary 
coagulopathy. According to the inclusion and exclusion criteria, 609 patients were enrolled in our study. Four 
hundred and twenty-six patients from February 2017 to August 2021 were involved in the training cohort and 
183 patients from September 2021 to January 2023 were assigned to the external verification cohort (Fig. 1). 
HICH is the rupture and bleeding of vessels of the cerebral parenchyma triggered by continuously elevated or 
violently fluctuating blood pressure.

For each patient, clinical characteristics and noncontrast CT imaging findings were meticulously documented. 
The diagnosis of ICH was confirmed by a baseline noncontrast CT scan within 12 h of symptom onset. Crani-
otomy was conducted within 72 h of onset. After the operation, at least two follow-up CT scans were conducted 
over the subsequent 3 days. According to the criteria from previously published  studies15,27, we characterized 
postoperative rehemorrhage as either an increase in hematoma volume by more than 33% compared to the 
previous postoperative CT scan (wherein the ICH volume had significantly reduced after surgery) or the reap-
pearance of hyperdensity within the focal region on a follow-up CT scan after its complete surgical removal.

Imaging acquisition
The baseline noncontrast CT scans (General Electric Medical Systems, Milwaukee, WI, USA) were conducted 
following standard clinical parameters, utilizing axial sections that were 5 mm in thickness. The images were 
captured and archived for subsequent analysis. Two experienced neuroimaging experts independently reviewed 
all the images.
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Figure 1.  Flowchart for HICH patient selection and cohort distribution for predictive model development 
and validation. ICH intracerebral hemorrhage, HICH hypertensive intracerebral hemorrhage, CT computed 
tomography, SHAP Shapley additive explanations.

Figure 2.  Noncontrast CT images was semi-automatic segmentation. CT computed tomography.
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Image segmentation and feature extraction
Baseline noncontrast CT images, retrieved from the picture archiving and communication system (PACS), 
were saved as DICOM files. Employing the semi-automatic segmentation software 3D Slicer (Version 5.0.2), an 
experienced radiologist (R1), without access to clinical data, delineated the regions of interest (ROIs) (Fig. 2). A 
second radiologist (R2), with over 10 years of experience, independently confirmed these outlines, also without 
seeing the clinical data, employing the same methodology as R1. The consistency of ROI delineation between 
observers was assessed through intraclass correlation coefficients (ICCs), with values ≥ 0.80 indicating high 
reproducibility. Radiomic signatures from each ROI were extracted using PyRadiomics (Version 3.7). Overall, 
6 image types and 6 feature classes were obtained.

Data preprocessing
Before developing the predictive model, a crucial data preprocessing phase was conducted to ensure the unbias-
edness of the process. This phase standardized all data, including both radiomics features and clinical informa-
tion. Standardization varied with the data type: continuous variables were normalized using Z-score to achieve 
a mean of zero and a standard deviation of one, whereas categorical variables were converted into binary form, 
labeled as “0” or “1”.

Selection of radiomics features
We executed 3 feature selection steps to mitigate overfitting. Initially, ICCs exceeding 0.8 were deemed indica-
tive of satisfactory agreement. Subsequently, a t-test was applied to each feature to differentiate between patients 
with postoperative rehemorrhage and those without. Lastly, employing the least absolute shrinkage and selection 
operator (LASSO) logistic regression coupled with tenfold cross-validation, features related to postoperative 
rehemorrhage with non-zero coefficients were selected from those exhibiting P-values less than 0.05 in the t-test.

Derivation and internal validation of ML models
To assess the risk of postoperative rehemorrhage, we utilized four established ML classifiers: Logit, RF, support 
vector machine (SVM), and XGBoost. We crafted distinct prediction models using clinical data, radiomics 
features, and a combination thereof. During training, we applied a triply-repeated five-fold cross-validation to 
enhance data utilization, segmenting the training set into inner training and test subsets for sequential evalua-
tion. For the RF model, we selected a configuration of 500 trees and determined the number of features for node 
splitting based on the square root of the total number of features. The SVM used a radial basis function (RBF) 
kernel, adept at handling non-linear data, with hyperparameters finely adjusted via grid search, including cost 
parameters across [0.1, 1, 10] and gamma parameters for the RBF kernel within [0.001, 0.01, 0.1]. XGBoost 
parameters, such as a 0.02 learning rate, a maximum tree depth of 4, and a 600-tree ensemble, were optimized 
through grid search to ensure a delicate balance between complexity and accuracy in predictions, streamlining 
the model development process.

