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Oral microbial signatures 
associated with age and frailty 
in Canadian adults
Vanessa DeClercq 1,2*, Robyn J. Wright 1, Jacob T. Nearing 3 & Morgan G. I. Langille 1,3

This study aimed to assess the association between the oral microbiome, age, and frailty. Data and 
saliva samples were obtained from male and female participants aged 35–70 years (n = 1357). Saliva 
samples were analysed by 16S rRNA gene sequencing and differences in microbial diversity and 
community compositions were examined in relation to chronological age and the frailty index (FI). 
Most alpha diversity measures (Richness, Shannon Diversity, Faith’s Phylogenetic Diversity) showed 
an inverse association with frailty, whereas a positive association was observed with age and Shannon 
Diversity and Evenness. A further sex-stratified analysis revealed differences in measures of microbial 
diversity and composition. Multiple genera were detected as significantly differentially abundant with 
increasing frailty and age by at least two methods. With age, the relative abundance of Veillonella 
was reduced in both males and females, whereas increases in Corynebacterium appeared specific to 
males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to 
females. Beta diversity was significantly associated with multiple mental health components of the FI. 
This study shows age and frailty are differentially associated with measures of microbial diversity and 
composition, suggesting the oral microbiome may be a useful indicator of increased risk of frailty or a 
potential target for improving health in ageing adults.

Ageing is characterized by a wide range of physiological changes that impact human health as well as microbial 
populations on and within the human body. These microbes play key roles in the digestion and absorption of 
nutrients, production of metabolites, and the development and maintenance of intestinal, brain, and immune 
 function1–4. Moreover, changes in the diversity and composition of these microbial populations can alter these 
critical functions and impact human health and disease.

In most studies of the gut microbiome that include adults (20–100 + years) from countries around the world, 
alpha diversity is higher with age and in long-lived groups (90 plus years)5. It has also been documented that beta 
diversity of the gut microbiome clusters by age group as well as living status (community-based vs long-term 
care residents)5–9. Importantly, chronological age itself is not the only age-associated contributor to microbial 
diversity, there is marked variation in the rate of biological aging, and accumulating evidence suggests the 
microbiome may be reflective of this. For example, Wilmanski et al. examined three independent cohorts across 
the US, looking at over 9000 individuals aged 18–101 years and showed strong positive association between 
chronological age and beta diversity of the gut, however, microbial composition was altered when stratified by 
health  status10. Frailty is a reduction in health and functioning accompanying ageing and is characterized by 
increased vulnerability to adverse health outcomes. The frailty index (FI) can be used as a model of biological 
 ageing11,12, reflecting the cumulative deterioration of multiple physiological and psychological systems. Multiple 
studies have demonstrated that higher levels of frailty correlate with reduced gut alpha  diversity13–17, significant 
influences on beta  diversity13,17–19, and changes in composition of the gut  microbiome13–22.

Each location on the human body represents a distinct niche with varying degrees of microbial diversity and 
unique community  structures23–25. For instance, the gut microbiome is dominated by the genera Bacteroides, 
Prevotella, Ruminococcus, and Blautia whereas the oral cavity is dominated by the genera Streptococcus, Neis-
seria, Prevotella, Veillonella, and Haemophilus24,26–28. Although research on age and the oral microbiome is not 
as extensive as the gut, there have been some studies that have compared microbial diversity in different oral 
sites. For example, reduced alpha diversity has been observed in gingival crevicular fluid, the tongue, and saliva 
with increasing age,29,30 but was similar across ages in subgingival  plaque31. Shifts in beta diversity with age have 
also been documented in different oral  sites29–31. Additionally, a small study comparing salivary microbiomes of 
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individuals living in nursing homes (68–101 years old; n = 15) to those living independently (79–94 years old; 
n = 16) showed distinct classification between the two groups using unsupervised principal component analysis 
as well as significant differences in specific  taxa32 suggesting that there is an association between oral microbiota 
composition and frailty. More recently, a study in predominantly females from the TwinsUK cohort showed an 
inverse association between frailty and saliva microbiota alpha  diversity33.

With a lack of research on the oral microbiome and frailty, we sought out to investigate the association 
between salivary microbiota and both frailty and chronological age in community living male and female adults. 
To address this aim, data and samples were accessed from the Atlantic Partnership for Tomorrow’s Health (PATH) 
cohort. This is a large population cohort (age 30–74 years) in the Atlantic region of Canada which includes 
detailed questionnaire data, biological samples, and clinical  measures34,35. A portion of participants also have FI 
 data36 and 16S rRNA amplicon sequencing data from saliva  samples28,37,38.

Results
Characteristics of participants
To assess the association between both chronological age and biological age with oral microbiome diversity and 
composition, only participants that had age, frailty and oral microbiome sequencing data available were included 
(n = 1357). Saliva samples were sequenced using 16S rRNA gene sequencing of the V4-V5 region, with median 
sequencing depth of 18,668 reads per sample after processing (range 2974–120,017; n = 1795), and were assigned 
taxonomy using the expanded Human Oral Microbiome  Database39. The median age of the participants was 
57 years, and the median FI score was 0.13 (Table 1). The median FI score indicates that the participants were 
relatively healthy, with the majority being considered robust or scoring below pre-frailty40,41. Considering that 
the oral microbiome varies by  sex28 and that frailty tends to be higher in females than  males42,43, a sex-stratified 
analysis was also conducted. The characteristics of participants by sex are presented in Table 1. There were a 
higher proportion of female than male participants, and the female participants had a higher FI, but lower 
chronological age, body weight, height and BMI. The majority of participants reported using at least 1 medica-
tion, were non-smokers, consumed 2 servings of vegetables per day, and had a BMI in the overweight range.

