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MRI‑based radiomics for predicting 
histology in malignant salivary 
gland tumors: methodology 
and “proof of principle”
Zahra Khodabakhshi 1,6, Laura Motisi 1,6, Andrea Bink 2, Martina A. Broglie 3, 
Niels J. Rupp 4, Maximilian Fleischmann 5, Jens von der Grün 1, Matthias Guckenberger 1, 
Stephanie Tanadini‑Lang 1,6 & Panagiotis Balermpas 1,6*

Defining the exact histological features of salivary gland malignancies before treatment remains 
an unsolved problem that compromises the ability to tailor further therapeutic steps individually. 
Radiomics, a new methodology to extract quantitative information from medical images, could 
contribute to characterizing the individual cancer phenotype already before treatment in a fast 
and non‑invasive way. Consequently, the standardization and implementation of radiomic analysis 
in the clinical routine work to predict histology of salivary gland cancer (SGC) could also provide 
improvements in clinical decision‑making. In this study, we aimed to investigate the potential of 
radiomic features as imaging biomarker to distinguish between high grade and low‑grade salivary 
gland malignancies. We have also investigated the effect of image and feature level harmonization on 
the performance of radiomic models. For this study, our dual center cohort consisted of 126 patients, 
with histologically proven SGC, who underwent curative‑intent treatment in two tertiary oncology 
centers. We extracted and analyzed the radiomics features of 120 pre‑therapeutic MRI images with 
gadolinium (T1 sequences), and correlated those with the definitive post‑operative histology. In our 
study the best radiomic model achieved average AUC of 0.66 and balanced accuracy of 0.63. According 
to the results, there is significant difference between the performance of models based on MRI 
intensity normalized images + harmonized features and other models (p value < 0.05) which indicates 
that in case of dealing with heterogeneous dataset, applying the harmonization methods is beneficial. 
Among radiomic features minimum intensity from first order, and gray level‑variance from texture 
category were frequently selected during multivariate analysis which indicate the potential of these 
features as being used as imaging biomarker. The present bicentric study presents for the first time 
the feasibility of implementing MR‑based, handcrafted radiomics, based on T1 contrast‑enhanced 
sequences and the ComBat harmonization method in an effort to predict the formal grading of salivary 
gland carcinoma with satisfactory performance.

Salivary gland cancers (SGC) are rare tumors, representing 1–5% of all head and neck cancers and include a 
wide range of histological features and clinical behaviors, which makes diagnosis and treatment  challenging1–3. 
Furthermore, the rarity of these tumors combined with the variable histology lead to a lack of studies that could 
provide strong recommendations for each individual histological  subtype4. Taken together, both the rarity and 
the heterogeneity of these malignancies pose a great challenge that makes general recommendations and ran-
domized trials if not impossible, at least insufficient. There is a general need for a more tailored, individualized 
treatment and this can only be provided by timely and precise diagnostic approaches.
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SGC are generally graded as low grade, high grade or  mixed5, and to provide a better treatment guidance, it 
could be important considering, among others, histology and  grade6. Especially the pretherapeutic histological 
classification and diagnosis remains a crucial challenge, as it could affect the type and extent of  surgery7 and 
consequently affect function and quality of life, or even the need for an additional surgical  intervention8,9. The 
consequent risk, if there is a misdiagnosis/undervaluing of the entity of the tumors, can be both an overtreatment 
and an undertreatment. One main risk is the increased risk for locoregional relapse, if the patient is not operated 
properly. On the other hand, an extensive surgery in case of low-grade tumors, that could be treated e.g. with 
partial parotidectomy alone, could lead to detrimental side effects for quality of life, such as facial nerve palsy. 
Generally, surgical over- and under treatment should be avoided in order to balance between the risk of relapse 
and the late side effects such as injury of the cranial nerves. Moreover, in the future a detailed radiomic report 
could augment or even replace molecular pathology in a faster and much less expensive way. Finally, a correct 
histological diagnosis guides the surgeon regarding extent of neck dissection and  reconstruction8,9.