After deriving each model, we subjected them to a stringent internal validation process to assess their dis-
crimination, calibration, and clinical applicability. The selection of the optimal predictive model was based on 
its outstanding discriminatory power, alongside robust calibration and clinical utility.

Interpretability and external validation of ML models
After identifying the optimal predictive models, our focus shifted to understanding the contribution of each 
variable to the prediction. We incorporated the SHAP (Shapley Additive Explanation) methodology to gain a 
deeper insight into feature importance, emphasizing the most influential variables. Features were ranked by 
their SHAP values in descending order of influence, pinpointing the key predictors within our patient cohort. 
To ensure the models’ robustness, we conducted external validation. This thorough assessment affirmed their 
discriminative power, calibration, and clinical relevance, offering a well-rounded perspective on the predictive 
strength of these models.

Statistical analysis
Statistical evaluations were conducted using R statistical software (Version 4.2.1) and Python programming 
software (Version 3.7.1). Continuous variables that exhibited a skewed distribution were presented as median 
[interquartile range (IQR)] and evaluated with the Mann–Whitney U-test. Categorical data were denoted as 
number (percentage) and analyzed using the χ2 test. Model performance evaluation included receiver operating 
characteristic (ROC) curve analysis, focusing on the area under the curve (AUC), and metrics such as Precision, 
Recall, and F1 Score to thoroughly evaluate discrimination ability. AUC comparisons employed Delong’s test. 
Model fit was assessed using calibration curve analysis and the Brier Score for probability prediction accuracy. 
To gauge the clinical utility of the models, decision curve analysis (DCA) was used to calculate net benefits across 
various threshold probabilities.

Ethical approval
This study was approved by the Ethics Committee of Lu’an Hospital of Traditional Chinese Medicine (No. 
LASZYY-LL-2023013).

Informed consent
Written informed consent was waived by the Ethics Committee of Lu’an Hospital of Traditional Chinese 
Medicine.
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Results
Patient summary
Data of 2485 ICH patients were obtained from the inpatients management system. After strict screening based 
on the inclusion and exclusion criteria, our study ultimately included 609 patients, divided into two cohorts: 
426 in the training cohort and 183 in the externally verification cohort, as detailed in Fig. 1. The prevalence of 
postoperative rehemorrhage was comparable between the training (18.8%, 80/426) and externally verification 
(17.5%, 32/183) cohorts, with no significant statistical difference observed (χ2 = 0.143, P = 0.706). Supplemen-
tary material 1 further supports these findings, confirming uniform distribution across both cohorts without 
significant variations in clinical characteristics (all P > 0.05).

Comparative clinical characteristics of patients with and without postoperative rehemorrhage 
in the training cohort
Table 1 compares clinical characteristics between patients with and without postoperative rehemorrhage in the 
training cohort. It shows that higher rehemorrhage risk is associated with increased baseline HICH volume, 
SBP at admission, time to surgery, and irregular hematoma shape (all P < 0.05). Key clinical parameters were 
standardized using Z-score normalization to a mean of zero and a standard deviation of one. These standardized 
metrics were recorded for the development of clinical ML prediction models.

Radiomics analysis
In the training cohort, we extracted and normalized 1316 radiomics features from each baseline noncontrast CT 
image. These features exhibited ICCs values spanning from 0.5 to 0.99. Notably, 1152 features (accounting for 
87.5%) with an intra-observer ICC of ≥ 0.8 were initially chosen. These were then narrowed down to 66 potential 
predictors through a Student’s t-test. From these, a LASSO logistic regression model pinpointed just 6 optimal 
features associated with postoperative rehemorrhage, each characterized by non-zero coefficients (Fig. 3A,B).

Model comparison for postoperative rehemorrhage risk prediction
In our study, we evaluated the effectiveness of predictive models for assessing postoperative rehemorrhage risk 
in HICH patients post-craniotomy, utilizing four ML classifiers: Logit, SVM, RF, and XGBoost. These classifiers 
were tested on three distinct datasets: clinical, radiomics, and a combined dataset. Table 2 presents a systematic 
comparison of these models, with their performance metrics including ROC, calibration, and DCA curves illus-
trated in Fig. 4. Our findings indicated that models integrating clinical and radiomics data (clinical-radiomics 
models) significantly outperformed those based solely on clinical (AUC: 0.733–0.806) or radiomics data (AUC: 
0.812–0.883), achieving AUCs ranging from 0.883 to 0.914, as confirmed by Delong’s test (all P < 0.05).

