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Unveiling the link between lactate 
metabolism and rheumatoid 
arthritis through integration 
of bioinformatics and machine 
learning
Fan Yang , Junyi Shen , Zhiming Zhao , Wei Shang * & Hui Cai 

Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by synovitis and joint 
damage. Recent findings suggest a potential link to abnormal lactate metabolism. This study aims to 
identify lactate metabolism-related genes (LMRGs) in RA and investigate their correlation with the 
molecular mechanisms of RA immunity. Data on the gene expression profiles of RA synovial tissue 
samples were acquired from the gene expression omnibus (GEO) database. The RA database was 
acquired by obtaining the common LMRDEGs, and selecting the gene collection through an SVM 
model. Conducting the functional enrichment analysis, followed by immuno-infiltration analysis 
and protein–protein interaction networks. The results revealed that as possible markers associated 
with lactate metabolism in RA, KCNN4 and SLC25A4 may be involved in regulating macrophage 
function in the immune response to RA, whereas GATA2 is involved in the immune mechanism of 
DC cells. In conclusion, this study utilized bioinformatics analysis and machine learning to identify 
biomarkers associated with lactate metabolism in RA and examined their relationship with immune 
cell infiltration. These findings offer novel perspectives on potential diagnostic and therapeutic targets 
for RA.

Keywords Rheumatoid arthritis, Lactate metabolism, Immune infiltration, Bioinformatics analysis, Machine 
learning

Rheumatoid arthritis (RA), a systemic autoimmune disorder, is clinically distinguished by cartilage and bone 
destruction, frequently leading to disability and a reduced  lifespan1. The global prevalence of RA is estimated 
to be 0.3–1%, with a male-to-female ratio of 1:6. The RA occurrence rate is approximately 0.3–0.5% in the 
Asia–Pacific region. The region’s significant population poses a considerable challenge regarding the economic 
burden of RA and the utilization of healthcare  resources2. Different immune cells, such as synovial fibroblasts, 
monocytes, macrophages, and dendritic cells, may infiltrate and undergo stimulation for proliferation and dif-
ferentiation due to the continuous CD4+ T cell growth during the initial phase of RA. This process produces 
numerous pro-inflammatory, chemokine, and angiogenesis  factors3. A recent examination of the literature in 
this field discovered that lactate has been recognized as a possible indicator for  RA4. Lactate may function as an 
active substance in RA patients with significant infiltration of lymphoid cells in their synovium, causing a shift 
in CD4+ T cells towards a pro-inflammatory state and exacerbating the  disease5. Lactate is predominantly gener-
ated in the cytoplasm due to hypoxia or the increased glycolysis rate in rapidly dividing cells. The accumulated 
lactate is carried to the surrounding area, where it has the potential to enter various cells, including CD4+ T 
cells, macrophages, dendritic cells, and osteoclasts. Lactate has two possible effects. On the one hand, lactate 
is preferred by active immune cells as a means of supporting their activity. Conversely, the build-up of lactate 
inside the tissue microenvironment functions as a signaling molecule that limits the ability of immune cells to 
function. Therefore, the target cells may undergo differentiation and activation, impacting their performance and 
ultimately contributing to RA  development6,7. Nonetheless, the precise molecular process of lactate metabolism 
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and the infiltration of immune cells in RA remains uncertain. Hence, the quest for biomarkers holds immense 
significance for identifying and treating RA using immunotherapy.

A growing body of research has concentrated on the crucial significance of immune infiltration in RA progres-
sion. Most of the inflammatory infiltration in RA is composed of the synovial subliming’s myeloid pathotype, 
including monocytes and/or macrophages. Positive correlations exist between the extent of macrophage infiltra-
tion in joint tissues and cytokine levels derived from monocytes in the  bloodstream8. Additionally, identifying 
genes associated with RA diagnosis relies heavily on bioinformatics analysis and machine learning techniques. 
A prior bioinformatics investigation revealed that CLP1 could substantially impact RA’s progression by modify-
ing immune cell  infiltration9. The potential usefulness of LSP1, GNLY, and MEOX2 in diagnosing and treating 
RA, along with the potential influence of immune cell infiltration on the development and advancement of 
RA, should not be  underestimated10. A recent investigation discovered that GZMA-Tfh cells, CCL5-M1 mac-
rophages, and CXCR4- memory activated CD4+ T cells/Tfh cells could potentially affect the development and 
advancement of RA, with particular emphasis on GZMA-Tfh cells during the initial stages of RA  pathogenesis11. 
However, lactate metabolism and the molecular processes underlying immune cell infiltration in RA are poorly 
understood. Further examination of immune cell infiltration and exploration of potential therapeutic targets 
linked to it are necessary.

The study utilized a microarray dataset of synovial tissue from individuals with RA and without health issues 
acquired from the GEO database. The dataset was used to screen genes related to lactate metabolism. Addition-
ally, bioinformatics analysis and machine learning, using two algorithms, namely CIBERSORTx and ssGSEA, 
were employed to perform immune infiltration analysis. The objective was to identify disparities in immune cell 
infiltration and potential biomarkers and explore the connection between immune cells and lactate metabolism-
related genes and the role of lactate metabolism in immune cell infiltration during RA progression.

Methods
Data download
RA-related datasets  GSE191912,  GSE2974613 and  GSE5523514 from the GEO  database15 were obtained using the 
R package  GEOquery16. The data platform for GSE1919 was GPL91 [HG_U95A] Affymetrix Human Genome 
U95A Array, and it included microarray gene expression profiling data of synovial tissue samples from five 
patients with RA (RA group) and five fully matched normal subjects (Control group). The data platform for 
GSE29746 was GPL4133 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number 
version), originating from Homo sapiens. Synovial tissue samples were chosen from nine patients diagnosed 
with RA and 11 partially matched samples. The gene expression profile data of synovial tissue samples from 
individuals without abnormalities served as the Control group. The data platform for GSE55235 was GPL14951 
Illumina HumanHT-12 WG-DASL V4.0 R2 expression bead chip GPL96 [HG-U133A] Affymetrix Human 
Genome U133A Array. It consisted of microarray gene expression profile data from synovial tissue samples of 10 
RA patients (RA group) and synovial tissue samples of 10 completely matched normal subjects (Control group) 
from H. Sapiens. This study included all the samples that were selected. The annotation of the dataset probe name 
utilizes the associated GPL platform file. Table 1 displays the dataset details.