Frailty and age show divergence in alpha diversity patterns
As measured by Pearson correlation, all measures of alpha diversity showed significant inverse correlation with 
frailty (p < 0.001), except evenness (Fig. 1). On the other hand, Evenness (p = 0.002) and Shannon Diversity 
(p = 0.024) were positively correlated with age, but Observed ASVs (richness) and Faith’s Phylogenetic Diversity 
were not associated with age (Fig. 1). In the sex-stratified analysis, high frailty was inversely correlated with 
Shannon Diversity (p < 0.001), Observed ASVs (p < 0.001), and Faith’s Phylogenetic Diversity (p = 0.002), but not 
evenness in females (Fig. 2). Increasing age positively correlated with evenness (p < 0.001), but none of the other 
alpha diversity measures in females (Fig. 2). In contrast, increasing age positively correlated with all measures 
(p < 0.02) except evenness in males (Fig. 2). In males, increasing frailty showed a similar pattern to females with 
a significant inverse correlation with Shannon Diversity (p = 0.013), and Observed ASVs (p = 0.008), and a trend 
with Faith’s Phylogenetic Diversity (p = 0.056) (Fig. 2).

Table 1.  Characteristics of participants by sex.

Overall Males Females

Sex—M/F

 n [%] 446/911 [33/67] 446/0 [100/0] 0/911 [0/100]

Age

 Median [IQR] 57 [48–60] 59 [51–61] 56 [47–59]

Frailty

 Median [IQR] 0.13 [0.08–0.18] 0.12 [0.08–0.18] 0.13 [0.08–0.19]

Weight (kg)

 Median [IQR] 76 [66–87] 86 [78–95] 70 [64–80]

Height (kg)

 Median [IQR] 167 [161–174] 177 [172–181] 163 [159–167]

BMI (kg/m2)

 Median [IQR] 27 [24–30] 28 [25–30] 27 [23–30]

Smokers count

 n [%] 43 [3] 15 [3] 38 [3]

Vegetable servings/d

 Median [IQR] 2 [1–3] 2 [1–3] 2 [2, 3]

Medication use, n [%]

 None 617 [44] 216 [46] 401 [30]

 1 Medication 339 [25] 105 [24] 234 [26]

 ≥ 2 Medications 418 [30] 125 [28] 276 [30]
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Beta diversity is associated with frailty and age
The association between beta diversity and age and frailty was using a PERMANOVA and assessed using three 
different metrics, weighted UniFrac distance, Bray–Curtis dissimilarity, and Robust Aitchison’s distance. A 

Figure 1.  Correlation between alpha diversity, frailty, and age in all participants. Alpha diversity is represented 
by Shannon diversity, Observed ASVs (richness), Faith’s phylogenetic diversity, and Simpson’s evenness. 
Regression coefficients and p-values are obtained from Pearson’s correlation.
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significant association was found between frailty and the beta diversity measures weighted UniFrac distance 
and Bray–Curtis dissimilarity in the unadjusted analysis (Fig. 3a and Supplementary Fig. 1a) but did not remain 
significant in the model adjusted for sex, smoking status, height, weight, vegetable consumption, and medication 
use (weighted UniFrac distance  R2 = 0.001, p = 0.184; Bray–Curtis dissimilarity  R2 = 0.001, p = 0.396). In contrast, 
a significant association was found between age and all 3 beta diversity measures in both the unadjusted (Fig. 3b, 

Figure 2.  Correlation between alpha diversity, frailty, and age in male and female participants. Alpha diversity 
is represented by Shannon diversity, Observed ASVs (richness), Faith’s phylogenetic diversity, and Simpson’s 
evenness. Regression coefficients and p-values are obtained from Pearson’s correlation.
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Supplementary Figs. 1, and 2) and adjusted models (weighted UniFrac distance  R2 = 0.013, p < 0.001; Bray–Curtis 
dissimilarity  R2 = 0.008, p < 0.001; Robust Aitchison’s distance  R2 = 0.004, p < 0.001).

Further analysis in males only, showed that none of the beta diversity measures were significantly associated 
with frailty in the unadjusted (Fig. 3c, Supplementary Figs. 1c and 2c) or adjusted models (weighted UniFrac 
distance  R2 = 0.002, p = 0.350; Bray–Curtis dissimilarity  R2 = 0.003, p = 0.133) whereas with age, a trend (weighted 
UniFrac and Bray–Curtis) and significant (Robust Aitchison’s distance) association was observed with the beta 

Figure 3.  Beta diversity analyses among frailty and age groups are represented by Principal Coordinates 
Analysis plots based on weighted UniFrac. (A,B) all participants, (C,D) male participants, (E,F) female 
participants.  R2 and p-values are the result of the unadjusted PERMANOVA test.
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diversity measures in the unadjusted models (Fig. 3d, Supplementary Figs. 1d and 2d) and a significant associa-
tion with all measures in the adjusted model (weighted UniFrac  R2 = 0.006, p = 0.041; Bray–Curtis dissimilarity 
 R2 = 0.005, p = 0.039; Robust Aitchison’s distance  R2 = 0.005, p = 0.007).