In evaluating clinical-radiomics models, SVM not only achieved the highest AUC score of 0.914 but also 
exhibited superior calibration, especially noticeable around the 70% threshold. Across all models, performance 
was consistent in DCA. SVM’s uniform excellence in key metrics, including Precision, Recall, F1 Score, and 
Brier Score, underscores its effectiveness. This evidence positions SVM as the optimal model for predicting 
postoperative rehemorrhage risk.

Assessing ML model with the external verification cohort
The external verification cohort was used to evaluate the SVM model’s predictive accuracy against actual post-
operative rehemorrhage outcomes, employing ROC, calibration, and DCA analyses (Fig. 5). Although the SVM 
model showed a slight decline in performance compared to the training cohort, it still exhibited significant 
discriminative ability, achieving an AUC of 0.895 (Fig. 5A). The calibration curve displayed strong agreement 
between the model’s predicted risks and the observed frequencies, especially for predictions above 60% (Fig. 5B). 
The DCA curve further affirmed the model’s effectiveness, highlighting its substantial net benefits (Fig. 5C). These 
findings underscored the SVM model’s potential as a valuable predictive tool for postoperative rehemorrhage 
risk, underscoring its applicability in clinical settings.

Interpretation of the model
The SHAP analysis was utilized to decipher the SVM model, quantifying the impact of each feature. By computing 
the absolute mean SHAP values, it facilitated the prioritization of features based on their importance. Notably, 
three radiomics features from baseline noncontrast CT scans and two clinical variables emerged as the most 
significant influencers in the model (Fig. 6A). A summary plot illustrated the collective impact of these features, 
represented through their SHAP values (Fig. 6B). This visualization provided comprehensive insights into how 
each feature contributes to the prediction for individual patients. Importantly, higher values of these top five 
features correlated with a greater risk of postoperative rehemorrhage in HICH patients following craniotomy.

Discussion
In our study, we focused on enhancing predictive models for postoperative rehemorrhage in HICH patients post-
craniotomy, employing four ML classifiers and analyzing both clinical and noncontrast CT radiomics data. Our 
thorough assessment, encompassing evaluations of discriminative capacity, calibration, and clinical applicabil-
ity, established the SVM model, which combines noncontrast CT radiomics with clinical data, as the superior 
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choice. Incorporating SHAP analysis improved the SVM model’s interpretability, emphasizing crucial clinical 
and radiomics predictors of rehemorrhage risk. This innovative method combines noncontrast CT radiomics 
and clinical data through ML to predict rehemorrhage risk accurately, promoting early and personalized clinical 
interventions that could notably improve patient outcomes.

Table 1.  Comparative clinical characteristics of patients with and without rehemorrhage. # For Chi-square 
test; *For Mann–Whitney U test. IQR inter-quartile range, HICH hypertensive intracerebral hemorrhage, 
DBP diastolic blood pressure, SBP systolic blood pressure, GCS Glasgow coma scale, APTT activated partial 
thromboplastin time, INR international normalized ratio.

Variable Non-rehemorrhage group (N = 346) Rehemorrhage group (N = 80) P value

Age, years, median (IQR) 59.00 (50.00, 70.00) 61.00 (51.00, 69.00) 0.868*

Gender, n (%) 0.840#

 Female 141 (40.8) 31 (38.7)

 Male 205 (59.2) 49 (61.3)

Baseline HICH volume, mL, median (IQR) 58.00 (43.25, 68.00) 62.00 (41.75, 79.00) 0.041*

History of smoking, n (%) 0.273#

 No 249 (72.0) 52 (65.0)

 Yes 97 (28.0) 28 (35.0)

History of drinking, n (%) 0.913#

 No 178 (51.4) 40 (50.0)

 Yes 168 (48.6) 40 (50.0)

History of diabetes mellitus, n (%) 0.469#

 No 299 (86.4) 66 (82.5)

 Yes 47 (13.6) 14 (17.5)

DBP on admission, mmHg, n (%) 0.283#

 < 120 190 (54.9) 38 (47.5)

 ≥ 120 156 (45.1) 42 (52.5)

SBP on admission, mmHg, n (%) 0.022#

 < 200 155 (44.8) 24 (30.0)

 ≥ 200 191 (55.2) 56 (70.0)

GCS on admission, points, n (%) 0.875#

 ≤ 8 154 (44.5) 37 (46.2)

 > 8 192 (55.5) 43 (53.8)

Hemorrhage localization, n (%) 0.663#

 Basal ganglia 154 (44.5) 30 (37.5)

 Ventricle 34 (9.8) 10 (12.5)

 Cerebral lobe 16 (4.6) 5 (6.2)