Fine needle aspiration biopsy (FNAB) or core needle biopsy (CNB) are strongly endorsed by  guidelines8, 
but are often only suitable for distinguishing between malignant and benign tumors, and they are constrained 
in determining the exact histological grade. That means that these methods alone are always invasive but may 
only be able to make a limited  statement10. MR-imaging is nowadays the diagnostic standard for detection and 
description of the extent and invasion of SGC, but classical radiological features are similar between various 
malignant subtypes, so they cannot be differentiated by classical imaging  alone11. Initial diagnosis is mostly 
performed by cytology (e.g. via fine-needle-aspiration). This procedure is, as said before, invasive and cannot 
offer a conclusive histology. Moreover, even the grading-discrimination has to be revised in several  cases12. The 
overall accuracy to this regard does not exceed 89% even for experienced experts in high-volume centers and 
can drop down to 31.6% for some more difficult to assess subtypes. A complete histological evaluation is often 
only possible in the postoperative specimen, as these tumors are in close proximity to vulnerable structures 
like major vessels and nerves and it is difficult to acquire enough material without additional risks through the 
biopsy. Finally, as molecular pathology is clearly recommended in order to distinguish between various-often 
very similar subtypes-1, in the future radiomics could allow for a faster and less expensive solution, performed 
already at the beginning of the diagnostic procedures.

In recent years radiomics has attracted attention of many researchers, thanks to its possibility to convert 
medical images into data, i.e. make the data behind the images visible (comment: images are data), which can be 
subsequently analyzed for decision  support13. Previous studies showed the utility of these quantitative imaging 
descriptors as prognostic or predictive  biomarkers14–16.

For head and neck tumors, radiomics is a new research method, which through the characterization of pixel 
gray level distribution patterns that can be analyzed by machine-learning algorithms, could provide important 
information about tumor physiology and consequently improve the clinical management of these  tumors17.

Regarding SGC, there are only very few radiomics studies published so far, based on MRI. Under the com-
bination of the words “radiomics, salivary gland tumors” or “radiomics, salivary glands tumors” or “radiomics, 
salivary gland tumors, MRI” in Pubmed there are a total of 16 articles. Of these 3 are reviews and 3 being only 
CT-based. Furthermore, most of these studies tried only to differentiate between malignant and benign parotid 
gland  lesions18. This option offers no more information than a FNB or CNAB.

Therefore, the aim of this study was to develop a radiomics method able to distinguish between high- and 
low-grade salivary gland malignancies. There is a gap of knowledge and difficulties in distinguishing between 
these two types of tumors regardless of the preoperative diagnostic modality used, with postoperative molecular 
pathology being the only method providing high validity. MRI is nowadays the diagnostic modality of choice, but 
there is no real experience published regarding the extraction of MR-radiomic features for such purposes. This is 
the first MR-radiomic project investigating a larger cohort of patients with such rare tumor entities, with the aim 
to investigate a new method, leading to an improved and faster diagnosis and consequently a better treatment 
choice. The presented approach could augment treatment decisions as an additional pre-therapeutic information 
and may also be used in the future together with other clinicopathological factors as a prognostic biomarker.

Methods
Here we included patients with histologically confirmed SGC who underwent curative-intent treatment, from 
2009 to 2021 in the University Hospitals of Zurich and Frankfurt. Importantly, in the last 20 years, MRI was 
standard diagnostic modality for all patients with salivary gland tumors in both participating centers. How-
ever, the exact timeframe for every center was simply decided based on both availability of patient records and 
implementation of signed general consent for data use. The patients signed an informed consent, which allowed 
for collecting pseudonymized health-related data and images and analyze these retrospectively for any future 
projects. The images were pseudonymized before extraction and there was no possibility to identify the patients 
based on these. The study, including retrospective data use, was approved by the two local independent ethical 
committees of the participating centers (approval numbers: No. 30/17, Ethics Committee, University Hospital 
Frankfurt, Germany and BASEC-No.: 2019-00684 of the cantonal ethics committee of Zurich) and all methods 
were performed in accordance with the relevant guidelines and regulations.

All the patients included in the study had a diagnostic MRI (a 3 Tesla machine was the standard). Patients 
without MRI or only one without contrast were excluded from the analysis. The delineation of the tumor vol-
ume was performed in the contrast-enhanced T1-weighted-3D-sequences independently by two experienced 
radiation-oncology specialists. After that, all cases were reviewed together to look for any possible disagreements 
in order to enhance inter-observer reliability. No major contour deviations could be identified in this peer-review 
process. All SGC included were categorized according to the 2017 WHO Classification of Head and Neck Tumors19. 
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Tumors were graded as “low grade” versus “high-grade”. This is a formal grading, as there is no consensus about 
and it is not in use for every specific histology included here.