In females, the beta diversity measures weighted UniFrac distance and Bray–Curtis dissimilarity were sig-
nificantly associated with frailty in the unadjusted (Fig. 3e and Supplementary Fig. 1e) but not in the adjusted 
models (weighted UniFrac distance  R2 = 0.001, p = 0.504; Bray–Curtis dissimilarity  R2 = 0.001, p = 0.556), whereas 
with age in females, a significant association was found with all beta diversity measures in both the unadjusted 
(Fig. 3f, Supplementary Figs. 1f and 2f) and adjusted models (weighted UniFrac distance  R2 = 0.016, p < 0.001; 
Bray–Curtis dissimilarity  R2 = 0.011, p < 0.001; Robust Aitchison’s distance n  R2 = 0.004, p = 0.003). In recogni-
tion of the smaller sample size of males in our study, a separate analysis was conducted in a subset of females 
that were down sampled to the same sample size as the male group (n = 446) and matched on age (± 2 year). In 
this smaller subset of females, some of the effect size is lost but all beta diversity measures remain significantly 
associated with age in the unadjusted models (Supplementary Fig. 3) and remain significant in the adjusted 
models (weighted UniFrac distance  R2 = 0.007, p = 0.031; Bray–Curtis dissimilarity  R2 = 0.006, p = 0.011; Robust 
Aitchison’s distance  R2 = 0.005, p = 0.017). However, with frailty, statistical significance is lost in the unadjusted 
(Supplementary Fig. 4) and adjusted models (weighted UniFrac distance  R2 = 0.001, p = 0.726; Bray–Curtis dis-
similarity  R2 = 0.002, p = 0.637; Robust Aitchison’s distance  R2 = 0.002, p = 0.666). These results suggest that some 
statistical power may be lost with smaller samples sizes, especially with highly skewed variables with long tails 
such as frailty, but the smaller sample size is sufficient for observing associations in variables with shorter-tailed 
distributions such as age (Supplementary Fig. 5).

Taxonomic composition differs with frailty and age
We used four different differential abundance (DA) tools to identify genera or ASVs that might be associated 
with frailty and age. With increasing frailty, we found 25 genera that were associated with frailty in the unad-
justed model (Table 2). At the genus level, Alloprevotella, Leptotrichia, Peptococcus, Selenomonas, and unclassi-
fied members of the Lachnospiraceae and Ruminococcacceae families were detected as significantly lower with 
increasing frailty, whereas Rothia, Streptoccus, and Veillonella were significantly increased with frailty by two 
or more DA tools in the unadjusted model (Table 2). In the adjusted model, only Lachnospiraceae remained 
statistically significant by two or more DA tools (Table 2). At the genus level, both Alloprevotella and Veillonella 
decreased with increasing age, whereas Abiotrophia, Aggregatibacter, Capnocytophaga, Neisseria, Porphyromonas, 
Stomatobaculum, Tannerella, Treponema, and unclassified members of the Peptostreptococcaceae family and 
Bacteroidales order were detected as significantly increased with age by two or more DA tools in the unadjusted 
model, and most remained significant in the adjusted model (Table 3).

In the sex-stratified analysis, we found several genera that were associated with increasing frailty and age, 
and many of these differed between males and females. With increasing frailty in males, no genera were detected 
as significantly different by at least two DA tools, but in females Alloprevotella and a member of the Lachno-
spiraceae family were significantly lower with increasing frailty in the unadjusted model (Table 2). In males, 
Capnocytophaga and Corynebacterium were significantly increased while Veillonella was significantly lower with 
increasing age by at least two DA tools in the unadjusted model (Table 3), and associations with Corynebacterium 
and Veillonella remained significant after adjusting for covariates (Table 3). With increasing age in females, 9 
genera were detected as significantly different in females by at least two DA tools in the unadjusted model and 
all associations remained significant after adjusting for covariates (Table 3), including a significant a decrease in 
Alloprevotella and Veillonella, and an increase in Abiotrophia, Aggregatibacter, Capnocytophaga, Fusobacterium, 
Neisseria, Porphyromonas, Stomatobaculum, and an unclassified genus of the Bacteroidales order (Table 3). With 
increasing age in males, 3 genera were detected as significantly different in males by at least two DA tools in 
the unadjusted model, and after adjusting for covariates a significant decrease in Veillonella and an increase in 
Corynebacterium remained (Table 3).

Contribution of individual frailty components
We examined the relationship between beta diversity and the 38 different variables that were part of the Atlantic 
PATH  FI36, including questions on mental health, self-reported diagnosed chronic conditions and health, and 
physical health measures. We found that 3 of the 16 FI variables associated with mental health were detected as 
significant with all 3 beta diversity measures, and 5 of the 16 FI variables with at least 2 measures. Only 1 of the 10 
physical measurements (fat free mass) was significant with all beta diversity metrics, and 1 of the 10 self-reported 
diagnoses (osteoporosis) was detected as significant with two beta diversity metrics (Table 4).

Discussion
To date the research on the oral microbiome and frailty is limited to a few studies in select populations, often with 
very small sample sizes and a lack of consideration for sex specific responses. Thus, the current study added to 
our growing body of knowledge by examining the sex-specific relationships between oral microbiomes, ageing 
and frailty in a large population cohort of Canadians. Using 16S rRNA gene sequencing data from saliva samples, 
we showed that microbial diversity and composition differ by sex and with increasing frailty and chronologi-
cal age. In the overall cohort, most alpha diversity measures declined with increasing frailty, in contrast alpha 
diversity increased or remained unchanged with increasing age. More specifically an inverse relationship between 
microbial richness and frailty was observed in both males and females, whereas a positive relationship between 
microbial richness and age were observed in males only. A significant association was noted between beta diver-
sity and age overall, as well as in the sex-stratified analysis even after adjusting for covariates. This association 
only remained significant in females. Finally, using multiple DA tools we demonstrated that several taxa were 
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either increased or decreased with frailty and age. These findings expand the current state of knowledge on the 
oral microbiota with frailty and age in males and females.