 Thalamus 78 (22.5) 22 (27.5)

 Cerebellum 64 (18.5) 13 (16.2)

Shape of hematoma, n (%) < 0.001#

 Regular 215 (62.1) 23 (28.8)

 Irregular 131 (37.9) 57 (71.2)

Time to surgery, hours, n (%) < 0.001#

 ≤ 6 140 (40.5) 64 (80.0)

 > 6 206 (59.5) 16 (20.0)

Duration of surgery, hours, median (IQR) 2.60 (1.90, 3.38) 2.75 (2.00, 3.42) 0.383*

Intraoperative blood loss, mL, median (IQR) 203.00 (150.25, 265.75) 214.00 (149.75, 261.25) 0.519*

Rate of hematoma evacuation, %, median (IQR) 84.80 (77.62, 91.45) 85.20 (78.02, 92.80) 0.446*

Platelets,  109/L, median (IQR) 181.00 (137.00, 221.00) 186.00 (141.75, 224.00) 0.659*

APTT, s, median (IQR) 30.80 (26.52, 33.88) 31.10 (27.87, 33.55) 0.535*

INR, median (IQR) 1.11 (0.96, 1.30) 1.13 (0.97, 1.30) 0.568*

Fibrinogen, g/L, median (IQR) 2.94 (2.51, 3.45) 2.92 (2.45, 3.60) 0.577*
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HICH, recognized as the most lethal cerebrovascular condition and a subtype of  sICH5, poses significant 
treatment challenges. Emergency interventions like craniotomy are effective in reducing mortality by decreasing 
intracranial pressure and the size of the  hematoma7,8. However, these patients face a substantial risk of postop-
erative rehemorrhage, leading to adverse outcomes such as increased in-hospital  mortality28. Research indicates 
that post-craniotomy, patients enter an antithrombotic state due to thrombocytopenia, coagulopathy, and the use 
of antiplatelet and anticoagulant medications, escalating the risk of further intracranial hemorrhagic  events29. 
This underscores the critical importance of prompt detection and management to improve patient prognosis.

In our study, we preferred ML models for their ability to navigate complex non-linear relationships between 
variables and outcomes, outperforming traditional linear predictive  approaches30. We tested four ML models 
on both clinical and radiomics data, finding that all achieved satisfactory calibration and clinical utility, though 
they varied significantly in their ability to discriminate. Notably, the combined clinical-radiomics ML models 
proved most effective in predicting the risk of postoperative rehemorrhage, offering superior discrimination 
capabilities. This superiority likely originates from the extensive combination of clinical and radiomics features, 
offering a wider analytical foundation than models based solely on clinical or radiomics data. These differences 
in feature integration could account for the variations in predictive accuracy observed.

Within our selection of ML models, SVM emerged as the most efficacious clinical-radiomics model, dem-
onstrating high accuracy even during external validation. To tackle the interpretability challenges inherent in 
complex ML models, we utilized SHAP methodology. This technique elucidates the decision-making process at 
the cohort level, enhanced by intuitive visualizations, allowing for a nuanced understanding of how individual 

Figure 3.  Radiomics feature selection using LASSO logistic regression. (A) LASSO coefficient distribution 
of the 66 radiomics features. (B) Selection of the tuning parameter (λ) using tenfold cross validation via the 
minimum criteria (λ.min) and the 1-standard error of the minimum criteria (λ.1-SE). The optimal λ results 
in 6 features with nonzero coefficients. LASSO least absolute shrinkage and selection operator, λ penalty 
regularization parameter, SE standard error.

Table 2.  Performance of ML classifiers for predicting postoperative rehemorrhage risk using clinical data, 
radiomics features, and combined datasets in HICH patients. ML machine learning, HICH hypertensive 
intracerebral hemorrhage, AUC  area under the curve, Logit logistic regression, SVM support vector machine, 
RF random forest, XGBoost extreme gradient boosting.