The stepwise approach followed is presented in Fig. 1. The workflow included the following steps: data acqui-
sition, preprocessing, feature extraction, clustering, ComBat harmonization, and univariate and multivariate 
data analysis.

Preprocessing
The MRI images were spatially resampled into isotropic voxel size of 1 mm using linear interpolation. N4 bias 
field correction was applied on the images to correct the spatial intensity  inhomogeneities21. MR intensity nor-
malization is the crucial step in quantitative MRI analysis due to high sensitivity and variability of MR intensities 
to different scanners and acquisition  parameters22. In this study we normalized the data so that the pixel intensity 
has zero mean and unit variance.

Feature extraction
The open source Pyradiomics  package23 was used for radiomic features extraction from the region of interests 
(ROIs). In total 837 radiomic features extracted including shape features 14features, first order intensity-based 
features (18 features), Gray Level Co-occurrence Matrix (GLCM, 24 features), Gray Level Run Length Matrix 
(GLRLM, 16 features), Gray Level Size Zone Matrix (GLSZM, 16 features), Gray Level Dependance Matrix 
(GLDM, 14 features), Neighboring Gary Tone Difference Matrix (NGTDM, 5 features) and wavelet-based features 
(730 features). Prior to feature extraction the intensities were discretized using a fixed bin number discretization 
method with 32 bins. All the extracted features are based on the definitions of Standardized Imaging Biomarker 
Initiatives (IBSI)19.

Unsupervised hierarchical clustering
Samples with similar acquisition parameters were grouped into clusters. Here we relied on unsupervised hier-
archical clustering to group similar samples into clusters. This method clusters the data points without prior 
knowledge based on a similarity matrix using a particular distance metric e.g. Euclidean  distance24. Silhouette 
score was used to determine the quality of clustering or the optimal number of clusters. A score close to 1 indi-
cates perfect clustering quality and a negative score suggests miss  classification25.

ComBat harmonization
ComBat method is a widely used harmonization method that was primarily used in genomics to remove the batch 
effects which refers to uncontrollable errors due to non-biological variations, e.g. time and place experimental 
 variation26. Several radiomics studies show the sensitivity of radiomic features to the variation in scanner and 
acquisition parameters (scanner effect). The scanner effect adversely affects the predictive or prognostic perfor-
mance of radiomic models and limits the use of multicentric dataset to develop generalizable models. Several 
studies show the effectiveness of ComBat harmonization in removing the scanner effect and increasing radiomic 
model performance. In this study in addition to MR intensity normalization we applied ComBat harmoniza-
tion on the extracted features. We considered the number of batches equal to the number of optimal clusters 
determined in the previous section.

Figure 1.  Workflow of the study.
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Machine learning pipeline
In this study we built radiomics models based on 4 different sets of extracted features including: features 
extracted from non-normalized images, normalized images, non-normalized image + ComBat, and normalized 
images + ComBat. The overall scheme of the machine learning pipeline is presented in Fig. 2. As the first step 
we conducted univariate analysis on each feature set. Mann–Whitney U-test was used to calculate AUC and 
P-values for each radiomics feature. The top 25 features based on their AUC were selected for further analysis 
in the multivariate section. In order to not limit the conclusions on the results of a specific classifier and feature 
selection method we used different methods. There are three general categories for feature selection approaches 
including: filter-based, wrapper, and embedded  approaches27. In this study, we used K-Best (ANOVA), recur-
sive feature elimination (RFE), and Lasso which are widely used feature selection algorithms belonging to the 
mentioned categories. For classification we used linear, nonlinear, and boosting algorithms including Logistic 
Regression (LR), Support Vector Machine (SVM), and Random Forest (RF). The data was split into train and 
test sets (80% train and 20% test). Model hyperparameter tuning implemented using repeated grid search cross 
validation and the balanced accuracy was used as evaluation metric. The best model was evaluated on the test set 
and balanced accuracy and AUC were reported. The procedure of training and testing repeated for 100 iterations 
for different train and test sets and the average of accuracy and AUC was finally reported. By this methodology 

Figure 2.  Machine learning pipeline of the study.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9945  | https://doi.org/10.1038/s41598-024-60200-9

www.nature.com/scientificreports/

we make sure that we have a reliable estimate of model performance and all data samples are included in train-
ing and testing. It should be mentioned here that since the data was imbalanced (the low-grade histology was 
much less frequently respresented) we used synthetic minority oversampling technique (SMOTE) to balance 
the training set in each iteration. In order to check if intensity normalization and ComBat harmonization have 
significant effect on radiomics model performance, the Frieman test followed by Conover post hoc analysis were 
applied on average AUCs and balanced accuracies.

