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Application of power‑law 
committee machine to combine 
five machine learning algorithms 
for enhanced oil recovery screening
Reza Yousefzadeh , Alireza Kazemi * & Rashid S. Al‑Maamari 

One of the main challenges in screening of enhanced oil recovery (EOR) techniques is the class 
imbalance problem, where the number of different EOR techniques is not equal. This problem hinders 
the generalization of the data‑driven methods used to predict suitable EOR techniques for candidate 
reservoirs. The main purpose of this paper is to propose a novel approach to overcome the above 
challenge by taking advantage of the Power‑Law Committee Machine (PLCM) technique optimized 
by Particle Swam Optimization (PSO) to combine the output of five cutting‑edge machine learning 
methods with different types of learning algorithms. The PLCM method has not been used in previous 
studies for EOR screening. The machine learning models include the Artificial Neural Network (ANN), 
CatBoost, Random Forest (RF), K‑Nearest Neighbors (KNN), and Support Vector Machine (SVM). 
The CatBoost is used for the first time in this work for screening of EOR methods. The role of the 
PSO is to find the optimal values for the coefficients and exponents of the power‑law model. In this 
study, a bigger dataset than those in previous studies, including 2563 successful worldwide EOR 
experiences, was gathered. A bigger dataset improves the generalization of the data‑driven methods 
and prevents overfitting. The hyperparameters of the individual machine‑learning models were tuned 
using the fivefold cross‑validation technique. The results showed that all the individual methods 
could predict the suitable EOR method for unseen cases with an average score of 0.868. Among 
the machine learning models, the KNN and SVM had the highest scores with a value of 0.894 and 
0.892, respectively. Nonetheless, after combining the output of the models using the PLCM method, 
the score of the predictions improved to 0.963, which was a substantial increase. Finally, a feature 
importance analysis was conducted to find out the most influential parameters on the output. The 
novelty of this work is having shown the ability of the PLCM technique to construct an accurate model 
to overcome the class‑imbalance issue in EOR screening by utilizing different types of data‑driven 
models. According to feature importance analysis, oil gravity and formation porosity were recognized 
as the most influential parameters on EOR screening.
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MLP  Multi-layer perceptron
NB  Naïve Bayes
PLCM  Power-law committee machine
PSO  Particle swarm optimization
RAM  Random access memory
RF  Random forest
ROC  Receiver operating characteristic
SAGD  Steam assisted gravity drainage
SGD  Stochastic gradient descent
SVM  Support vector machine
TN  True negative
TP  True positive
TPR  True positive rate

Over the past few decades, there has been a notable surge in global energy  needs1. In reaction to this, oil and 
its derivatives have played a crucial role in meeting the world’s energy requirements. Projections indicate that 
this pattern is likely to persist in the forthcoming decades, with a rising demand for oil compared to alternative 
energy sources. Traditional methods of oil production from existing fields are inadequate to meet these escalating 
energy demands. Consequently, there is a growing call within the petroleum industry to enhance the ultimate 
recovery of mature and depleted oil fields. Unconventional resources, including shale and tight oil reservoirs, 
are becoming increasingly significant in addressing this challenge. Following the initial and secondary recovery 
phases, a significant amount of hydrocarbons is left behind in the reservoir.

Tertiary recovery, also known as Enhanced oil recovery (EOR), is employed to maximize the recovery fac-
tor and boost returns in oil and gas projects by focusing on mobilizing the remaining oil in the reservoir after 
primary and secondary  recovery2–4. Unlike the primary and secondary recovery mechanisms, EOR entails 
fluid–fluid and fluid–rock physical and chemical interactions to facilitate the movement of trapped/remaining 
oil in the porous media. While EOR projects typically incur higher initial costs compared to traditional second-
ary projects, an ill-suited recovery project can result in lasting damage to the reservoirs and financial  losses5. 
The process of finding the suitable EOR technique for a candidate reservoir involves various stages, including 
laboratory tests, reservoir characterization, simulation studies, pilot tests, and the final implementation of the 
method on the full-field scale. Each phase requires significant investments, and ignoring economically efficient 
screening poses risks to the success of the project. EOR screening serves as a pivotal step in risk reduction, 
offering the initial metric for evaluation with modest capital investment. Studies on EOR methods have shown 
that there are more than twenty types of different EOR  techniques6 with and imbalanced frequency of the EOR 
techniques. Employing an inappropriate recovery technique could result in permanent damage to the reservoir 
and substantial financial losses and environmental  hazards7. Therefore, a precise and dependable EOR screening 
process is crucial in the initial stages of reservoir development.