Data type ML classifier AUC Precision Recall F1 score Brier score

Clinical data

Logit 0.735 0.333 0.083 0.133 0.008

SVM 0.806 0.288 0.369 0.332 0.006

RF 0.733 0.368 0.292 0.326 0.061

XGBoost 0.749 0.389 0.292 0.333 0.073

Radiomics feature

Logit 0.883 0.789 0.625 0.698 0.010

SVM 0.812 0.923 0.500 0.649 0.007

RF 0.821 0.789 0.625 0.698 0.032

XGBoost 0.845 0.824 0.583 0.683 0.068

Combined clinical and radiomics data

Logit 0.889 0.910 0.718 0.756 0.015

SVM 0.914 0.945 0.711 0.770 0.001

RF 0.883 0.810 0.712 0.756 0.005

XGBoost 0.887 0.850 0.708 0.773 0.024
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variables influence predictions, thus building trust in AI among  clinicians31,32. It identified five principal predic-
tors of postoperative rehemorrhage risk: three radiomics features from noncontrast CT scans and two clinical 
factors. The significance of noncontrast CT radiomics features was anticipated due to their correlation with 
rehemorrhage risk. These features, detailed by radiomics, provide a more comprehensive and objective assessment 
than traditional imaging alone. While the biological correlation of certain texture features may seem abstract at 
first glance, these characteristics are instrumental in delineating the complex nature of hematoma beyond basic 
parameters like shape and volume. Additionally, admission SBP and time to surgery were confirmed as crucial 
clinical predictors, consistent with evidence that blood pressure variability impacts rehemorrhage  risk33. Rigor-
ous blood pressure monitoring, with real-time and dynamic assessments, is essential for effective management. 

Figure 4.  Comparative analysis of ML classifiers-namely Logit, SVM, RF, and XGBoost-across different data 
types. Figures (A–C) reveal the performance of these ML classifiers on clinical data, as shown through ROC 
curves, calibration plots, and DCA. They achieved ROC-AUCs of 0.735, 0.806, 0.733, and 0.749, respectively. 
Figures (D–F) focus on the performance of these classifiers with radiomics features, where they yielded AUCs 
of 0.883, 0.812, 0.821, and 0.845. Figures (G–I) highlight their performance using combined clinical and 
radiomics data, achieving AUCs of 0.889, 0.914, 0.883, and 0.887. ML machine learning, ROC receiver operating 
characteristic, AUC  area under the curve, DCA decision curve analysis, Logit logistic regression, SVM support 
vector machine, RF random forest, XGBoost extreme gradient boosting.
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The first 6 h after onset are pivotal, with unstable hemostasis due to hematoma pressure on ruptured vessels 
heightening the risk of rehemorrhage post-surgery. Postponing surgery after 6 h markedly reduces these risks, 
underscoring the critical nature of surgical  timing34. Together with SHAP, SVM offers a detailed insight into the 
impact of variables on outcomes, proving invaluable for predicting postoperative rehemorrhage and enhancing 
the role of ML in clinical decision-making and improving patient outcomes.

Our study presented 3 limitations. Firstly, our investigation was conducted using a retrospective design. To 
ensure the generalizability and validity of the ML model, prospective studies are warranted. Secondly, the clinical 
relevance of these AI-generated features might be challenging to interpret; however, advancements in radiomics 
and visualization tools are bridging this gap, enhancing our understanding and integration of these technolo-
gies into clinical  practice35,36. Efforts to address the mentioned shortcomings are continuously  underway37–39. 
Thirdly, the limited sample size constituted another limitation, underscoring the need for further studies with 
larger cohorts to corroborate the predictive potential of our findings.

Figure 5.  Evaluating the predictive performance of an optimal ML model using an external verification 
cohort. Figure (A) exhibits the ROC curve, which has an AUC of 0.895. Figure (B) reveals the calibration curve, 
showing a strong concordance between the model’s predicted probabilities and the actual observed events. 
Figure (C) depicts the DCA, highlighting the net clinical benefit provided by the model. ML machine learning, 
ROC receiver operating characteristic, AUC  area under the curve, DCA decision curve analysis.
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Conclusions
In conclusion, our evaluation identified the SVM model, integrating noncontrast CT radiomics and clinical data, 
as the most effective ML approach for predicting postoperative rehemorrhage in HICH patients. This innovative 
combination of noncontrast CT radiomics with clinical data through ML, particularly our refined SVM model, 
promises to enhance the accuracy of postoperative rehemorrhage risk assessment. Anticipated to support clini-
cians in decision-making for high-risk patients, this development could lead to early, personalized interventions, 
significantly improving patient outcomes.

Data availability
All data generated or analyzed during this study are included in this article. Further enquiries can be directed 
to the corresponding author.
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Figure 6.  SHAP analysis of the SVM model for predicting postoperative rehemorrhage in HICH patients. 
Figure (A) illustrates the ranking of feature significance as determined by absolute mean SHAP values. Figure 
(B) presents a summary plot incorporating SHAP values, providing a comprehensive visualization of the 
cumulative influence of each feature. SHAP Shapley additive explanation, SVM support vector machine, HICH 
hypertensive intracerebral hemorrhage.
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