Results
From the 126 cases examined, we selected a total of 120 patients fulfilling the criteria, 73 male and 47 female, 
with an age range of 18–92 (Median of 63.2 years). (Table 1. Patient and tumor characteristics).

Unsupervised clustering
The results of unsupervised hierarchical clustering for both normalized and non-normalized MR scans are pre-
sented in Fig. 3. Based on the results, increasing the number of clusters resulted in reduction of silhouette score 
and in both cases the score is lower than 0.5 which indicates that the clusters are overlapped. Based on silhouette 
score the optimum number of clusters for non-normalized and normalized datasets are 2 and 3 respectively. 
However, for normalized dataset we also consider only two clusters, since in order to successfully remove the 
scanner effect using ComBat harmonization at between 20 and 30 representative data samples in each cluster 
are  required26 but the third cluster in normalized dataset only has two samples. The clusters are represented as 
dendrograms in Supplementary Fig. 1.

Univariate analysis
Mann-Whithney U-Test was applied on normalized and non-normalized data sets before and after ComBat 
harmonization. The AUCs and p values for top 10 features based on the AUCs are represented in Table 2.

According to the table, the highest AUCs are 0.650, 0.655, 0.668, 0.660 which belong to wavelet-HLH_glrlm_
LongRunLowGrayLevelEmphasis, original_glszm_GrayLevel_variance, wavelet-HLH_firstorder_Minimum 
respectively. Based on the table the top 10 features are mostly from the wavelet category. Sphericity is the only 
feature from the shape feature category with AUC and P-value of 0.63 and 0.02 respectively.

Table 1.  Summary of patients’ characteristics.

Characteristics

Formal grade
 low/ 
high 
grade

Tumor histology Acinic cell carcinoma 8 6/2

Adenocarcinoma NOS (not-otherwise specified) 28 1/27

Adenoid cystic carcinoma 18 0/18

Basal cell adenocarcinoma 3 3/0

Carcinoma ex pleomorphic adenoma 9 0/9

Carcinoma ex pleomorphic adenoma malignant mixed tumour 1 0/1

Hyalinizing clear cell carcinoma 1 1/0

Epithelial myoepithelial carcinoma 5 2/3

Mucoepidermoid carcinoma (MEC) 16 14/2

Myoepithelial carcinoma 4 4/0

Small cell carcinoma 1 0/1

Squamous cell carcinoma (metastases) 2 0/2

Squamous cell carcinoma (primary not ruled out) 11 0/11

Salivary duct carcinoma 11 0/11

Sebaceous adenocarcinoma 1 0/1

Spindle cell osteosarcomatoid tumor 1 0/1

Sex (M/F) 73/47

Age (years) 63.2 (18–92)

Tumor location Parotid 109

Sublingual 1

Submandibular 6

Minor salivary glands 4

Tumor site Right 57

Left 62

Middle-line 1
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Multivariate analysis
The results of multivariate analysis in terms of average AUCs and balanced accuracies are represented in Fig. 4. 
According to the results, the random forest classifier achieved the highest AUC and balanced accuracy of 0.66 
and 0.64 respectively. Between the four datasets used in our analysis, intensity normalized images in combination 
with ComBat feature harmonization could increase the performance of radiomic models.

The Friedman test was applied on both AUCs and balanced accuracies and the corresponding p-values were 
0.00002 and 0.005 which indicates that there is significant difference between the performance of radiomics 
models based on different datasets. The p-values based on Conover post hoc analysis and critical difference plots 
are represented in Fig. 5. In the critical difference plot the most left vertical line represents the dataset which 
results in better performance and the right line represents the worse one. The horizontal lines connect cases with 
similar performance. Based on Fig. 5b, d intensity normalized images followed by ComBat harmonization has 
the best rank in terms of AUC and balanced accuracy. Also, non-normalized image, non-normalized + ComBat 
and normalized images resulted in similar performance.