Much of the previous microbiome literature on ageing has been conducted on the gut microbiota. For 
instance, in 2020 Badal et al. conducted a large systematic review on 27 studies from around the globe on adults 
20–100 + years of age to assess ageing-associated changes in the gut  microbiome5. The systematic review showed 
an overall higher alpha diversity with age and in long-lived groups (90 plus years) and significant differences in 
beta diversity between age  groups5. The findings of the 2020 systematic review were supported by more recent 
research showing similar trends with age and both alpha and beta diversity of the  gut6–9.

In agreement with the current findings of an increase in Shannon diversity with age and no change in richness 
(Fig. 1), Well et al. also reported a positive association between age and Shannon diversity and a non-significant 
association with richness of the salivary microbiome (n = 679) in members of the TwinsUK  cohort33. In contrast, 
Schwartz et al. showed a decrease in richness (Chao1) and Shannon diversity of the salivary microbiome with age 
in adults from the US (n = 271)30. However, the study by Schwartz et al. did not consider general overall health 
or frailty of the participants, whereas when we examined our participants by frailty a clear decline in multiple 
measures of alpha diversity was observed (Fig. 1). Indicating that aging and frailty have differential effects on 

Table 2.  Genera detected as significantly different with increasing frailty. Four different differential abundance 
tools were used to detected genera significantly associated with frailty. Differential abundance tools: Corncob 
(X), ANCOM-II (♦), MaAsLin2 (✱), and ALDEx2 (#). Blue indicates an increase in relative abundance with 
increasing frailty; green indicates a decrease in relative abundance with increasing frailty. Increasing colour 
intensity of a cell indicates a great number of tools that identified a genus as differentially abundance.

Overall Males Females 

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 
g_Alloprevotella X♦✱ # X♦✱ # 
g_Bacillus X X X 
g_Bacteroidales_[G-2] X 
g_Bergeyella ✱ ✱
g_Butyrivibrio ✱
g_Capnocytophaga X X 
g_Clostridiales_[F-1][G-1]  X X 
g_Cryptobacteriuim X 
g_Fusobacterium ✱
g_Gemella  X X X 
g_Haematobacter  X X X X 
g_Lachnospiraceae_[G-2] X♦✱ X# X✱ # 
g_Lactobacillus  X X 
g_Lactococcus X X 
g_Leptotrichia X✱
g_Parvimonas X X 
g_Peptococcus X✱ X X X 
g_Peptostreptococcus ✱
g_Peptostreptococcaceae_.XI..G.1 ✱
g_Peptostreptococcaceae_.XI..G.5 X 
g_Peptostreptococcaceae_.XI..G.6 X 
g_Pseudomonas  X X 
g_Rothia X✱ X X 
g_Ruminococcaceae_.G.1 X✱ X X 
g_Ruminococcaceae_.G.2 ✱
g_Scardovia X X 
g_Selenomonas X✱ X 
g_Serratia X 
g_Stenotrophomonas X X X X 
g_Streptococcus X♦✱
g_Tannerella X X X 
g__Unclassified f__Neisseriaceae X 
g_Unclassified k_Bacteria X X 
g_Unclassified f__Enterobacteriaceae X X 
g_Unclassified p_Firmicutes X X 
g_Unclassified f__Pasteurellaceae X X 
g_ Veillonella  X♦✱
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the diversity of the oral microbiome. Moreover, alpha diversity of the oral microbiome may also vary by location 
within the oral cavity. For example, we demonstrated a slight increase in Shannon diversity of the salivary micro-
biome with age (Fig. 1), whereas Larson et al. showed a decrease in the tongue dorsum microbiome in community 
dwelling  adults44, highlighting that differing oral communities may potentially respond differentially to ageing.

In the current study beta diversity of the salivary microbiome was significantly associated with age in the 
overall cohort (Fig. 3, Supplementary Figs. 1 and 2), which is in agreement with the studies by Wells et al.33 and 

Table 3.  Genera detected as significantly different with increasing age. Four different differential abundance 
tools were used to detected genera significantly associated with chronological age. Differential abundance tools: 
Corncob (X), ANCOM-II (♦), MaAsLin2 (✱), and ALDEx2 (#). Blue indicates an increase in relative abundance 
with increasing age; green indicates a decrease in relative abundance with increasing age. Increasing colour 
intensity of a cell indicates a great number of tools that identified a genus as differentially abundance.