Literature review
EOR screening approaches can be divided into two main categories: conventional EOR screening methods 
(CEORS) and advanced EOR screening methods (AEORS)8,9. CEORS relies on pre-specified screening of vari-
ables to assess the feasibility of implementing EOR techniques. Various parameters such as the properties of 
reservoir fluid and rock, including formation type, oil viscosity, permeability, oil saturation, layer thickness, oil 
gravity, salinity, reservoir  type10, and depth, are crucial for the success of EOR  methods11,12. These parameters 
can be used to assess the technical success of different EOR techniques for a specific field based on previously 
conducted projects. Nevertheless, a standardized methodology or universally accepted algorithm for the selection 
of a suitable EOR technique for a specific reservoir is still lacking. This is because of the complexity of reservoirs, 
encompassing factors such as anisotropy, heterogeneity, diverse rock-fluid interactions, geo-mechanical  stress13, 
and numerous other unknown variables.

Although CEORS is studied by different authors, they lacked rigor and generality due to the challenges 
mentioned above. Consequently, AEORSs have been extensively used in the last decade to establish a rigorous 
relationship between the influential parameters and suitable EOR techniques for different types of reservoir 
models. Machine learning (ML) methods, such as multi-layer  perceptron14, fuzzy  inference15, Support Vector 
Machines (SVMs)10, etc., are some examples of AEORS techniques that are widely used for EOR screening. 
Khazali et al.16 employed a fuzzy decision tree (DT) trained on 548 successful EOR experiences related to ten 
different EOR techniques. Giro et al.17 correlated the physicochemical properties of the injected reservoir fluid 
with rock characteristics, including porosity, permeability, lithology, oil, water, and salt conditions and used a 
Naïve Bayes classifier to accomplish the EOR screening task. They collected 106 EOR samples with 15 different 
EOR categories and reached an accuracy of 0.90 on the test subset. However, their test subset did not include 
samples from all classes. Cheraghi et al.6 used shallow and deep Artificial Neural Network (ANN), Decision Tree 
(DT), Naïve Bayes (NB), and Random Forest (RF) to develop a model based on 1000 worldwide samples for EOR 
screening. They found that the RF performed the best with an accuracy of 0.91. Su et al.18 used the RF, ANN, NB, 
SVM, and DT for EOR screening of 13 EOR techniques as a function of porosity, permeability, depth, gravity, 
temperature, viscosity, net thickness, and initial oil saturation. They used 956 EOR experiences to train, validate, 
and test their models. Their results showed that the RF reached the highest accuracy of 0.91. Tabatabaei et al.19 
used 281 EOR experiences with 20 different EOR categories to develop an ANN optimized by Particle Swam 
Optimization (PSO) and Sparrow Search Algorithm (SSA) to predict the most suitable EOR technique for the 
candidate reservoirs. Recently, Chavan et al.10 used 176 EOR projects to develop different data-driven models, 
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including the ANN, SVM, KNN, Gaussian NB, and RF classifier to determine the most suitable EOR technique. 
They found that the RF outperformed the rest with an accuracy of 0.91.

Although many researchers have utilized different machine learning techniques for EOR screening, their 
works entail some limitations that necessitate the development of new methods to solve the problem. These 
challenges include the limited number of samples used to develop the models, using only one model to make 
the predictions, and not considering the previous production mechanism, which reduce the generalizability 
of the model. Table 1 summarizes the differences between the current study and previous similar studies with 
machine learning.

Consequently, this study proposes an innovative approach for AEORS which combines the output of five 
machine learning methods using the power-law committee machine (PLCM) approach, instead of relying solely 
on one model. Taking benefit from different types of machine learning algorithms, the proposed approach 
resolves the class-imbalance issue. Also, it utilizes an extra input variable and a bigger dataset than previous 
works, which inputs more information about the candidate reservoirs into the machine learning models and 
increases the generalization of the models. The machine learning methods include the ANN, CatBoost, SVM, 
KNN, and RF. The contribution of this paper is to examine the ability of the PLCM technique to optimally com-
bine the predictions by five machine learning methods to overcome the class-imbalance problem. Imbalanced 
number of classes (EOR types) is a common challenge in screening of EOR techniques. In the end, this paper 
investigates the effect of input parameters on EOR screening as well and identifies the most and least influential 
parameters.