The GeneCards  database17 offers thorough details on human genes. The phrase ‘lactate metabolism’ was 
employed as our search term to retrieve lactate metabolism-related genes (LMRGs) from the GeneCards database. 
After filtering LMRGs that were unclassified as ‘Protein Coding’ and had a ‘Relevance score’ greater than 2, two 
LMRGs were successfully identified. Furthermore, associated pathways containing the keyword ‘autophagy’ were 
obtained from the Molecular Signatures Database (MSigDB), and 289 LMRGs from eight gene sets considered 
references were compiled. In this study, the LMRGs obtained from the two sources were combined, resulting in 
289 LMRGs available for analysis. Table S1 presents precise gene designations.

Differential expression analysis
To identify the likely biological functions, characteristics, and pathways of the different genes between the RA 
disease and control groups. Initially, the RA datasets GSE1919, GSE29746, and GSE55235 underwent batch effect 
removal to obtain the merged RA dataset. Then, the data sets were compared before and after the batch effect 
removal using distribution boxplots and principal component analysis (PCA) graphs. The RA dataset was split 
into the RA and Control groups for differential analysis. Differential expression genes (DEGs) were identified 

Table 1.  Information of datasets. RA, rheumatoid arthritis.

Items GSE1919 GSE29746 GSE55235

Platform GPL91 GPL4133 GPL96

Sorting type Expression profiling by array Expression profiling by array Expression profiling by array

Species Homo sapiens Homo sapiens Homo sapiens

Disease RA RA RA

Tissue Synovial tissue Synovial tissue Synovial tissue

Samples in disease group 5 9 10

Samples in control group 5 11 10

Reference 20858714 22021863 24690414
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using P < 0.05 and |logFC|> 0 thresholds. Genes with logFC > 0 and P < 0.05 were considered up-regulated dif-
ferentially expressed, while genes with logFC < 0 and P < 0.05 were considered down-regulated differentially 
expressed. The R package ggplot2 was used to create a volcano map, displaying the outcomes of the differential 
analysis. For subsequent analysis, lactate metabolism-related differential expression genes (LMRDEGs) were 
obtained by intersecting DEGs with LMRGs. Next, a comparison graph was created to analyze the grouping 
differences between the RA and Control groups in the RA dataset for LMRDEGs. Then, the key genes were 
identified for further analysis based on their statistically significant differences. The R package  RCircos17 was 
employed to create a chromosome map and visualize the essential gene arrangement on human chromosomes. 
Predicting possible functional similarity by chromosome distribution. Additionally, the R package pheatmap 
was utilized to represent gene expression as a heatmap visually.

Support vector machines (SVM) screening model
SVM18 represents a model for classifying data into two categories. The fundamental design is a linear classifier 
with the widest range defined within the feature space. A model was constructed utilizing the SVM algorithm 
and LMRDEGs as the basis. The primary genes for the subsequent analysis were selected based on their preci-
sion, with preference given to those with the highest (lowest error rate) number.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
GO analysis is commonly utilized in large-scale studies to investigate functional enrichment, encompassing 
biological process (BP), molecular function (MF), and cellular components (CC)19. The extensively utilized 
 KEGG20 database encompasses information regarding genomes, biological pathways, diseases, drugs, and various 
other subjects. The clusterProfiler R package was  utilized21 to conduct GO and KEGG annotation analysis on 
the pivotal genes. The entry screening criteria included a P-value less than 0.05 and a false discovery rate (FDR) 
value (q-value) less than 0.25 to be considered significantly enriched. The correction method for the P-value 
was BH (Benjamini-Hochberg).

Gene set enrichment analysis (GSEA)
The gene table was arranged based on their connection with the phenotype to determine the contribution of 
genes to the phenotype.  GSEA22 was employed to evaluate the distribution pattern of the genes in a predefined 
gene set. The gene set ‘c2.cp.all.v2022.1.Hs.symbols’ was acquired from the MSigDB  database23. Subsequently, 
the R package clusterProfiler was employed to examine the RA and Control groups within the RA dataset. The 
GSEA was performed on all genes using the following parameters: the seed was set to 2022, 100,000 calculations 
were performed, and each gene set contained a minimum of five genes and a maximum of 500 genes. The P-value 
correction method was BH, and the significant enrichment was determined based on the criteria of P < 0.05 and 
FDR value (q.value) < 0.25.

Gene set variation analysis (GSVA)
GSVA24 is an unsupervised and non-parametric technique that mainly involves transforming the expression 
matrix of specific genes across samples into the expression matrix of specific sets of genes. To assess the enrich-
ment results of gene sets in the nuclear transcriptome microarray data. To evaluate if various pathways are 
enriched across distinct samples. The gene set ‘h.all.v7.4.symbols.gmt’ was acquired from the MSigDB database. 
GSVA was conducted on the RA dataset to assess the disparity in functional enrichment among the two sample 
groups based on gene expression levels. The set was screened based on the criterion that P < 0.05.

Immune infiltration analysis
Based on the linear support vector regression theory, the CIBERSORTx algorithm was used to analyze immune 
infiltration and determine the composition and quantity of immune cells in mixed cell populations by deconvo-
luting the transcriptome expression matrix. After uploading the gene expression matrix data from the RA dataset 
to CIBERSORTx, it was combined with the LM22 characteristic gene matrix. After eliminating the data with 
an immune cell enrichment score above zero, the accurate outcomes of the matrix displaying the abundance of 
immune cell infiltration were obtained and showcased. The stacked histograms display and calculate the ratio of 
immune cell infiltration in various sample groups within the GDM dataset. The gene expression matrix of the data 
set was merged to compute the correlation between immune cells and important genes in various groups of the 
RA dataset. Subsequently, the R package ggplot2 was utilized to generate a correlation dot plot for visualization.

The proportionate prevalence of every immune cell infiltration was measured using the ssGSEA algorithm 
for single-sample gene-set enrichment analysis. Reflect the relative abundance of immune cell infiltration in each 
sample using the enrichment fraction acquired through ssGSEA. Label different types of invading immune cells, 
including CD8+ T lymphocytes, dendritic cells, macrophages, regulatory T lymphocytes, and other subcategories 
of human immune  cells25. The overall infiltration level of 28 immune cells in each sample was represented using 
the enrichment score obtained from the analysis of the ssGSEA algorithm in the R package GSVA. The dispar-
ity and association of immune cell infiltration levels were examined between the two algorithms using RA and 
Control groups (or other grouping) and key genes. The outcomes were displayed in a group comparison chart, 
correlation heat map, and complex heat map.

Protein–protein interaction (PPI)
PPI is a network of distinct proteins that interact with one another. The STRING  database26 identifies proteins 
and predicts their interactions. For this research, a PPI network was generated using the STRING database (with 
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a minimum interaction score of 0.150) based on the identified hub genes. Chemical complexes with specific 
biological functions may exist within the interconnected sections of the PPI network. Consequently, genes were 
identified in the PPI network interacting with other central genes and included in the subsequent analyses. Visual 
PPI network models were constructed using Cytoscape  software27 (version 3.9.1). The GeneMANIA  website28 
was utilized to predict genes with similar functions to the target genes. The GeneMANIA website was utilized 
to construct networks of interactions and make predictions about hub genes.