Overall Males Females 
Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

g_Abiotrophia X✱ X✱ ✱ X✱ X✱
g_Aggregatibacter X✱ X✱ X✱ X✱
g_Alloprevotella  X♦✱ X♦✱# X♦✱ ✱# 
g_Alloscardovia X 
g_Bacillus X X 
g_Bacteroidales_[G-2] X✱ X✱# X X✱ X✱# 
g_Bifidobacterium X 
g_Capnocytophaga X✱ X♦✱# X✱ ✱ ✱# 
g_Clostridiales_[F-1][G-1] X X 
g_Corynebacterium ✱ X✱ X✱ X✱
g_Defluvibacter X 
g_Dialister X 
g_Fusobacterium ✱ X✱ X✱
g_Haematobacter X 
g_Lachnoanaerobaculum X 
g_Lactococcus X 
g_Megasphaera ✱ # 
g_Mobiluncus X 
g_Neisseria X✱ X✱# X✱ X✱# 
g_Oribacterium X X 
g_Ottowia X 
g_Peptococcus X X 
g_Peptostreptococcaceae_[XI][G-5] X 
g_Peptostreptococcaceae_[XI][G-9] X✱ X X 
g_Porphyromonas X✱ X♦✱# X✱ X✱# 
g_Prevotella ♦ 
g_Pseudomonas X 
g_Rothia X X X 
g_Ruminococcaceae [G-1] X X 
g_Serratia X X X X 
g_Stenotrophomonas X X X 
g_Stomatobaculum X✱ X✱# X X X✱ X✱
g_Tannerella X✱ X✱ X X 
g_Treponema X✱ X✱ X X 
g_Unclassified k_Bacteria X 
g_Unclassified f__Enterobacteriaceae X X X X X 
g_Unclassified f__Neisseriaceae X 
g_Unclassified f__Pasteurellaceae X 
g_Unclassified k_Rhodobacteraceae X 
g_Veillonella X♦✱ X♦✱# X♦✱ X♦✱# X♦✱ X♦✱# 
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Schwartz et al.30. Further analysis in these studies demonstrated that in addition to age, the following covari-
ates contributed significantly to microbial variation: dentate, tobacco use, active caries, periodontal status and, 
gender/sex, whereas BMI and medication used failed to show a significant association with variation. Similarly, 
our team has previously shown minimal variation due to medication use within the Atlantic PATH  cohort38, 
and only small associations between BMI and select beta diversity  measures28. Tobacco use (Table 1) was very 
rare (3%) in the current cohort and included in the adjusted models. Furthermore, in a sensitivity analysis 
where currently daily smokers were removed, the associations with beta diversity metrics remained consistent, 
showing significant associations with age in both the unadjusted and adjusted models (Supplementary Fig. 6). 
Unfortunately, the Atlantic PATH cohort did not collect detailed oral health information related to dentate, gin-
gival bleeding, active caries, or periodontal status. The only oral health information collected was time since last 
dental visit, and this variable was explored previously, but it was only associated with one beta diversity measure 
(Bray–Curtis dissimilarity) and unrecoverable within the leave-one-out cross-validation  cohort28. On the other 
hand, unlike most previously published studies, our study of the salivary microbiome was large enough to allow 
for a sex-stratified analysis, which revealed that the significant association between age and beta diversity on 

Table 4.  Frailty Index components associated with beta diversity. Bold indicates statistically significant 
associations with beta diversity as measured by weighted UniFrac, Bray–Curtis Dissimilarity, or Robust 
Aitchison Distance.

Instrument Variable

Weighted 
UniFrac Bray–Curtis Robust Aitchison

R2 p-value R2 p-value R2 p-value

Atlantic PATH questionnaire Avoid food mouth problem 0.002 0.101 0.002 0.055 0.002 0.037

CPTP core questionnaire Self-rated general health 0.002 0.080 0.002 0.041 0.001 0.205

Patient health questionnaire-9 (PHQ-9)

Little interest 0.004 0.010 0.002 0.019 0.002 0.049

Depressed 0.002 0.092 0.002 0.100 0.001 0.083

Sleep issues 0.001 0.503 0.001 0.338 0.001 0.438

Tired 0.004 0.012 0.002 0.019 0.002 0.028

Eating problem 0.003 0.021 0.002 0.041 0.001 0.154

Self-confidence problem 0.001 0.554 0.001 0.604 0.001 0.595

Concentration issues 0.003 0.042 0.001 0.118 0.001 0.345

Slow fast problems 0.002 0.074 0.002 0.055 0.001 0.206

Suicidal 0.002 0.096 0.002 0.050 0.002 0.062

General anxiety disorder-7 (GAD-7)

Nervous 0.002 0.096 0.001 0.559 0.001 0.364

Uncontrolled worrying 0.003 0.036 0.001 0.306 0.001 0.229

Chronic worrying 0.002 0.073 0.001 0.363 0.001 0.231

Trouble relaxing 0.003 0.022 0.002 0.092 0.001 0.155

Restless 0.005 0.005 0.002 0.014 0.001 0.120

Easily annoyed 0.005 0.001 0.003 0.012 0.002 0.037

Feeling afraid 0.002 0.069 0.001 0.123 0.001 0.364

Diagnosed conditions

HBP 0.001 0.660 0.001 0.522 0.001 0.205

MI 0.001 0.211 0.002 0.107 0.001 0.760

Stroke 0.001 0.385 0.001 0.340 0.0001 0.173

CB 0.002 0.100 0.002 0.080 0.002 0.015

COPD 0.002 0.113 0.001 0.312 0.002 0.023

DM 0.001 0.636 0.001 0.663 0.001 0.829

IBS 0.001 0.544 0.001 0.384 0.002 0.075

Osteoporosis 0.003 0.035 0.002 0.024 0.001 0.106

Arthritis 0.001 0.251 0.001 0.207 0.001 0.288

Cancer 0.001 0.317 0.001 0.219 0.001 0.559

Physical health measurement

SBP 0.001 0.370 0.001 0.431 0.001 0.749

DBP 0.001 0.414 0.001 0.410 0.001 0.126

HR 0.002 0.086 0.002 0.060 0.001 0.106

PP 0.001 0.400 0.001 0.296 0.001 0.372

WC 0.001 0.193 0.002 0.033 0.002 0.075

FM 0.001 0.313 0.000 0.628 0.001 0.740

FFM 0.005 0.005 0.004 0.002 0.002 0.012

BMR 0..000 0.904 0.001 0.881 0.001 0.700

BMI 0.001 0.454 0.002 0.029 0.001 0.139

Grip 0.000 0.891 0.001 0.627 0.001 0.610
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both males and females in the adjusted models (Fig. 3, Supplementary Figs. 1 and 2), and remained statistically 
significant in a smaller subset females matched to males (Supplementary Fig. 3).