Methods and materials
This study combines the predictions of five machine learning models by means of the PLCM method to increase 
the generalization of the model in the context of EOR screening. This study not only assesses the individual 
machine learning methods in predicting the most suitable EOR techniques, but also takes benefit from the 
PLCM method optimized by the PSO to increase the prediction accuracy, for the first time in the context of 
EOR screening. In this manner, the predictive tool is not limited to only one data-driven model, but also takes 
advantage of the strength points of different types of machine learning algorithms. Figure 1 shows the flowchart 
of this study. First, the required dataset to build and evaluate the utilized models is collected. Then, the data is 
preprocessed, which includes encoding the textual data into numeric values and normalizing the variables into 
[0,1]. Then, the individual machine learning models are trained. The hyperparameters of the models are tuned 
using a grid search with fivefold cross-validation. After training the individual models, their outputs are com-
bined using the PLCM method optimized by the PSO algorithm. Then, the performance of the utilized methods 
is compared in terms of quantitative and visual evaluation metrics. The metrics, including the accuracy, precision, 
recall, F1-score, confusion matrix, precision-recall curve, and Receiver Operating Characteristic (ROC) curve to 
analyze their ability to handle the class imbalance issue. In the end, a feature importance analysis is conducted 
to find out the most influential input variables on the prediction of suitable EOR techniques. Another specialty 
of this study is that it uses a more comprehensive dataset than those in the previous studies, which increases the 
generalization of the developed model.

Dataset
In this study, a dataset including 2563 EOR projects (available in Supplementary Information) from 23 different 
countries applied to sandstone, carbonate, limestone, dolomite, unconsolidated sandstone, and conglomerate 
reservoirs was collected from the  literature5,20–27 to develop the screening methods. The utilized variables include 
the formation type, porosity (%), permeability (mD), depth (ft), viscosity (cP), oil gravity (API), temperature (°F), 
and the production mechanism before conducting EOR. The EOR techniques include injection of steam, hydro-
carbon miscible, hydrocarbon immiscible,  CO2 miscible,  CO2 immiscible, carbonated water, low-salinity water, 
 CO2 foam, nitrogen miscible, nitrogen immiscible, micellar polymer, surfactant/polymer, surfactant, cyclic steam 
drive, steam-assisted gas drive (SAGD), liquefied petroleum gas (LPG) miscible, in-situ combustion, polymer, 
alkaline/surfactant/polymer (ASP), hot water, microbial, air-foam, hydrocarbon miscible-WAG, and hydrocar-
bon immiscible-WAG. Table 2 reports the statistical analysis of the variables. Since formation is a categorical 
feature, it was converted to numerical values. Among fifteen different formation types, sandstone, carbonate, and 
dolomite are the most prevalent formation types with 45%, 10%, and 10% of the total data, respectively. To assess 

Table 1.  Differences between our work and previous machine-learning-based studies.

Author(s) Year Method(s) Differences with our work

Khazali et al.16 2019 Fuzzy DT Relying on only one model, smaller dataset, not considering previous production mechanism, different ML models

Giro et al.17 2019 Naïve Bayes Using only one model, small dataset, fewer EOR methods, not considering previous production mechanism, incomplete 
test subset, different ML models

Cheraghi et al.6 2021 ANN, DT, NB, RF Compared four models, but did not integrate their outputs, smaller dataset, not considering previous production mecha-
nism, different ML models

Su et al.18 2023 RF, ANN, NB, DT, SVM No integration of the models, smaller dataset, fewer EOR methods, not considering previous production mechanism, 
different ML models

Tabatabaei et al.19 2023 ANN-PSO, ANN-SSA Used only one model, limited number of samples, not considering previous production mechanism, different ML models

Chavan et al.10 2023 ANN, KNN, SVM, RF, NB Compared five models, but did not integrate their outputs, smaller dataset, not considering previous production mecha-
nism, different ML models
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the accuracy of the developed models on unseen data, 85% of the data was used for training and the remaining 
15% was used as blind test cases, and fivefold cross-validation is used for hyperparameter tuning. It is common 
to divide the dataset with a ratio of 70:15:15 as training, validation, and testing subsets. The validation subset is 
commonly used for tuning the hyperparameters of the models. Nonetheless, in the current study, 5-Fold cross 
validation was used to tune the hyperparameters, which does not require putting aside a portion of the data for 
validation. In this technique, the training subset is divided into K (5 in this study) non-overlapping folds. Then, 
the model is trained and validated K times with the fixed hyperparameters. One of the folds is used for validation 
and the others for training. Finally, the validation score is calculated as the average of scores over K repetitions. 
This is repeated for all configurations of the hyperparameters and the set of hyperparameters with the highest 
cross-validation score is selected. Thereby, as we did not need a separate validation subset, all samples, except 
for the testing subset, were used for training (85%).