Prediction networks for RNA-miRNA, mRNA-TF, mRNA-drug, mRNA-RBP
ENCORI, a  database29, offers a high-throughput search for miRNA targets using CLIP-Seq and degradome 
techniques. It presents diverse visualization interfaces to explore miRNA targets and encompasses extensive data 
on miRNA-lncRNA, miRNA-mRNA, miRNA-RNA, and RNA-lncRNA interactions. The ENCORI database was 
utilized to predict miRNAs that interact with CRRDEGs. Subsequently, the results were filtered to include only 
miRNAs with a database number above three. The mRNA-miRNA interaction network was visualized using the 
Cytoscape software. The ENCORI database was utilized to predict RBPs that interact with CRRDEGs. Subse-
quently, RBPs with shear fragments greater than five in upstream and downstream regions were selected from 
the results to construct the mRNA-RBP interaction network using Cytoscape software.

The CHIPBase  database30 (version 3.0) (https:// rna. sysu. wsu. cn/ chipb ase/) was used to discover numerous 
binding motif matrices and their corresponding binding sites from the ChIP-seq data of DNA-binding proteins. 
Additionally, it predicted millions of transcription factors (TF) and gene transcriptional regulation. After utilizing 
the CHIPBase database to predict TFs interacting with CRRDEGs and filtering for TFs with over 14 supporting 
samples, the mRNA-TF interaction network was constructed using Cytoscape software.

The DGIdb  database31, also known as the drug-gene interaction database, consolidates documented drug-
gene interactions from various sources, including DrugBank, PharmGKB, Chembl, Drug Target Commons, and 
TTD, along with literature reports. The platform offers two categories of information: documented drug-gene 
interactions derived from literature sources and anticipated drug-gene interactions projected through analysis 
of functional, structural, and other attributes shared between drugs or gene families. Drugs interacting with 
CRRDEGs were filtered for medications with more than two reference counts using the DGIdb database. Sub-
sequently, Cytoscape was employed to visualize the mRNA-drug interaction network.

Statistical analysis
R software (version 4.2.2) was used to perform all data processing and analysis in this study. The Wilcoxon rank 
sum test was used to compare two groups of continuous variables, and the independent student t-test was used 
to estimate the statistical significance of normally distributed variables. The Kruskal–Wallis test was utilized to 
compare involving three or more groups. Fisher’s exact or chi-square test was employed to assess and compare 
the statistical significance of two sets of categorical variables. The outcomes were computed using Spearman rank 
correlation analysis if not explicitly stated. The correlation coefficient was determined between diverse molecules 
or scores; All P statistics were considered two-sided. A P-value below 0.05 was considered the threshold for statis-
tical significance. The figures in graphical abstract were produced by Figdraw and Adobe illustrator (version 26.0).

Results
Technology roadmap
Figure 1 displays the flowchart. Initially, the GSE1919, GSE29746, and GSE55235 datasets related to RA were 
subjected to batch effect removal. Subsequently, the combined RA dataset was obtained and analyzed to com-
pare the RA group with the Control group. DEGs and LMRGs meeting the |logFC|> 0 and P < 0.05 criteria were 
screened and intersected to derive LMRDEGs. Graphs presented the comparison, we analyzed the chromosomal 
location and functional similarity of important genes, conducting correlation analysis on these gene expres-
sions in the RA dataset. The crucial genes were analyzed using GO and KEGG methods. Subsequently, GSEA, 
GSVA, and immune infiltration analysis were performed on all samples in the RA dataset using two algorithms, 
CIBERSORTx and ssGSEA. Next, we utilize the crucial genes in the RA dataset to create the LMRGs score for 
the samples. Subsequently, we categorize the RA group samples into the High and Low groups based on the 
phenotype score median. Finally, we analyzed immune infiltration using CIBERSORTx and ssGSEA algorithms 
on this categorized data. Next, we utilized crucial genes to establish disease subcategories within the RA group 
of the RA dataset. Then, the outcomes were divided into two clusters: cluster1 and cluster2. Subsequently, we 
conducted immune infiltration analysis in this group using CIBERSORTx and ssGSEA, two algorithms. We 
construct the PPI network by selecting the essential genes from the STRING database with a confidence thresh-
old 0.150. We input the protein genes that interact with other genes into the GeneMANIA database. Finally, 
we gathered information from the ENCORI database to create the mRNA-miRNA and mRNA-RBP interac-
tion networks for important genes. Additionally, we utilized data from the ChIPBase3.0 database to construct 
the mRNA-TF interaction network, and obtained data from the DGidb database to establish the mRNA-drug 
interaction network for key genes.

Variations in the manifestation of LMRGs within the RA dataset
Initially, the RA datasets GSE1919, GSE29746, and GSE55235 underwent batch effect removal processing, yield-
ing the merged data set RA dataset (supplementary Fig. S1).

A total of 2,721 genes satisfied the | logFC |> 0 criteria and P < 0.05. Among these genes, 1368 had high 
expression in the RA group, while the remaining 1353 genes had low expression in the RA group. We generated 
a volcano map (Fig. 2A) to visualize the differential analysis results of the RA dataset. We successfully identi-
fied 42 LMRDEGs by comparing the acquired genes expressed differently with LMRGs. Additionally, a Venn 

https://rna.sysu.wsu.cn/chipbase/
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diagram (Fig. 2B) was created to represent the intersection visually. We screened key genes from the RA dataset 
using SVM. The model results (Fig. 2C) revealed 16 genes (CD46, FLI1, GATA2, HIBCH, INPP5K, KCNN4, 
NDUFB3, NDUFS3, PC, PIGA, SCO2. (SLC16A7, SLC25A4, TCIRG1, TSFM, UQCRQ). Next, we examined the 
variations in the expression levels for 16 LMRDEGs between the RA and Control groups within the RA dataset. 
Figure 2D presents the findings in a comparative chart. The findings indicated that 14 genes (FLI1, GATA2, 
INPP5K, KCNN4, NDUFB3, NDUFS3, PC, PIGA, SCO2, SLC16A7, SLC25A4, TCIRG1, TSFM, and UQCRQ) 
exhibit statistically significant variances between the two groups (P < 0.05). These 14 genes will be considered 
crucial genes in the subsequent analysis. Table S2 depicts detailed information about each gene. We annotated 
their positions and created a chromosome location map to examine the locations of these 14 crucial genes on 
human chromosomes (Fig. 2E). This map reveals that genes FLI1, NDUFS3, PC, and TCIRG1 are located on 
chromosome 11, while SLC16A7 and TSFM reside on chromosome 12. The remaining key genes are dispersed 
across various chromosomes. A heat map (Fig. 2F) was also generated to display the 14 crucial gene expressions 
in the RA dataset.