The count plots of top 10 frequently selected features during training procedures are represented in Fig. 6. 
For both no-normalized and no-normalized image + ComBat wavelet-HLH-original—first order-minimum has 
been frequently selected during the training process and achieved the first rank. For normalized and normal-
ized + Combat the first rank features based on the countplot are wavelet-LHL-glrlm-ShortRunHighGrayLev-
elEmphasis and original-glszm-GrayLevelVariance.

Discussion
In the present pilot study, the primary objective was to investigate the potential of MRI-radiomic based models 
for predicting high-grade versus low-grade histology of untreated salivary gland cancer. Secondly, the usage of 
harmonization in improving the performance of such models was demonstrated, as there was a significant dif-
ference between the performance of models based on MRI intensity normalized images and harmonized features 
and other models. The best radiomic model achieved average AUC of 0.66 and balanced accuracy of 0.63, which 
can be deemed satisfactory when the limitations of the study are being considered. However, there is surely room 
for improvement. This is to the best of our knowledge one of the first efforts to characterize the histology of SGC 
by the means of radiomics, the largest cohort reported so far and the first one introducing the specific methods 
described above. This methodology could be implemented in a larger cohort to provide more valid conclusions 
and even a precise prediction of the exact histopathological subtype.

The correct pre-therapeutic classification of salivary gland neoplasms remains of crucial interest for pre-
operative decision making. The extent of surgery, i.e. partial or total parotidectomy, sacrificing the facial nerve 
(at least indirectly, based on aggressiveness/ infiltration) and the decision for or against a neck dissection or the 
probability of postoperative radiotherapy strongly depends on the histopathological findings 28,29. Unfortunately, 
this information can only be obtained after initial surgery, as open biopsies should be avoided. Although nowa-
days FNAB and CNB are considered sensitive and specific enough to differentiate between benign and malignant 
neoplasms (57–86% and 87–100% respectively) they may provide some hints regarding the exact histology or the 
grading, which often have to be revised after postoperative pathological examination of the tissue, in particularly 
in centers without access to molecular pathology. Interestingly, even post hoc revisions of the histology or the 
malignancy of the tumors seem to be a not so rare  phenomenon30, underlining the unmet need for additional 
diagnostic methods and work up. Finally, both of the methods reported above are invasive procedures, still 
harboring the risk of post-interventional complications of any grade, in at least 14% of the  patients31 with CNB 
being associated with a slightly increased rate of  sequela28.

Karimian et al. investigated the utilization of FDG-PET-CT to characterize high-grade malignancies in 45 
patients and could demonstrate that the tracer uptake positively correlated with the  grading29. In that study no 
machine learning model was trained or tested on data, but the correlation between SUV and tumor grade was 

Figure 3.  Identifying the optimum number of clusters based on Silhoutte score for (a) normalized dataset, (b) 
non-normalized dataset.
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investigated and the dataset was relatively small and also imbalanced (41 cases including 24 high grade, 9 low 
grade and 8 intermediate grade). MR-radiomics have been utilized before to address functionality of salivary 
glands and more precisely to predict xerostomia based on post-treatment  alterations32,33. In recent years, first 
efforts to implement distinct imaging features for improving histology prediction have been made. Zheng et al. 
developed a nomogram in a total of 115 patients after analyzing 17 radiomic MR-features in order to differentiate 
benign from malignant parotid lesions. In a newer study, topology-based properties of two-dimensional MR-
images of 39 patients were evaluated to predict malignancy grade in parotid gland  cancer34. Although the cohort 
was very small and only limited features were examined, this study was one of the first to implement radiomics for 
this exact purpose. The same group reports also of another approach, namely six conventional machine-learning 
and five deep learning (DL) algorithms 35. Despite the small sample size both studies provided promising results 

Table 2.  AUC and p values of top ten radiomic features for normalized and non-normalized images before 
and after applying ComBat harmonization.