Data preprocessing
One of the crucial steps before moving to model development is data preprocessing. One type of preprocessing 
is to encode textual values to numerical values, which is called label encoding. For example, the formation type, 
previous production mechanism, and EOR techniques are textual features, which were encoded as numbers. 
Another preprocessing step is scaling the data into similar intervals since the scale of the features differ signifi-
cantly. For example, viscosity is in the order of  106, while porosity is in the order of tens. In this study, the features 
were normalized into [0,1] interval using (X − Xmin)/(Xmax − Xmin) , where Xmin and Xmax are the minimum 
and maximum of the features in the training subset.

Figure 1.  General flowchart of the study.

Table 2.  Statistical analysis of the utilized data. STD standard deviation

Formation Porosity (%) Permeability (mD) Depth (ft) Gravity (API) Viscosity (cp) Temperature (°F)

Mean 7 22.8 1366.8 4073.9 25.5 1.21E + 04 129.3

STD 4 10.1 1955.1 3019.9 12.1 2.10E + 05 46.8

Min 0 1 0 175 8 0.00E + 00 10

25% 3 12 35.25 1400 13 1.00E + 00 100

50% 9 25 614.5 3442 25 1.70E + 01 110

75% 9 31 2000 6000 37 1.90E + 03 158

Max 15 65 15,000 15,900 90 5.00E + 06 293
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Artificial neural network (ANN)
ANN is a learning algorithm that is inspired by the human brain. ANN can figure out the relationship between 
the inputs and outputs without the need for complex mathematical or computational methods. Among the vari-
ous types of ANN, the Multilayer Perceptron (MLP-ANN) stands out as the most commonly  used28–30. The MLP 
includes three layers, namely input, hidden, and output  layers31,32, as illustrated in Fig. 2. As shown, each layer 
consists of computational units known as neurons. The number of neurons in the input and output layers is the 
same as the dimension of the input and output variables, respectively. The number of hidden layers and their size 
should be determined by trial and error. Each neuron is connected to all neurons of the previous layers, which 
represents a unique linear combination of the data coming in from previous layer. The linear combination takes 
place using a set of weights. For example, Wxh represents the set of weights mapping the inputs to the hidden 
layers, and Who represents the set of weights mapping the hidden neurons to the output layer. Another critical 
aspect of an ANN model is the activation function, which receives the results of the linear combination, known 
as activations, and determines the activation of each neuron. Including hidden layers with non-linear activa-
tion functions in an ANN empowers it to capture non-linear dependencies. The weights are learned during the 
training phase of the model, which is the ultimate goal of the training process. Using these weights, the outputs, 
represented by ŷ , are calculated by the feed-forward process as below.

where f is the activation function;  bj is the hidden layer bias; xi is the input for the ith variable; and, Wij is the con-
nection weight between the ith input and jth neuron.

The learning process in an ANN is actually adjusting the weights and biases in the hidden layers using the 
backpropagation algorithm to minimize the loss function between the predicted and actual  values28,33. In a 
multiclass classification problem, the outputs are converted to one-hot encoded vectors, where all elements of 
the vectors are zeros except for the element corresponding to that specific sample class. To handle multiclass 
classification, the categorical cross entropy is used as the loss function, which is defined as follows.

where y denotes the vector of actual outputs and C is the number of classes. Each output in a multiclass problem 
is a vector of probabilities for each class. The probabilities are calculated using the Softmax activation function. 
To minimize the loss function, the gradient of the loss with respect to the weights and biases must be calculated 
and back propagated to all layers to update the weights. Given the gradient of the loss function, the weights can 
be updated as follows.

(1)ŷ = f

(

∑

i=1

Wijxi + bj

)

,

(2)CCE(W) =

C−1
∑

i=1

yi log
(

ŷi
)

,

(3)Wt+1 = Wt − η∇WCCE,

Figure 2.  Schematic structure of an ANN.
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where Wt+1 and Wt are the new and current weights, η is the learning rate, and ∇WCCE is the gradient of the loss 
function calculated by an optimization algorithm, such as Adam, Stochastic Gradient Descent (SGD), RMSprop, 
Adagrad, Momentum, Nestrov and Accelerated  Gradient34,35.

ANNs offer a variety of hyperparameters that can be tuned to optimize the model’s performance. It includes 
options for controlling model structure, learning rates, and regularization. Furthermore, ANNs incorporate class 
weights into the loss function, addressing the problem of class-imbalance, which is useful for the problem under-
study. It also supports multiclass classification. Accordingly, one of the utilized methods in this study is the ANN.

According to the explanations, the control parameters of the ANN are the number of hidden layers, number 
of neurons in the hidden layers, activation functions, the optimizer, and learning rate, which should be fine-tuned 
to achieve a satisfactory performance.