Correlation analysis of key genes
The Spearman technique was used to analyze the 14 key gene expression levels in the RA group samples of the 
RA dataset. The findings indicated that the gene GATA2 in the RA dataset and the genes (SLC25A4, TCIRG1), 
PIGA, SLC16A7, TCIRG1, UQCRQ, KCNN4, and UQCRQ) exhibited a moderate positive linear correlation 
(r > 0.3, P < 0.05) (Supplementary Fig. S2A, B). Functional similarity analysis was employed to assess the func-
tional similarity of key genes. The results were presented as a box plot based on the score (Supplementary Fig. 
S2C). The figure indicates that GATA2 has the highest functional similarity score. Additionally, we chose the 

Figure 1.  Flow chat. RA, rheumatoid arthritis. LMRGs, lactate metabolism related genes. LMRDEG, lactate 
metabolism related differential expression genes. GO, gene ontology. KEGG, Kyoto encyclopedia of genes and 
genomes. GSEA, gene set enrichment analysis. GSVA, gene set variation analysis. ssGSEA, single-sample gene 
set enrichment analysis. PPI, protein–protein interaction. TF, transcription factor. RBP, RNA binding protein.
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top four gene pairs that exhibited the most robust positive linear correlation among the 14 essential genes. These 
pairs were used to visualize a correlation scatter plot (Supplementary Fig. S2D–G).

GO and KEGG
Initially, we conducted GO gene function enrichment analysis on 14 genes to examine the biological processes, 
molecular functions, cellular components, and biological pathways associated with 14 specific genes about RA 
(Supplementary Table S3). The enrichment entries were screened based on having a P-value less than 0.05 and 
an FDR value (q-value) less than 0.25. The findings indicate that the 14 main genes are primarily concentrated 

Figure 2.  Expression difference of LMRGs in RA dataset. (A) Volcano plots showing changes in gene 
expression in the RA-dataset. The horizontal axis is the log2 fold change and the vertical axis is the negative 
log10 P-value. Up-regulated genes (blue) and down-regulated genes (red) are delimited by a horizontal dashed 
line (P-value threshold) and two vertical dashed lines (fold change threshold). The figure shows a total of 
1368 up-regulated genes and 1353 down-regulated genes. (B) Venn diagram illustrating the overlap between 
differentially expressed genes and LMRGs. (C) SVM model screening LMRDEGs display. (D) A comparison 
chart presents LMRDEGs in the RA dataset. Chromosomal map of (E) key genes. (F) The RA dataset contains 
a heat map displaying the important gene expressions. The * symbol in the group comparison chart (CD) 
represents a statistical significance of P < 0.05. The ** symbol represents a high statistical significance of P < 0.01. 
The *** symbol represents a very high statistical significance of P < 0.001, indicating significant meaning. LMRG, 
lactate metabolism-related genes; DEGs, differential expression genes. LMRDEG, lactate metabolism-related 
differential expression genes; and RA: rheumatoid arthritis.
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in the biological process of producing precursor metabolites and energy (GO 0006091), deriving energy through 
the oxidation of organic compounds (GO 0015980), the respiratory electron transport chain (GO 0022904), and 
other biological processes in RA. Regarding cellular components, they are found in the mitochondrial inner 
membrane (GO 0005743), mitochondrial protein-containing complex (GO 0098798), transmembrane trans-
porter complex (GO 1902495), and other biological processes. Furthermore, regarding molecular functions, 
they exhibit active transmembrane transporter activity (GO 0022804), NADH dehydrogenase (ubiquinone) 
activity (GO 0008137), NADH dehydrogenase (quinone) activity (GO 0050136), and other molecular functions. 
Afterward, KEGG enrichment analysis was conducted on 14 important genes (Supplementary Table S3). The 
findings indicated significant enrichment of 14 crucial genes in KEGG pathways, including Oxidative phospho-
rylation (hsa00190). The histogram (Fig. 3A) and divergence network diagram (Fig. 3B) displayed GO and KEGG 
enrichment analysis outcomes. Next, we combined logFC GO and KEGG enrichment analysis on 14 pivotal 
genes. The bubble diagram (Fig. 3C) and the chord diagram (Fig. 3D) displayed the GO and KEGG enrichment 
analysis results for the joint logFC. Additionally, the pathway diagram depicted the KEGG pathway Oxidative 
phosphorylation (hsa00190) (Fig. 3E).

GSEA
We conducted GSEA to examine the influence of gene expression levels on the disparities between the RA and 
Control groups in RA. A significance level of P < 0.05 and a FDR value (q-value) < 0.25 were employed as the 
criteria for significant enrichment to establish the relationship between functions (Supplementary Table S4). In 
the mountain map (Fig. 4A) and the pathway map (Figs. 4B–H), we present the significantly enriched pathways, 
including the PI3KCI pathway (Fig. 4B), IL12 STAT4 pathway (Fig. 4C), TGF-β SIGNALING pathway (Fig. 4D), 
MAPK signaling pathway (Fig. 4E), HIPPO signaling regulation pathways (Fig. 4F), activated NTRK3 signals via 
PI3K (Fig. 4G), and WNT5A dependent internalization of FZD4 (Fig. 4H), containing star hotspot molecules 
relevant.

GSVA
Subsequently, we conducted GSVA on the gene expression data of all genes in the RA dataset to investigate the 
variation in the characteristic gene set between the RA and Control groups (Supplementary Table S5). The GSVA 
findings indicated variations in 20 hallmark gene sets between the RA and Control groups (P-value < 0.05, as 
depicted in Fig. 5A). We created a comparative chart (Fig. 5B) for 20 characteristic gene sets to illustrate the 
variations in expression levels. The analysis revealed statistically significant differences (P-value < 0.05) between 
the RA and Control groups in at least 19 hallmark gene sets.