Moving beyond chronological age, recent research has started to shed light on the relationship between the 
oral microbiome and frailty. For example, Wells et al.33 examined how frailty and diet influence the salivary 
microbiome in members of the TwinsUK cohort (n = 679), demonstrating a significant association between 
frailty and three alpha diversity  measures33. These finding agree with the current study showing differences in 
multiple measures of alpha diversity with increasing degrees of frailty (Fig. 1). Both the current study and the 
Wells et al.  study33 examined frailty using the same systematic process for the generation of the  FI40. Taking 
another approach, Ogawa et al. examined the salivary microbiome of frail individuals living in nursing homes 
(n = 15, only 3 males) to healthy independent living (n = 16, 7 males) older individuals in  Japan32. They found 
Shannon diversity at the phylum level was significantly lower in individuals living in a nursing home than 
independently living, and clear clustering (beta diversity) of individuals living in nursing homes compared to 
independently  living32.

The observed divergence in oral microbiome results between age and frailty are not unique to the oral micro-
biome, differences with chronological age and frailty have also been noted in the gut  microbiome45. This incon-
gruity between age and frailty noted in both the current study and recent literature, likely reflects cumulative 
exposures to environmental and lifestyle factors as well as the physiological differences related to health status 
during the ageing process. Healthy individuals appear to have a relatively stable microbiome with a rich diversity 
that may reflect the almost consistent environmental challenges from mastication, saliva production, oral hygiene 
routines, and the hosts diet, which would not only bring a source of nutrients to the resident microbes but also 
the introduction of new microorganisms. On the other hand, frailty has been associated with reduced diversity 
in both the gut and oral  cavity13,18,19,33,45–48. This reduction in microbial diversity may be reflected by complexity 
of frailty involving the deterioration of multiple physiological and psychological systems. For instance, many 
of the health deficits that contribute to frailty (e.g. chronic disease, physical strength/muscle mass, and mental 
health conditions) have been associated with reduce  diversity49–54. Many of these conditions are characterized 
by chronic inflammation and compromised immune function, thus accumulated health deficits observed with 
frailty may potentially cause multiple shifts in the composition of microbiota depending on the systems affected. 
In addition, the influence of medications taken for multiple components of frailty may also directly or indirectly 
influence the composition or function of the oral microbiome (e.g. altering metabolic pathways or saliva produc-
tion). Many biological and socio-behavioral factors could possibly attribute to differences in oral microbiome 
results between age and frailty. For instance, previous research has demonstrated sex differences in microbial 
 diversity28 and a higher prevalence of frailty in females than  males42,43, thus the higher number of females in this 
study may play a part in the age-frailty divergence. Additionally, gender related habits such as diet may result 
in different intakes of dietary pre- and pro-biotics and further differences in exercise and body composition 
(e.g. muscle mass) may be differentially influenced by microbial metabolites. Therefore, the underlying biologi-
cal mechanisms responsible for the differing relationship between chronological age and frailty with the oral 
microbiome are complex, likely involve multiple mechanisms, and merit further investigation.

In the current study, we also identified several taxa that varied by age and frailty (Tables 2 and 3). The study 
by Schwartz et al. showed changes in several species with age, some belonging to the same genera that we noted 
in the current study such as Porphyromonas, and Alloprevotella30. Additionally, our findings are in agreement 
with Wells et al., demonstrating an inverse association between age and Veillonella  abundance33. With respect to 
frailty, Ogawa et al. found significant differences in several genera between individuals living in nursing homes 
compared to independent living including Veillonella, Capnocytophaga, Fusobacteriuim, Leptotrichia, Streptococ-
cus, and Selenomonas which is consistent with our findings with at two or more DA tools (Table 2). Veillonella 
are anaerobic gram-negative bacteria that ferment organic acids, such as  lactate55, and may be reflective of oral 
hygiene and number of  teeth56–58 and has been linked to increased cardiometabolic  risk59.

Finally, we explored the influence of individual components of the FI on community composition of the 
salivary microbiome, showing an association with several of the mental health variables (Table 4). Although, oral 
microbiome research examining specific components of the FI is lacking, the gut microbiome has been explored. 
In contrast to the current oral microbiome study, Lim et al. examined specific measures of frailty with Bray–Cur-
tis dissimilarity in the gut microbiome and reported a small but significant association with grip strength, and no 
association with BMI and waist  circumference16. On the other hand, both the above-mentioned gut microbiome 
study and the current salivary microbiome study showed a nonsignificant association with blood pressure and 
a significant association between beta diversity and depression. Furthermore, recent oral microbiome research 
focused on young adults showed that the composition of the oral microbiome differed significantly between 
participants with depressive disorder and those with no history of mental health  problems60.