CatBoost
CatBoost is a gradient-boosting tree construction  method36, which makes use of both symmetric and non-sym-
metric construction methods. In CatBoost, a tree is learned at each iteration with the aim of reducing the error 
made by previous trees. Figure 3 shows the process of CatBoost tree building. In this figure, the orange and blue 
circles represent a dataset with two classes. The process starts with a simple initial model, assigning the average 
of the entire dataset to a single leaf node. Then, the misclassified samples (enlarged circles in Fig. 3) are identified 
and new trees are added based on the gradient boosting approach. Afterward, the predictions are updated to the 
combination of the predictions made by all trees. By adding new trees at each iteration, the number of misclas-
sified samples decreases. Adding the trees continues until either the minimum number of samples required for 
splits or the maximum depth of the trees is reached. For categorical features, the CatBoost algorithm employs 
a symmetric splitting method for each feature. Then, based on the type of the feature, it chooses one of the split 
methods for each feature to create a new branch for each  category37.

Considering a training dataset with N  samples, where X is the matrix of inputs ( x1, . . . , xN ) and y is the 
vector of outputs ( y1, . . . , yN ), the goal is to find a mapping function, f (X) , from the inputs to the outputs. 
Here, f (X) is the boosted trees. Just like the ANN, the CatBoost needs a loss function ( L(f ) ) to be minimized to 
perform the optimal tree building strategy.

Now, the learning process entails minimizing the L(f ).

If the algorithm entails M gradient boosting steps, a new estimator hm can be added to the model.

where fm+1 (xi) is the new model, and hm (xi) is the newly added estimator. The new estimator is determined by 
employing the gradient boosting algorithm, where the steepest descent obtains hm = − αmgm where αm is the 
step length and gm is the gradient of the loss function.

Now, the addition of a new tree/estimator can be accomplished by

(4)f ∗(X) = arg min
f

L (f ) = arg min
f

N
∑

i=1

L (yi , ŷi),

(5)fm+1 (xi) = fm (xi)+ hm (xi),

Figure 3.  Schematic of the CatBoost tree construction.
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By taking benefit from the gradient boosting approach, the ensemble of decision trees built by the CatBoost 
algorithm often leads to a high prediction accuracy. The CatBoost also uses a strategy known as “ordered boost-
ing” to improve the efficacy of its gradient-boosting process. In this type of boosting, a specific order is used to 
train the trees, which is determined by their feature importance. This prioritizes the most informative features, 
resulting in more accurate  models38. The algorithm offers a wide range of regularization methods, such as depth 
regularization and feature combinations, which helps prevent overfitting. This is specifically useful when dealing 
with complex datasets.

The CatBoost offers a range of control parameters to optimize the structure of the model. These parameters 
include the number of estimators, maximum depth of the trees, maximum number of leaves, and regularization 
coefficients. These control parameters are optimized in this study to obtain the best performance from the model.

K‑nearest neighbors (KNN)
KNN is a non-parametric learning algorithm proposed by Fix and  Hodges39. This algorithm does not have a train-
ing step and determines the output of a sample based on the output of the neighboring  samples10. The number 
of neighbors is denoted by K. With K = 1, the label of the sample is as of the nearest sample. As the name of this 
algorithm implies, the K nearest neighbors are found based on the distance between the query sample and all 
samples in the dataset. Euclidean, Minkowski, Chebyshev, and Manhattan distances are some common distance 
measures. The Minkowski distance is a generalization of the Euclidean and the Manhattan distance with p = 2 
and p = 1 , respectively. p is the penalty term in  Lp norm, which can be a positive integer. The distance between 
the samples greatly depends on the scale of the features. Therefore, feature scaling is of great  importance40. After 
finding the K nearest samples to the new sample (query), its label is determined using Eq. (8).

where xq is the new sample, f (xi) is the label of the ith neighboring sample, C denotes the number of classes, 
and δ(a, b) is the Kronecker delta which is 1 if a = b and 0 otherwise. An extension to KNN is the distance-
weighted KNN, where the inverse of the distances between the samples are used as the weights. In this manner, 
the prediction for the query sample will be

where wi is the inverse of the distance between the query sample and sample i, wi = 1/D(xq, xi) . Consequently, 
the closer neighbors will have a higher impact on the predicted label.

One distinctive feature of KNN that sets it apart from other machine learning methods is its ability to handle 
incomplete observations and noisy  data41. This technique enables the identification of significant patterns within 
noisy data records. Another advantage of KNN is that it does not require any training and building and the 
model optimization can be done quite quickly. According to the above explanations, the controlling parameters 
of KNN are the number of neighbors (K), using/not using distance weighting, penalty terms, and the algorithm 
used to compute the nearest neighbors.