CIBERSORTx immune infiltration (RA/Control)
We employed the CIBERSORTx algorithm to assess the abundance of 22 different immune cell types in the RA 
dataset sample to investigate the variation in immune infiltration between the RA and Control groups in the RA 
dataset. The histogram illustrates the distribution of immune cell infiltration abundance in the sample using the 
CIBERSORTx algorithm (Fig. 6A). Next, we created a comparative chart illustrating the variance in immune 
infiltration between the RA and Control groups in the RA dataset (Fig. 6B). The findings indicated that eight 
distinct types of immune cells (Plasma cells, resting memory CD4 T cell, T cells regulatory (Tregs), Macrophages 
M1, Macrophages M2, Mast cells resting, Mast cells activated, Eosinophils, Macrophages M0, Mast cells activated, 
Neutrophils) had statistically significant variances (P < 0.05). The heat map (Fig. 6C) illustrating the correlation 
between the infiltration levels of eight types of immune cells and 14 key genes. Additionally, the correlation heat 
map (Fig. 6D) demonstrated a significant positive linear correlation between gene UQCRQ and activated Mast 
cells and between gene SLC25A4 and mast cells resting (r > 0, P < 0.05).

ssGSEA immune infiltration (RA/Control)
We employed the ssGSEA algorithm to compute the abundance of 28 distinct immune cell types present in 
the sample from the RA dataset to determine the variance in immune infiltration between the RA and Control 
groups within the RA dataset. The outcomes indicate that there is a significant disparity in infiltration abundance 
between the RA and Control groups (Fig. 7A) (P < 0.05) for 23 immune cell types. Next, we generated a heat map 
that illustrated the correlation between the abundance of immune cells and statistical significance in infiltration 
(Fig. 7B). Additionally, we created a correlation heat map to examine the relationship between these immune 
cells and 14 crucial genes (Fig. 7C). The findings indicated a notable favorable linear association between these 
immune cells (r > 0) and a significant positive linear correlation (r > 0) between genes (PC, PIGA, and SLC25A4) 
and these immune cells. In conclusion, a detailed heat map illustrating these immune cells’ infiltration levels was 
created to compare the RA and Control groups in the RA dataset (Fig. 7D).

Constructing LMRGs score
We determined RA based on the expression of 14 crucial genes in the dataset using the ssGSEA algorithm. We 
categorized the RA group into high and low groups using the median LMRGs score as the boundary. The ROC 
curve was used to examine the diagnostic impact of 14 crucial gene expressions on the High and Low groups 
(supplementary Fig. S3A–N). Graphs reveal that the genes KCNN4 (supplementary Fig. S3D, AUC = 0.819), 
SCO2 (supplementary Fig. S3I, AUC = 0.743), TCIRG1 (supplementary Fig. S3L, AUC = 0.757), and UQCRQ 
(supplementary Fig. S3N, AUC = 0.743) exhibit a certain level of diagnostic effectiveness on the High and the 
Low groups.
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Figure 3.  GO function enrichment and KEGG pathway enrichment analysis. AB. The histogram (A) and 
network diagram (B) illustrate the GO and KEGG enrichment analysis results for the key genes. The enrichment 
analysis results for GO and KEGG are based on the combined logFC. CD. Bubble plot (C) and chord plot (D) 
display the identified crucial genes. (E) Necroptosis KEGG pathway diagram (hsa04217). The pathway diagrams 
of E are obtained by downloading them from the KEGG Pathway database. The screening criteria included a 
significance level of P < 0.05 and an FDR value (q-value) below 0.25 to qualify for GO and KEGG enrichment. 
GO, Gene Ontology; BP, biological process. CC, cellular component; MF, molecular function; and KEGG, Kyoto 
encyclopedia of genes and genomes.
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CIBERSORTx immune infiltration (High/Low)
We employed the CIBERSORTx algorithm to determine the abundance of 22 different immune cells in the RA 
sample and examine the variation in immune infiltration between the High and Low groups in the RA dataset. 
Initially, a stacked histogram was employed to display the presence of immune cells in the sample using the 
CIBERSORTx algorithm (Supplementary Fig. S4A). Next, we generated a correlation heatmap for the immune 
cells and 14 crucial genes by plotting them together. The figure illustrates a clear positive linear relationship 
between CD8 T cells and gene UQCRQ, as well as activated NK cells and genes (GATA2 and TSFM) in the High 
and Low groups (r > 0, p < 0.05).

ssGSEA immune infiltration (High/Low)
We employed the ssGSEA algorithm to compute the abundance of 28 different immune cells in the samples 
from the RA dataset to examine the variance in immune infiltration between the High and Low groups in the 

Figure 4.  Gene sets enrichment analysis (GSEA). (A) Enrichment distribution curves for a range of biological 
pathways are shown at the top. These curves depict the ranked distribution of genes in the examined biological 
pathways in the RA-dataset dataset. We can see the trend of enrichment in the dataset for different pathways 
such as WNT5A-dependent FZD4 internalisation, activated NTRK3 via PI3k signalling, Hippo signalling 
regulatory pathway, Mapk signalling pathway, Tgf Beta signalling pathway, IL12 STAT4 pathway and PI3ki 
pathway. (B–H) The RA dataset contains genes that are notably enriched in the PI3KCI pathway (B), IL12 
STAT4 pathway (C), TGF-β signaling pathway (D), MAPK signaling pathway (E), HIPPO signaling regulation 
pathways (F), activated NTRK3 signals via PI3K (G), WNT5A dependent internalization of FZD4 (H), and 
various other pathways. The important criteria for GSEA enrichment screening were a P-value less than 0.05 
and an FDR value (q-value) less than 0.25. RA, rheumatoid arthritis; GSEA, Gene sets enrichment analysis.
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RA dataset. The findings indicate that the PC gene and immune cells in the samples from the High group pre-
dominantly exhibit a negative linear correlation (r < 0), while the SCO2 gene and immune cells in the samples 
from the Low group primarily exhibit a linear correlation (r > 0). The findings indicated that the group with a 
high LMRG score had increased immune cell infiltration abundance, whereas the group with a low LMRG score 
displayed decreased infiltration abundance(Supplementary Fig. S5C).

Consistency clustering to construct RA disease subtypes
We analyzed the differences of 14 key gene expressions in the RA dataset of RA patients using the R package 
’ConsensusClusterPlus.’ We identified distinct RA-related disease subtypes by consensus clustering and ulti-
mately classified them into two groups: cluster1 and cluster2 (Supplementary Fig. S6A). RA disease subtype 