Feature AUC P value 

Normalized

wavelet-HLH_glrlm_LongRunLowGrayLevel Emphasis 0.650 0.012

wavelet-HLH_gldm_Dependence Variance 0.648 0.014

wavelet-HLH_glcm_Maximum Probability 0.644 0.016

wavelet-HHL_girlm_LongRunLowGrayLevel Emphasis 0.644 0.017

Normalized wavelet-HLH_gldm_Large DependenceLowGrayLevelEmphasis 0.644 0.017

wavelet-LHH_firstorder_Kurtosis 0.643 0.017

wavelet-LLH_glcm_Imc2 0.643 0.017

wavelet-LLH_glcm_MCC 0.642 0.018

wavelet-HLH_firstorder_Skewness 0.642 0.018

wavelet-LLH_gldm_Large DependenceHigh GrayLevel Emphasis 0.639 0.020

Normalized + Combat

original_glszm_GrayLevelVariance 0.655 0.010

wavelet.HLH_ngtdm_Strength 0.649 0.013

ComBat wavelet.LLH_ngtdm_Strength 0.648 0.014

wavelet.LLH_glcm_Imc2 0.647 0.014

wavelet.HLH firstorder Skewness 0.646 0.015

wavelet.HHL_glrlm_LongRunLowGrayLevel Emphasis 0.646 0.015

Normalized wavelet.HLH_gldm_DependenceVariance 0.641 0.019

wavelet.HHL_glszm_LowGrayLevelZoneEmphasis 0.638 0.022

wavelet.LLH_glcm_MCC 0.636 0.023

wavelet.HLL_ngtdm_Complexity 0.636 0.024

Non-Normalized

wavelet-HLH_firstorder_Minimum 0.668 0.005

wavelet-HLH_firstorder_Skewness 0.647 0.014

wavelet-HLH_glrlm_LongRunLowGrayLevelEmphasis 0.646 0.015

wavelet-LLH_glcm_Imc2 0.646 0.015

wavelet-HHH firstorder Minimum Normalized 0.645 0.016

wavelet-LLH_glcm_MCC 0.642 0.018

No-wavelet-LHH firstorder Kurtosis 0.640 0.020

wavelet-HLH_gldm_Dependence Variance 0.640 0.020

wavelet-LHH_firstorder_Minimum 0.639 0.020

wavelet-HLH_gldm_Large Dependence LowGrayLevelEmphasis 0.638 0.022

Non-Normalized + Combat

wavelet.HLH firstorder Minimum 0.660 0.008

original_glszm_GrayLevel Variance 0.650 0.012

ComBat wavelet.HHH firstorder Minimum 0.633 0.027

+original_shape_Sphericity 0.632 0.028

wavelet.HHH_glszm_GrayLevel Variance 0.632 0.029

wavelet.LLH_glcm_Imc2 0.629 0.031

Normalized wavelet.HLH firstorder Skewness 0.628 0.034

-wavelet.LHL glrlm_ShortRunHighGrayLevelEmphasis 0.626 0.036

No wavelet.HHL_glszm_LowGrayLevelZone Emphasis 0.624 0.040

wavelet.LHH_glszm_SmallAreaLowGrayLevelEmphasis 0.620 0.046
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Figure 4.  Average AUC and balanced accuracy for different datasets and different combination of classifiers 
and feature selectors.

Figure 5.  Heatmap of P values and critical difference plot of radiomics model performance in terms of AUC 
and balanced accuracy based on different datasets. (a) Heatmap of AUCs p values, (b) critical difference plot 
based on AUCs. (c) Heatmap based on balanced accuracy p values. (d) critical difference plot based on average 
balanced accuracy.
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regarding performance, with higher AUC, ACC and sensitivity as in the present study. One possible explanation is 
that the very small dataset is totally balanced and therefore it was less challenging to provide such results. Second, 
the variation in the MRI scans was less, as the study was unicentric and with fewer cases and both T1-weighted 
and T2-weighted sequences were used for all patients. Similar to our findings, features associated with tumor 
heterogeneity seem to play an important role for grading classification. Moreover, this has been previously the 
case also in radiological investigations, where heterogeneous enhancement and cystic and necrotic parts are 
generally correlated with high-grade  features11. Almost all of the significant features in the present study were 
wavelet features and could be generally explained by the heterogeneity observed by radiologists. Intriguingly, 
also the most important non-wavelet feature observed here, namely “sphericity” might be explained by the ill-
defined borders observed in highly malignant lesions as described  before11,36.