Support vector machine (SVM)
SVM is a binary classification algorithm introduced by Cortes and  Vapink42. SVM can be implemented to solve 
problems with linear or non-linear  behavior43,44. However, non-linear data should be mapped into a higher-
dimensional space to make it linearly separable. This technique is called the kernel trick. The classification is 
done by a decision boundary which has the maximum margin from both classes. Figure 4 shows the schematic 
of an SVM classifier for a binary classification task. The margins are constructed by finding the support vectors 
in each class and drawing the hyperplanes from the support  vectors45. The hyperplanes are shown by dashed 
lines and the decision boundary is drawn between them. In this figure, the green circles represent the positive 
(+ 1) and the blue circles represent the negative (− 1) classes. The circles on the hyperplanes are the support vec-
tors. The decision boundary with the maximum margin from the classes results in the highest generalization.

By considering the mapping function ∅(X) and inputs X and outputs y , the equation of the decision bound-
ary can be written as  follows46:

where W is the weight parameters and b is the bias term. The smallest perpendicular distance between the 
hyperplanes is known as the margin, which is double the distance between the support vectors and the decision 
boundary. Assuming that the data is separated by two hyperplanes with margin β , after rescaling W and b by 
β/2 in the equality, for each training example we have

(6)fm+1(x) = fm(x)+

(

arg min
hm∈H

[

N
∑

i=1

L
(

yi , fm(xi)+ hm(xi)
)

])

(x),

(7)fm+1(x) = fm(x)− αmgm.

(8)f̂ (xq) ← arg max
c∈C

K
∑

i=1

δ(c, f (xi)), δ(a, b) = 1 if a = b.

(9)f̂ (xq) ← arg max
c∈C

K
∑

i=1

wiδ(c, f (xi)), δ(a, b) = 1 if a = b,

(10)WT∅(X)+ b = 0,
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For every support vector ( Xs , ys ) the above inequality is an equality. Thereby, the distance between each 
support vector and the decision boundary, r, is as follows

where ‖W‖ is the  L2 norm of the weights. Therefore, the margin between the two hyperplanes becomes 2
‖W‖ . The 

goal is to maximize 2
‖W‖ , which is equivalent to minimizing 12W

TW . Consequently, the optimization problem 
of the SVM is:

Nonetheless, to increase the generalization of the model and avoid overfitting, slack variables ( ξ)46,47 are used 
(see Fig. 3), which allow the model to have some miss-classified samples during training. This approach is known 
as the soft margin approach. Now, the optimization problem becomes

where c is a regularization factor that controls the weight of the slack variables in the loss function. Equation (14) 
is a dual optimization problem, which is solved using the Lagrange approach. The Lagrange approach converts 
a dual-optimization problem to a standard one by incorporating the equality and inequality constraints to the 
loss function. Thereby, Eq. (14) becomes

where αi s are Lagrange multipliers. To minimize the above loss function, its derivatives with respect to W and b 
are set equal to zero. By doing this, we obtain W =

∑M
i=1 αiyi∅(Xi) and 

∑M
i=1 αiyi = 0 . Plugging these back into 

the Lagrange gives the dual formulation.

(11)yi

[

WT∅(xi)+ b
]

≥ 1, i = {1, 2, . . . , M}.

(12)r =
ys(W

TXs + b)

�W�
=

1

�W�
,

(13)
arg min

W ,b

1

2
WTW ,

subject to yi

[

WT∅(xi)+ b
]

≥ 1, for i = 1, . . . , M.

(14)
arg min

W ,b

(

1

2
WTW + c

∑

i

ξi

)

,

subject to yi

[

WT∅(xi)+ b
]

≥ 1− ξi , for i = 1, . . . , M.

(15)
L(W , b, α) =

1

2
WTW −

M
∑

i=1

αi

[

yi

(

WT∅(Xi)+ b
)

− 1
]

,

subject to 0 ≤ αi ≤ c, i = 1, . . . , M.

Figure 4.  Schematic of a binary SVM.
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Equation (16) is solved using a Quadratic Programming solver to obtain the Lagrange multipliers αi . αi is 
non-zero only for the support vectors. Parameter b does not appear in the dual formulation, so it is determined 
separately from the initial constraints. Calculating ∅(Xi)∅(Xj) is computationally expensive since it requires two 
mapping operations and one multiplication, especially if the data is high-dimensional. To tackle this problem, 
the Kernel trick is introduced, where ∅(Xi)∅(Xj) is represented as a kernel function K(Xi , Xj) based on the 
Mercer’s  Theorem48. Finally, after determining the Lagrange multipliers, the prediction for a new sample z is 
calculated as follows

The kernel function should be determined by trial and error. Some of the commonly used kernels are the 
linear, polynomial, and radial basis function (RBF) kernels.