Figure 5.  Analysis of variations in gene sets. (A) The Heatmap showing the expression of different sets of 
genes in different samples. Each column represents one sample, grouped into RA (rheumatoid arthritis) and 
control groups. Each row represents a gene set such as “HALLMARK_INTERFERON_GAMMA_RESPONSE” 
(interferon-gamma response) or “HALLMARK_HYPOXIA” (hypoxia). Colors represent Z-scores: pink 
represents higher gene set activity (positive Z-scores) and blue represents lower gene set activity (negative 
Z-scores). The clustering tree (dendrogram) on the left side of the heatmap represents the similarity between 
gene sets, where similar gene sets are grouped together. (B) The box plots show the differences in the activity of 
some key sets of genes in the RA and control groups. Red box plots represent the RA group and blue represents 
the control group. In each pair of box plots, the centre line of the box indicates the median, the range of the box 
indicates the first and third quartiles, and the tentacles indicate the range of outliers. The primary screening 
criterion for GSVA enrichment analysis was a significance level of less than 0.05. In the group (B) comparison 
chart, the symbol ns represents P ≥ 0.05, indicating no statistical significance. The symbol * represents P < 0.05, 
indicating statistical significance. The symbol ** represents P < 0.01, indicating high statistical significance. The 
symbol *** represents a P-value < 0.001, indicating very high statistical significance. RA, rheumatoid arthritis; 
GSVA, Gene set variation analysis.
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1 (cluster1) has 50 samples, while RA disease subtype 2 (cluster2) has 38. Additionally, we presented the CDF 
plot for the cumulative distribution function of the consistent cluster in the findings (Supplementary Fig. S6B), 
along with various clusters. Supplementary Fig. S6C presents the delta plot of the area beneath the cumulative 
distribution function curve for the number of categories. The comparison diagram of the 14 essential genes in the 
RA-dataset between cluster1 and cluster2 (Supplementary Fig. S6D) revealed statistically significant variations 
in genes (GATA2, KCNN4, PIGA, SLC16A7, TCIRG1, and UQCRQ) between cluster1 and cluster2 (P < 0.05). 
Additionally, the PCA plot for the RA group in the RA dataset (supplementary Fig. S6E) revealed an improved 
clustering effect that remained consistent. Next, the ROC curve indicated that the GATA2, KCNN4, NDUFS3, 
PIGA, TCIRG1, and UQCRQ genes positively impacted cluster1, while cluster2 exhibited enhanced predictive 
accuracy(Supplementary Fig. S6F–J).

Figure 6.  CIBERSORTx analysis to compare immune infiltration between the RA and Control groups. (A) 
Stacked histogram show the infiltration abundance of various immune cells in the RA dataset as calculated 
by the CIBERSORTx algorithm. Each sample is represented by different coloured stacked bars indicating the 
relative proportions of 22 different immune cells. (B) Box plots represent comparisons between the RA group 
and the Control group in terms of the abundance of different immune cell infiltrates. Each point represents 
a sample, and the box plots contain medians, quartiles, and show statistical significance by asterisks. (C) The 
heatmap showing the correlation between the eight immune cell infiltrates that were significantly different in 
the RA group versus the Control group. Like Graph A, colors and asterisks indicate correlation coefficients and 
significance. (D) The heatmap shows the correlation between specific immune cells and 14 key genes. As before, 
colours and asterisks indicate the degree and significance of the correlation. Statistical significance is indicated 
by asterisks in the group comparison graph (B) and the correlation heat map (CD). No asterisk represents 
P ≥ 0.05, indicating no statistical significance. An asterisk symbol (*) represents P < 0.05, indicating statistical 
significance. The symbol (**) represents P < 0.01, indicating high statistical significance. The symbol (***) 
represents P < 0.001, indicating high statistical significance. RA, rheumatoid arthritis.
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Figure 7.  A comparison of immune infiltration between the RA and Control groups. (A) Box plots of ssGSEA 
analysis results. The horizontal axis lists the multiple immune cell types and the vertical axis indicates their 
enrichment fraction in the sample. Red represents the RA group and blue represents the control group. (B) 
Lower triangular heatmap of correlation between immune cell types obtained by ssGSEA analysis. Each box 
represents the value of the correlation coefficient between the two cell types, varying from − 1 (perfectly negative 
relationship, dark red) to 1 (perfectly positive relationship, dark pink), with 0 indicating no correlation. (C) As 
shown in Fig. 7B, a heat map demonstrating the correlation between immune cell types and a set of key genes. 
The key genes here such as FLI1 and GATA2 may play an important role in RA pathology. Again, the colours 
and asterisks represent correlation strength and statistical significance. (D) The immune cell infiltration of all 
samples between the RA group and the control group is shown as a heat map. The horizontal axis is the sample 
and the vertical axis is the immune cell type. The colour shades represent the fraction of different immune 
cell types enriched in each sample, with dark red representing a high enrichment fraction and light colours 
representing a low enrichment fraction. A significant difference in the infiltration of certain immune cell types 
can be observed between patients in the RA group and the control group. The asterisks in the comparison chart 
for groups (A) and the heat map for correlation (B, C) indicate statistical significance. A lack of asterisk indicates 
a P-value greater than or equal to 0.05, indicating no statistical significance. An asterisk (*) indicates a P-value 
less than 0.05, indicating statistical significance. The symbol (**) represents a P-value less than 0.01, indicating 
high statistical significance. The symbol (***) represents a P-value less than 0.001, indicating statistically 
significant results. RA, rheumatoid arthritis; ssGSEA, single-sample gene set enrichment analysis.
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CIBERSORTx immune infiltration (cluster1/cluster2)
We employed the CIBERSORTx algorithm to compute the abundance of 22 distinct immune cell types in the 
RA sample to examine the variance in immune infiltration between cluster1 and cluster2 groups in the RA 
dataset. The histogram illustrates the distribution of immune cell infiltration abundance in the sample using 
the CIBERSORTx algorithm Supplementary Fig. S7A). The findings indicated that four types of immune cells 
(CD8 T cells, CD4 T cells in a resting memory state, resting NK cells, and resting mast cells) exhibited a statisti-
cally significant disparity (Supplementary Fig. S7B) (P < 0.05). Next, the correlation heatmap showed that in the 
cluster1 group samples.

ssGSEA immune infiltration (cluster1/cluster2)
We determined the variations in immune infiltration between cluster1 and cluster2 groups using the ssGSEA 
algorithm (Supplementary Fig. S8A, B). A comprehensive heat map illustrating the infiltration abundance of these 
immune cells in the RA dataset (Supplementary Fig. S8C). The findings indicated a high number of immune cells 
in the cluster1 group. The cluster2 group has a lower infiltration abundance than the prevailing trend.

The network of PPI and networks predicting mRNA-miRNA, mRNA-TF, mRNA-drug network, 
and protein domains
We examined the PPI of 14 crucial genes using the STRING database. A PPI interaction network of 13 key genes 
(excluding gene INPP5K) was obtained with a minimum confidence parameter (required interaction score) set 
at 0.150, indicating that the minimum required interaction score was 0.150 (Fig. 8A). Furthermore, we utilized 
the GeneMANIA website (Fig. 8B) to anticipate and build the interaction network of the functionally analogous 
genes associated with these 13 pivotal genes. This allowed us to examine their physical interaction relationship, 
co-expression, prediction, co-localization, pathway connection, and other related factors information (Fig. 9).

The ENCORI database was used to analyze mRNA-miRNA data and predict miRNAs interacting with impor-
tant genes. mRNA-TF data were analyzed using the ChIPBase3.0 database and TFs interacting with key genes 
were identified. Cytoscape software was used to visualize the mRNA-miRNA interaction network (Fig. 8A), and 
the mRNA-TF interaction network (Fig. 8B). Supplementary Table S7 describes in detail the interactions between 
mRNAs and miRNAs as well as specific mRNA-TF interactions.