As with any population-based study, we acknowledge our study has some limitations. One of the main 
limitations is the lack of information available on oral health, including details on dentate, caries, or gingival 
bleeding. Previous research has shown that dental calculus, frequency of gum bleeding, flossing, and brushing 
are all associated with salivary microbiome  composition61. Likewise, oral health grades have been shown to be 
positively associated with alpha diversity measures (richness and Shannon index)62. Some of these covariates 
also showed sex-specific associations. For example, the frequency of gum bleeding explained a larger propor-
tion of variation in salivary microbial composition in females (n = 2509) than males (n = 1955)63. Additionally, 
oral health problems have been associated with mental health  disorders51, thus some of the microbiome signal 
observed with mental health components of the FI could be contributed by poor oral health. Another limitation 
is the lack of diversity and representativeness for some sociodemographic characteristics. For example, income 
and education levels are above average compared to Canadian census  data35, however, our previous work indicates 
that these two variables do not contribute significantly to salivary microbial  variation28. Lastly, the proportion 
of specific ethnic identities reported in the Atlantic PATH dataset were similar to Canadian census data, but 
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numbers in traditionally underrepresented groups are too low to allow us to fully examine the influence of 
ethnicity on the oral microbiome. These limitations restrict our ability to identify discrete microbial signatures 
across diverse populations.

Our study also has several strengths, which greatly enhances the existing literature on the oral microbiome 
in the areas of frailty and ageing. To our knowledge, this is largest oral microbiome study to date to examine 
frailty, with sequencing data on nearly 1400 saliva samples. As such, the large sample size allowed us to conduct 
a sex-stratified analysis, providing sex-specific findings that were previously lacking in the literature. While 
some overall trends were observed with both sexes, distinct patterns with specific taxa were exposed. Also, the 
Atlantic PATH cohort shows overall congruence with Canadian Census data for the age groups of adults living 
in the Atlantic  region35. In addition, previous research on the salivary microbiome and frailty has shown drastic 
divergence in beta diversity between community living individuals and those living in a nursing  home32, thus 
using the Atlantic PATH cohort of all community living individuals to study frailty may minimize some con-
founders that could change in a nursing home setting, such as dietary intake and oral health routines. Finally, the 
cohort collected many covariates including information on smoking status, diet, anthropometric measures, and 
sociodemographic factors. We and others have previously examined multiple covariates for their contribution 
to microbial variation, showing that variables such as BMI and diet explained < 1% of the  variation28,33,61, thus 
giving us confidence that such confounding variables minimally influence the composition of the oral microbial 
community. This was further verified in the current study, where the results were minimally influenced when 
adjusting for several of those variables.

Conclusions
In conclusion, results from this study show age and frailty are differentially associated with measures of microbial 
diversity and composition of the salivary microbiome and further vary by sex. Using 16S rRNA gene sequenc-
ing data from saliva samples, we observed a decline in several alpha diversity measures and different clustering 
patterns with increasing degrees of frailty in community living Canadians who were of similar age. Our results 
suggest that overall frailty is one factor associated with oral microbiome diversity and composition and that 
the salivary microbiome may be a useful indicator of increased risk of frailty. Our findings also identify several 
taxa that were increased or decreased with frailty and age in a sex dependent manner. Although frailty is an 
accumulation of multiple factors, we found that many of the mental health components of our FI measure were 
associated with the oral microbiome. Future research should consider when the oral microbiome changes occur 
in relation to the development or degrees of frailty, as well as incorporate recruitment strategies that would cap-
ture a more diverse population and allow for analysis of samples from underrepresented populations. Finally, 
the oral microbiome may be a potential target for improving health and future studies are needed to elucidate 
the role of specific taxa as therapeutic options for ageing adults.

Methods
Ethics
This study has been conducted using Atlantic Partnership for Tomorrow’s Health (PATH) data and biosam-
ples, under application #2018-103. This study was conducted in compliance with the guiding principles of the 
Declaration of Helsinki and was approved by the provincial and regional ethics committees in each Atlantic 
province (New Brunswick: Horizon Health Network and Vitalité Health Network; Nova Scotia: Nova Scotia 
Health Authority Research Ethics Board and IWK Research Ethics Board; Newfoundland and Labrador: Health 
Research Ethics Board Newfoundland; Prince Edward Island: Health Prince Edward Island). All Atlantic PATH 
participants provided written informed consent before participation in the study. Research ethics board approval 
for the use of secondary data and biological samples used in current study was granted by Dalhousie University.

Study design and cohort
A cross-sectional study design was used to assess the association between the oral microbiome and age groups 
and degrees of frailty in a large population cohort. This study utilized data and samples from the Atlantic PATH 
cohort, a regional cohort of the Canadian Partnership for Tomorrow’s Health (CanPath) Project. Details on 
participant recruitment, data collection, and a cohort profile have been reported  previously34,35. In short, par-
ticipants were 30–74 years at the time of recruitment, completed a standardized set of questionnaires (available 
at: https:// www. atlan ticpa th. ca/), which included questions on diet, smoking status, sex, age, and medication 
use. A subset of participants had anthropometric measures and biological samples, including saliva, collected. 
A portion of those participants had a calculated frailty score (n = 9133)36 and a nested subset of saliva samples 
had been previously analyzed by 16S rRNA amplicon sequencing (n = 1711)28,37. For the current study, male and 
female participants were included if they had available oral microbiota sequencing and frailty data (n = 1357).