SVM is one of the most successful machine learning algorithms in hand-written digit  recognition49,50. SVMs 
can handle high-dimensional data, making them suitable for tasks with a large number of features. Because of 
taking benefit from the maximum margin theory and slack variables, SVMs are resistant to overfitting. One 
special feature of the SVMs, making them different than other artificial intelligence tools, is the kernel trick 
that enables SVMs to solve different kinds of non-linear classification problems. The convex nature of the loss 
function of the SVM leads to a convex optimization problem, which ensures converging to a global optimum. 
Finally, memory efficiency due to using only support vectors to construct the model and ability to handle class-
imbalance by incorporating the class weights to the loss function are two other advantages of the SVMs making 
them suitable for the EOR screening problem in this study.

According to above explanations, some of the most important control parameters of the SVM are the kernel 
function, regularization factor (c), the degree of polynomial kernels, the intercept of polynomial kernels (coef0), 
and class weights. Class weights are used to tackle the class-imbalance issue by giving larger weights to rare classes 
in calculating the loss function.

Since SVM is a binary classifier, to perform multi-class classification, one-to-rest or one-to-one approaches 
are used. In this study, the one-to-rest approach is used, where C SVM models are trained. Each SVM model 
predicts membership of the samples in one of the C classes.

Random forest
In the context of machine learning, Random Forest (RF) is an ensemble learning technique that builds a multitude 
of decision trees during training and combines their outputs to make more accurate and robust  predictions51. 
RF is a supervised learning method, suitable for classification and regression tasks. Each tree in the forest 
is constructed independently, using a random subset of the features and samples with replacement from the 
training  data52. This randomness adds diversity to the decision-making process, preventing the model from 
too much focusing on idiosyncrasies in the data. An RF takes a random approach to selecting a subset of input 
variables/features (controlled by the maximum number of features), and performs the optimal split to divide 
a node based on a split criterion. Avoiding tree pruning ensures maximal tree growth. As a result, a multitude 
of trees are constructed, and the model employs a voting mechanism to determine the most prevalent class in 
a classification task.

Each tree makes its own prediction, and the final decision is determined by the majority voting paradigm. 
This approach not only enhances the prediction accuracy of the model but also makes it stronger against overfit-
ting. Figure 5 shows the schematic of a random forest where n trees are used to make a prediction. Each subset is 
randomly selected from the dataset and divided into two parts, including the bag and out-of-bag (OOB) parts. 
The data in each bag is used to build a tree and the data in OOB is used to test that tree. The OOB subset serves 
as an ongoing and unbiased estimation of the general prediction error, predating the verification of prediction 
accuracy through the independent testing subset for the aggregated results. When X is inputted to the ensemble, 
each tree provides a separate output ( o1, . . . , on ). In the end, the ultimate class of the inputs is determined by 
the same approach given in Eq. (8).

The RF produces competing results to boosting and bagging, without any alteration to the training set. It 
minimizes the bias by incorporating a random sample predictor before each node segmentation. The RF model 
can handle high-dimensional data, without need for feature selection. Its implementation in Python is relatively 
straightforward, boosting training speeds and easy parallelization. Given these advantages, it is becoming increas-
ingly popular among data  scientists52,53.

According to the above explanations, the control parameters of a random forest are the split criterion, maxi-
mum depth of trees, the number of estimators, and the maximum number of features. These control parameters 
are fine-tuned to achieve the best performance. There is also another control parameter, which is the minimum 
number of samples required to split a node, but it is not investigated in this study.

(16)

arg max
α

−
1

2

M
∑

i,j=1

αiαjyiyj∅(Xi)∅(Xj)+

M
∑

i=1

αi ,

subject to

M
∑

i=1

αiyi = 0, 0 ≤ αi ≤ c, i = 1, . . . , M.

(17)y = sign

(

n
∑

i=1

αiyiK(Xi,z)+ b

)

.
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Power‑law committee machine (PLCM)
A committee machine is a technique to merge the output of a multitude of predictive models to come up with 
a single  prediction33. The benefit of this technique is to take advantage of the results of different alternatives for 
modeling a particular problem, instead of using only one model. The individual models are selected in such a 
way that at least one model from each type of machine learning models is included. Thereby, we can take benefit 
from the strength points of different types of learning algorithms. By using the PLCM technique, the chance of 
overfitting can be  lowered33. There are two main approaches to combine the output of individual models, namely 
the static and dynamic approaches. In the static method, a linear combination of the individual outputs is used 
to get the ultimate output, while the dynamic approach uses a non-linear combination of the outputs. In this 
study, the dynamic approach with a power-law model is used to accomplish the integration task. Equation (18) 
shows the power-law model.

where y is the ultimate output, αi and βi are the coefficients that must be optimized to achieve the goal of the 
power-law committee machine, and yi is the output of the i-th individual predictive model. In this study, the 
coefficients of the power-law model ( αi and βi ) are optimized by the PSO algorithm to achieve a satisfactory 
integration of the outputs. The PSO is described in the following subsection.