We predicted drugs interacting with important genes using mRNA-drug information from the DGidb data-
base. And we visualized the mRNA-drug interaction network using Cytoscape software (Fig. 8C). The network 
contained eight mRNAs (SLC25A4, GATA2, PC, SCO2, SLC16A7, FLI1, NDUFB3, and PIGA) and 16 drugs. 
Supplementary Table S8 shows the interactions of specific mRNAs with drugs.

RBPs interacting with key genes were predicted using mRNA-RBP data from the ENCORI database. mRNA-
RBP interaction networks were visualized using Cytoscape software and plotted in Fig. 8D. The interaction 
network consisted of 10 mRNAs (FLI1, GATA2, KCNN4, NDUFB3, NDUFS3, PC, PIGA, SLC16A7, TCIRG1, 
and TSFM) and 21 RBPs. Supplementary Table S9 lists specific mRNA-RBP interactions.

Discussion
RA, a chronic autoimmune disorder, is primarily distinguished by inflammation of the synovium and damage to 
the joints. Research has confirmed that the swollen joints of RA patients are a site for a low-oxygen environment, 
leading to a disrupted lactate metabolism and lactate buildup. Lactate is currently acknowledged as a facilitator 
of combustion in RA, starting from the initial phases of inflammation and extending to the later stages of bone 
loss, rather than solely being considered a metabolic byproduct of  glycolysis6. Several studies have indicated that 
lactate metabolism influences the regulation of inflammatory pathways and immune cell infiltration in autoim-
mune  diseases5,32. For this research, we employed bioinformatics analysis and machine learning techniques to 
detect biomarkers associated with lactate metabolism in RA. We also explored the correlation between these 
biomarkers and immune cell infiltration and conducted preliminary investigations into their potential molecular 
pathways in the RA progression. We built an SVM model to screen the gene set. The key genes were analyzed 
using GO and KEGG analyses. CIBERSORTx and ssGSEA algorithms were utilized to perform GSEA, GSVA, 
and immune infiltration analyses. The STRING database was utilized to construct PPI networks.

LMRGDEGs were obtained by intersecting the differentially expressed genes identified through intergroup 
analysis between the RA and control groups with LMRGs. Among these 14 genes, the association with the high-
est positive linear correlation is between GATA2 and TCIRG1, followed by PIGA and SLC16A7, TCIRG1 and 
UQCRQ, and TCIRG1 and KCNN4. GATA2-AS1, transcribed by GATA2, was recently discovered to coordinate 
the activation of the glycolytic pathway dependent on HIF1 and the maintenance of mitochondrial biogenesis 
independent of  HIF133. Abnormal GATA2 expression and somatic mutations are linked to tumor promotion and 
 inhibition34. KCNN4 regulates macrophage multinucleation in inflammatory conditions and bone homeostasis. 
Enhancement of cell metabolism by KCNN4 contributes to the malignant progression of  HCCs35. SLC16A7 is a 
monocarboxylate transporter in the 14-gene SLC16 gene family. L-lactate, pyruvate, and ketone bodies are moved 
across the plasma membrane by linking them with protons. Besides, it plays a role in T-lymphocyte activation, 
intestinal metabolism, gluconeogenesis, drug transport, metabolic pathways, and the energy metabolism of 
skeletal muscle, cardiac muscle, and cancer  cells36. These studies indicate that GATA2, KCNN4, and SLC16A7 
might be involved in regulating lactate metabolism in RA. PIGA participates in phosphatidylinositol produc-
tion on the endoplasmic reticulum membrane based on N-acetylglucosamine synthesis. Inherited metabolic 
 disorders37 heavily rely on this reaction. The discovery of UQCRQ suggests that it could serve as a potential 
biomarker for predicting the response to abatacept/methotrexate in RA  patients38. The TCIRG1 gene codes for 
the a3 subunit of the vacuolar ATPase proton pump, a significant variant. This variant plays a crucial role in the 
transportation of secretory lysosomes and the acidification of the resorption lacuna. Lack of TCIRG1 causes 
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dysfunctional osteoclasts to ablate bone  ineffectively39,40. Nevertheless, the existing proof fails to distinctly clarify 
the connection between RA and PIGA, UQCRQ, and TCIRG1; therefore, comprehensive research is necessary 
to shed light on this.

The primary cause of RA synovitis and joint damage is intricate interactions and the activation of immune 
cells that infiltrate the affected  area11,41. Furthermore, this study identified LMRDEGs as being implicated in 
immune responses related to RA. Earlier research has discovered that suppressing KCNN4 via the control of  Ca2+ 
communication diminishes the formation of multiple nuclei in macrophages and enhances bone density and the 

Figure 8.  PPI interaction network. (A) Network of essential genes. The GeneMANIA website of (B) key 
genes predicts the network of interactions among genes with similar functions. A’s inter-structured network 
is gathered and exported from the STRING database, with a minimum interaction score of 0.150. The Gene 
MANIA website collects and exports the interconnected network structure of (B) black circles with white slashes 
represent the input key genes, while black circles represent predicted functionally similar genes without white 
slashes. Red lines indicate physical interactions between genes, purple connections represent co-expression 
relationships, yellow connections represent predicted connections, purple connections represent co-localization 
relationships between genes, and sky blue lines represent pathway-related relationships between genes. PPI, 
protein–protein interaction.
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overall medical results in  arthritis42. Macrophages within the synovial tissue potentially preserve balance and 
control inflammation in  RA43. GATA2 is vital in differentiating dendritic cell (DCs) progenitors by regulating 
lineage-specific transcription factors determining the cell fate between myeloid and T-lymphocyte  lineage44. 
According to a recent study, tumor-associated macrophages (TAMs) may regulate the heme oxygenase (HO-1) 
expression level by controlling SLC25A4, promoting M2 macrophage polarization, and enhancing tumor metas-
tasis. Meantime, particular flaws in SLC25A4 trigger the activation of hypoxia-inducible factor (HIF-1α) within 
inflammatory macrophages, consequently fostering heightened lactate dehydrogenase (LDH) expression levels 
and concurrent elevation in  glycolysis45,46. Furthermore, studies have demonstrated the crucial role of regulatory 
T cells, natural killer cells, and dendritic cells in RA  progression47,48. Therefore, there is coherence between the 
present findings and prior ones. Afterward, the RA database was split into High and Low groups based on their 