Oral sample collection
Stimulated saliva samples were collected during normal clinic hours (9:00 a.m.–7:00 p.m.), after completing an 
approximately 1-h interview and registration process. Participants were instructed to refrain from eating, smok-
ing, or chewing gum for at least 30 min prior to oral sample collection, and if applicable, wipe off any lipstick. 
Participants were instructed to drink one to two mouthfuls of water, then relax and gently rub cheeks to aid in 
saliva production. Participants deposited saliva (3 ml) into 50-ml sterile conical tubes. Samples were stored at 
4 °C, batch shipped on ice, and processed within 24 h of collection at the central processing facility at the QEII 
Health Sciences Centre in Halifax where they were aliquoted and stored at − 80 °C until analysis.

https://www.atlanticpath.ca/


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9685  | https://doi.org/10.1038/s41598-024-60409-8

www.nature.com/scientificreports/

Frailty data
The FI was developed as previously  described36. Briefly, using a standardized approach for the generation of a 
 FI40, 38 health deficits including symptoms, signs, disabilities, disease, and laboratory measures related to physi-
cal, mental and self-reported health were included. The complete list of health deficits and coding procedure of 
each have been previously  reported36. The index is expressed as a ratio of deficits present to the total number of 
deficits considered, with higher values representing a higher degree of frailty.

Microbiome 16S rRNA gene sequencing analysis
Previously generated and processed 16S rRNA gene sequencing data from saliva samples was utilized for this 
study. DNA extraction, amplicon sequencing, and 16S rRNA gene sequencing data processing details have been 
previously  published28,37. Briefly, the V4–V5 region of the 16S rRNA gene was amplified, and amplicon sequenc-
ing was performed on an Illumina Miseq. For processing, primers were removed, data was filtered, and amplicon 
sequence variants (ASVs) were produced using Deblur as a QIIME2  plugin63–65). The taxonomic classifications 
obtained previously were used to remove ASVs that were classified as Mitochondria or Chloroplasts and ASVs 
present in less than 5% of samples or at an abundance of less than 0.1% of the mean sample depth were removed 
from analyses. Taxonomy was assigned to the remaining ASVs using a scikit-learn  classifier66 trained on the 
full-length 16S rRNA gene expanded Human Oral Microbiome Database (eHOMD; version 15.22)39 and samples 
were normalized by rarefying to the lowest read depth (2974 sequences) or conversion to robust centered log 
ratios (rCLR). Alpha and beta diversity were calculated for all samples using the scikit-bio67,  scipy68 and  deicode69 
Python packages as well as the  Phyloseq70 R package.

Statistical analysis
Statistical analysis of participant characteristics and microbial diversity and composition was conducted using 
R Version 4.0.2. For the participant characteristics, categorical variables are presented as frequency (counts) 
and percentage (%), and continuous variables are presented as medians and interquartile ranges (IQR). For the 
statistical analysis of taxonomic data, alpha and beta diversity comparisons, principal coordinate analysis (PCoA) 
plots, and relative abundance plots were performed using the R packages vegan and ggplot2. Shannon Diversity, 
Richness (observed number of ASVs), Simpson’s Evenness, and Faith’s Phylogenetic Diversity on rarefied data 
were used to evaluate alpha diversity at the ASV level and Pearson correlation was used to assess the relationship 
between alpha diversity and age/frailty. Pearson correlation coefficients and p-values were calculated for each 
alpha diversity measure and age/frailty. Bray–Curtis dissimilarity and weighted UniFrac distance (on rarefied 
data) as well as Robust Aitchison’s Distance (Euclidean distance on rCLR data) were the metrics used to evaluate 
beta diversity at the ASV level. Beta diversity metrics were analysed using permutational multivariate analysis of 
variance PERMANOVA with 10,000 permutations using the adonis2 function within the vegan R package. An 
additional model was examined that adjusted for sex, smoking status, height, weight, vegetable consumption, 
and medication use. PCoA plots were used to visualize beta diversity metrics. An alpha value of 0.05 was chosen 
for determining significance of both alpha and beta diversity.

Genus abundance tables were used for differential abundance analysis of bacterial taxa. This was conducted 
using four different tools designed for differential abundance analysis: Corncob version 0.2.071, ALDEx2 version 
1.22.072, MaAsLin2 version 1.4.073, and ANCOM-II version 2.174. For differential abundance testing, a preva-
lence cut-off filter was set to remove taxa found in fewer than 10% of samples. For ANCOM-II abundance tables 
were first processed using the function “feature_table_pre_process”, then the main “ANCOM” function, with a 
significance percentage cutoff of 80% for the w statistic. Corncob was run using “differentialTest” function with 
the wald test; ALDeX2 was run using the “aldex.glm” and “aldex.clr” functions with a total of 128 Monte Carlo 
samplings; MaAsLin2 was run using the function “maaslin2” with arcsine square root transformation and default 
parameters. With each of the above R packages, resulting p values were corrected for multiple hypothesis testing 
using the Benjamini and Hochberg algorithm and an alpha value of q = 0.1 was considered statistically significant. 
All differential abundance testing was also run with an additional model adjusted for sex, smoking status, stand-
ing height, body weight, diet (vegetable servings), and medication use. Taxa that remained significant in the fully 
adjusted model and identified by two or more of the differential abundance tools were considered noteworthy and 
further plotted to visualize the relationships. In addition, a sex-stratified analysis for all diversity and abundance 
tests was also conducted to explore variation in the microbiota across frailty/age groups in males and females.

Data availability
All sequence data has been uploaded to the European Nucleotide Archive and are available under the acces-
sion numbers PRJEB70783. Code used to analyze all data is available at https:// github. com/ vdecl ercq/ DECLE 
RCQ_ et_ al_ 2023_ Oral_ Micro biome_ Frail ty. Metadata used in this project cannot be shared publicly because 
participant consent and ethical restrictions do not permit public sharing of the data. Data and biosamples from 
Atlantic PATH are available to researchers through a data access process. Additional information can be obtained 
by contacting info@atlanticpath.ca.
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