In contrast to other studies, the present dataset was highly heterogeneous, both in terms of included cases 
and in terms of acquired imaging. Therefore, we also investigated the effect of MRI intensity normalization and 
feature harmonization in reducing the variability in the dataset and better performance of the radiomic model. 
This becomes even more important in the case of salivary gland tumors, one of the most heterogeneous tumor 
entities, comprising more than 20 different histological subtypes. Based on our results, intensity normalized 
images in combination with ComBat harmonization significantly improved the performance of the current 
radiomic model, specifically in comparison to models based on only normalized images without ComBat harmo-
nization, the average improvement was 6.3% and 4% for AUC and balanced accuracy respectively. Interestingly, 
almost all of the important features resulting in high AUCs were associated with wavelet parameters, with only 
the feature “sphericity” resulting in comparable results. According to the literature, malignant parotid tumors 
are linked with ill-defined and infiltrative margin, low and inhomogeneous signal intensity on T1 contrast MR 
 scans37. In our study, minimum intensity and gray level variance were reported as high rank and frequently 
selected features. According to the results of univariate analysis, for non-normalized images the minimum from 
the first order feature category repeatedly appears in the table as a feature with high AUC. This feature represents 
the minimum intensity inside the tumor region. In the existing literature, malignant parotid tumors are linked 
with low intensity on T1 MRI  scans37. Since some of the low grade malignant SGC tumors can also represent 
benign tumor characteristics it can be inferred that high grade SGC are linked with lower signal intensity in 
tumor region and low grade are linked with higher signal intensity. Between the morphological features, sphe-
ricity also has a relatively high AUC of 0.63. This feature quantifies how the tumor shape is close to a perfect 
sphere like  volume38. Some studies indicate that malignant parotid tumors are characterized with an ill-defined 
margin. It can be inferred that low grade SGC may represent a more sphere-like shape than high grade lesions. 
From texture feature category, dependence-variance, gray level variance, low and high gray level emphasis are 
between top features. All these features quantify the heterogeneity of gray levels or intensities inside the ROI. It 
has been already reported, that the malignancy of parotid tumors could be linked with intensity heterogeneity 
within the tumor  region37.

All of the extracted features in our study were defined in compliance with IBSI. Moreover, the preproc-
essing was based on IBSI recommendations for MRI radiomic studies. In overall, intensity discretization is a 

Figure 6.  Count plot of high frequently selected features for extracted features based on (a) Normalized (b) 
Normalized + ComBat (c) No-normalized (d) No-normalized + ComBat.
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fundamental pre-processing step in a radiomic workflow in order to suppress the existing noise in the image and 
make the subsequent calculation of texture features tractable. There are two methods of intensity discretization 
including fixed bin size and fixed bin number (FBN). According to IBSI documentation the intensity discre-
tization method is modality dependent. Since the FBN method applies a normalization effect on the image, it 
would be beneficial to use it on a raw MRI dataset. Moreover, FBN adjusts the contrast between the  images38. 
According to the radiomic features definitions provided by Image Biomarker Standardized Initiative (IBSI)38, 
minimum intensity is the minimum intensity of voxels included in the region of interest (here tumor region), and 
gray level-variance (specifically GLSZM gray level variance in our study) “estimates the variance in zone (linked 
voxels with identical intensities) counts over the gray levels”38. Minimum intensity correlates with necrosis in 
tumor region and gray level variance is related to the tumor heterogeneity.

In our study, we were dealing with a highly heterogeneous MRI dataset and the scans were acquired with 
more than 20 different MRI acquisition parameters. In order to harmonize the data (using ComBat method) we 
needed to group the similar scans into clusters. To do so we implemented unsupervised hierarchical clustering. 
Different clustering approaches are proposed in the literature and the most popular methods are: unsupervised 
hierarchical clustering, K-means, and Expectation Maximization (EM)39. In agglomerative clustering (the method 
implemented here), each data sample is considered as a cluster initially and then each pair of similar clusters 
are merged together. The procedure continues and at the end there are only two clusters to merge. In contrast 
to K-mean and EM clustering methods, in hierarchical clustering there is no need to predefine the number of 
clusters and it should be noted that the former algorithms strongly depend on the initial assignment of number 
of clusters. If there is no clue about the approximate number of clusters, the algorithm should run for several 
random numbers of  clusters40. Since we had several different MRI acquisition parameters, we decided to use 
hierarchical clustering to select the optimum number of clusters (similar scans) automatically.