Figure 9.  miRNA, TF, drug, RBP prediction network of key genes. (A) The network for predicting mRNA-
miRNA interactions of important genes. Blue rectangles represent the mRNA, while red ovals represent 
miRNAs in the prediction network. The interaction data is sourced from the ENCORI database. (B) mRNA-TF 
prediction network for key genes. The blue rectangles symbolize mRNA, while the yellow diamonds symbolize 
TFs in the prediction network. The interaction data is sourced from the ChIPBase 3.0 database. (C) mRNA-drug 
prediction network for key genes. The blue rectangle represents mRNA, while the green rectangle represents the 
drug in the prediction network. The interaction data is sourced from the (D) Gidb database. Network prediction 
of hub genes for mRNA-RBP. The blue rectangles depict mRNA, while the purple triangles depict RBPs in the 
prediction network. The interaction data is sourced from the ENCORI database. Transcription factor (TF) is a 
protein that binds to RNA (RNA binding protein, RBP).
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LMRG scores. According to the CIBERSORTx and ssGSEA algorithm findings, immune cells exhibit greater 
infiltration abundance in the high LMRGs scores group than in the low infiltration abundance group. Lactate 
could have two opposing effects. Activated immune cells prefer lactate as their primary energy source. However, 
lactate accumulation in the tissue microenvironment acts as a signaling molecule that restricts the activity of 
immune  cells32. Therefore, one could speculate that the distinct LMRDEG expressions in RA control the lactate 
metabolic pathways, leading to impaired immune cell function. However, the mechanism by which the lactate 
metabolic pathway influences the immune response to RA remains unclear. Further experimental investigations 
are necessary to examine how LMRDEGs involved in lactate metabolism regulate immune response in RA.

Further examination of variations in immune cell infiltration by LMRDEGS within RA databases. The find-
ings indicated that the prevalence of immune cell infiltration differs between RA disease subcategories. This 
highlights the significance of LMRDEGs in the initial detection of RA. Subsequently, ROC analysis suggests 
that genes: GATA2, KCNN4, NDUFS3, PIGA, TCIRG1, and UQCRQ have valid diagnostic significance for RA. 
Despite the inability of previous research to pinpoint a precise mechanism for GATA2 in RA, it was discovered to 
function as a transcription factor that closely interacts with key genes in  RA49. Substantially, GATA2 influences 
cell fate between the myeloid and T-lymphocyte lineage during DC development by regulating lineage-specific 
transcription factors in DC  progenitors44. Combined with ROC analysis results, GATA2 in RA might affect 
immune mechanisms by regulating dendritic cell differentiation. The KCNN4 gene is functionally operational, 
being present in synovial fibroblasts associated with RA, and plays a role in controlling cell growth and the secre-
tion of harmful and pro-inflammatory  substances50. NDUFS3, a pro-oxidant component of electron transport 
chain (ETC) complex I, regulates nonopsonic phagocytosis of bacteria in  macrophages51. Although the exact 
cause of NDUFS3 in RA remains uncertain, certain research has indicated its role in the progression of various 
conditions, including systemic lupus erythematosus (SLE) and lung adenocarcinoma (LUAD)52,53. The present 
investigation observed a notable rise in immune cell infiltration, specifically macrophage infiltration, in RA 
patients. As mentioned earlier, the findings remain unchanged. Significant associations between these crucial 
genes and RA were identified, suggesting their potential as biomarkers for RA.

The miRNAs that interact with crucial genes were predicted using the ENCORI database. Several of these 
40 miRNAs have been identified as playing a role in the RA progression. The KCNN4 gene contains the fol-
lowing microRNAs: has-miR-103a-3p, hsa-miR-195-5p, and hsa-miR-1307-3p. According to certain research, 
patients diagnosed with established RA can identify elevated miR-103a levels in complete blood samples linked 
to the disease  severity54. Elevated levels of miR-125a-5p are observed in RA patients, suggesting their role in the 
advancement and occurrence of the  disease55. SLC16A7 is linked to miRNA has-miR-125a-5p. The network of 
mRNA-TF interactions reveals that 24 transcription factors are involved in RA. There is a positive correlation 
between FOS and nuclear factor interleukin 3 (NFIL3) in the peripheral blood of RA patients, as well as an abnor-
mal inflammatory cytokine and inflammatory response linked to high NFIL3  expression56. RA-induced activation 
of the PI3K-AKT and mTOR signaling cascades could potentially enhance MYC expression in TEMRA CD8+ T 
cells, consequently modulating the glycolysis transcriptional pathway in  RA57. The mRNA-drug interactions 
network lists 16 drugs that might have potential therapeutic effects in RA. Administering estradiol as a hormone 
treatment for managing RA during premenstrual exacerbations could yield positive  outcomes58. Phenobarbital 
has been reported to inhibit the proliferation and viability of rabbit synoviocyte cell line HIG-8259. The mRNA-
RBP interaction network revealed that 21 RBPs were linked to RA. RA involves the interaction between a long 
non-coding RNA (lncRNA) called ENST00000509194 and RNA-binding protein ELAVL1, playing a role in the 
migration and invasion of fibroblast-like synoviocytes (FLSs)60. Further investigation is required to examine the 
involvement of these crucial genes in RA despite the validation of certain predictions from different databases in 
previous research. This may offer a fresh outlook for additional experimental verification in the future.

Although we employed bioinformatics and machine learning techniques to identify potential biomarkers 
of RA in this study, we must acknowledge its limitations. And different analyses (CIBERSORTx, ssGSEA and 
LMRGscore) have sometimes produced conflicting results. We believe there are several reasons for this: (1) 
Methodological variability: different immune infiltration analysis methods may be based on different algorithms 
and assumptions, leading to differences in results. (2) Biological complexity: The immune system is a complex 
system with mutual regulation and interaction between immune cells. Therefore, under different analytical 
methods, it is possible to see results where different immune cells interact with each other, leading to differences 
in results. (3) Sample differences: possible sample heterogeneity and individual differences between the RA and 
Control groups may also contribute to differences in the observed immune infiltration results. The selection and 
handling of the study samples may have an impact on the results. From a long term perspective, investigating 
the mechanism of action of the lactate metabolic pathway involved in immune cell function will require studies 
conducted in vitro and in vivo. Moreover, this study lacked appropriate clinical correlation studies.

To summarize, this research offers initial recognition of possible markers linked to lactate metabolism in RA 
and insight into how it is connected to immune cells associated with RA. KCNN4 and SLC25A4 may regulate 
macrophage function during RA development via the lactate metabolic pathway. Additionally, GATA2 may par-
ticipate in the lactate metabolic pathway to regulate the immune mechanism of DC cells involved in RA. These 
research findings present fresh perspectives on the diagnosis, lactate metabolic routes, and immune molecular 
mechanisms associated with RA.

Data availability
Datasets analyzed for this study (GSE1919, GSE29746 and GSE55235) are available from the GEO database.
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