There are lots of studies which show the effectiveness of ComBat harmonization in removing the center 
effect in radiomic studies with different modalities including PET, CT and  MRI41–43. Orlhac et.al44 first used the 
ComBat harmonization to harmonize the features extracted from healthy liver tissue and breast tumors based 
on FDG-PET scans acquired in two different centers. Based on their results the SUV and features extracted from 
healthy liver tissue were different in two centers but after applying ComBat harmonization the distribution of 
features overlapped greatly. Also, the features distributions of triple negative breast cancer patients were more 
comparable after ComBat  Harmonization44. In another study Mahon et al.45 investigated the effect of ComBat 
harmonization on extracted features from the CT scans of lung phantom and human subjects. The scans were 
acquired using 32 different chest imaging and 6 different thorax imaging protocols for phantom and human 
subjects respectively. According to their results, ComBat harmonization could reduce the percentage of features 
with significantly different distribution to 0–2% and 0–19% for phantom and human subjects  respectively45. 
Another study investigated the effectiveness of ComBat harmonization on performance of a classification radi-
omics model based on a heterogeneous MRI dataset. Considering all feature categories, ComBat harmonization 
could increase the model accuracy significantly. In that study two different variants of ComBat were implemented 
and both improved the results in comparison to unharmonized  data46.

The main objective of our study was to investigate the power of radiomic features to distinguish between high 
grade and low grade SGC and we did not consider the significance of other variables. In a study by Baba et al.47 
the impact of age and gender was investigated. According to their results, patients with high grade parotid tumors 
were significantly older than patients with low grade tumors. Moreover, patients with high grade tumors were 
mostly male. Age and gender could be considered as potential additional variables to be integrated together with 
radiomics in a future model in order to predict high grade and low-grade parotid tumors.

There are limitations to this study. First, the still limited number of patients included, as well as the imbalance 
between low- and high-grade cases. Unfortunately, this represents the epidemiological “real-world” situation of 
these rare tumors. However, it should be mentioned that there were also other limitations which hindered the 
model to reach higher performance. The main challenge was data heterogeneity. In this study the MRI scans 
were acquired with more than 20 different acquisition parameters. Considering large variation in intensity range 
of the MRI images due to variation of scanner and protocol made our study more challenging. Please note that 
even scans from the same patient with the same scanner and same parameters but at different time points do not 
have the same intensity  range48. However, we implemented harmonization in both image and feature domain to 
address this problem. In the real word domain most of the datasets are imbalanced and one class is less repre-
sented than the other class. This was also the case in our study. With an imbalanced dataset, the performance of 
the classification algorithms tends to be biased toward the majority class since the existing algorithms assume 
equal distribution of both classes and tend to minimize the overall error in which the minority class contributes 
 less49. There are some approaches to address this issue, including undersampling of the majority class, oversam-
pling of the minority class, and using cost sensitive  algorithms50. In our study we used the synthetic minority 
oversampling technique to oversample the minority class. Second the different MRI-vendors and platforms used 
for image acquisition, as well as possible differences in protocols, e.g. regarding slice thickness and contrastat 
agent volume used in each case. The ComBat harmonization method can account for this variability, but it is also 
limited by inability to harmonize multimodal distributions, unknown and multiple imaging  parameters51. Last 
but not least, although the high percentage of NOS-adenocarcinomas (“NOS adenocarcinomas” or salivary gland 
adenocarcinoma not otherwise specified is according to the WHO classification a tumor without the histological 
features characteristic of other cancer types). included here corresponds to larger series published previously, 
it seems a bit unusual under today`s point of view. This can be attributed to the long inclusion-interval for the 
cases presented here, as elaborate molecular analyses were not established in the past. All of the above limita-
tions may affect the generalizability of the results. The conclusions drawn here should firstly be validated in an 
external cohort and then the method integrated in a prospective trial before being suitable for clinical routine.
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Nevertheless, the innovative character of the idea, as it is not only one of the first, but the largest and only 
bicentric study examining the topic and the encouraging performances observed could serve as a paradigm for 
future larger cohorts trying to answer the unmet clinical need of pre-therapeutic histological prediction in SGC.

Conclusion
The present bicentric study presents for the first time the feasibility of implementing MR-based, handcrafted 
radiomics, based on contrast-enhanced T1-weighted- sequences and the ComBat harmonization method to 
predict grading of salivary gland carcinoma with satisfactory performance. Further research and larger cohorts 
are needed to validate these observations and make additional and more specific predictions.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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