Particle swarm optimization (PSO)
Kennedy and  Eberhart54 introduced the PSO as a population-based optimization algorithm. This algorithm 
starts solving the problem with random  solutions65. Each solution in this algorithm is known as a particle, where 
a swarm is composed of a multitude of particles. The particles change their position in the solution space by a 
specified velocity which is updated at each iteration. The particle’s position determines the solution found by 
the particle. When the position of the particle changes, a new solution is obtained. The following equations give 
the updating formulae for the velocity and position of a particle

where xi and vi are the position and velocity of particle i , respectively, t  is the iteration number, ω is the inertia 
coefficient, c1 and c2 are the self-learning and social-learning coefficient, respectively, r1 and r2 are two random 
numbers, xbest,i is the best solution found by the particle, and xbest,g is the global best solution. The values of the 
xbest,i and xbest,g are obtained by evaluating the objective function. In this study, the objective function is the 
negative of prediction accuracy by the PLCM method. The velocity and position of the particles are updated 

(18)y =

5
∑

i=1

αiy
βi
i ,

(19)vi(t + 1) = ωvi(t)+ c1r1(xbest,i(t)− xi(t))+ c2r2(xbest,g (t)− xi(t)),

(20)xi(t + 1) = xi(t)+ vi(t + 1),

Figure 5.  Schematic of the random forest tree construction.
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until the algorithm reaches the stopping criterion. The parameters used in Eq. (19) are determined based on the 
work by Poli et al.56, where ω, c1, and c2 are set at 0.7298, 1.49618, and 1.49618, respectively.

The PSO is one of the most commonly used optimization algorithms in petroleum  engineering57–60. Among 
different metaheuristic optimization algorithms, the PSO has shown a better performance compared to the most 
of other optimization algorithms, such as the genetic algorithm and simulated annealing. The PSO has shown 
the ability to reach better optimal solutions and faster convergence to similar results than its rivals in many 
 applications61. Thereby, this algorithm is used in this study to optimize the coefficients of the PLCM method.

After describing the tools used in this study, it is necessary to define the evaluation metrics, which are required 
to evaluate the performance of the proposed method. These metrics include the quantitative and visual indicators 
that are described in the following subsection.

Evaluation metrics
In this study, quantitative and visual evaluation metrics are used to assess the performance of the proposed 
method. These metrics include the accuracy, precision, recall, F1-score, confusion matrix, Receiver Operating 
Characteristic (ROC) curve, and precision-recall curve.

Accuracy
Accuracy is the total number of correct predictions divided by the total number of data points. In binary classifi-
cation, accuracy is defined as the number of true positives (TP) divided by the number of samples accuracy = TP

N  , 
where N is the total number of data points/samples.

Precision
Precision is the portion of positive predictions that are actual positives. Precision focuses on the accuracy of 
positive predictions. For a binary classification precision is defined as Precision = TP

TP+FP , where FP is the num-
ber of false positives, which means that the prediction by the model is positive, whereas the actual label of the 
sample is negative.

Recall
Recall gives the portion of the positive samples that are identified as positives. Recall focuses on how well the 
model captures positive instances. In other words, it is the ratio of true positives to all positive samples in the 
dataset defined as Recall = TP

TP+FN  , where FN is the number of false negative predictions defined as the samples 
which are incorrectly classified as negative.

F1‑Score
The inverse of the harmonic average of the recall and precision multiplied by 2 is known as F1-Score. F1-Score 
is defined in Eq. (21).

where P and R are the precision and recall, respectively. A good classifier should have high values of precision 
and recall, which indicates a high F1-Score.

In multi-class classification, as the problem in this study, each metric is calculated for individual classes and 
averaged across all classes to obtain a single value. In this manner, each time, one of the classes is considered 
positive, and other classes are assumed as negative.

Confusion matrix
In a multiclass problem, the confusion matrix is a C × C matrix, where the rows represent the actual class and 
the columns represent the predicted class of the samples. The values on the main diagonal of the matrix show 
the number of correct predictions (true positives), and off-diagonal values show the number of incorrect pre-
dictions (false positives). The sum of the values on the main diagonal of the matrix divided the total number of 
samples gives the accuracy, as described above. Also, the diagonal value for each class if divided by the sum of 
all values in each column gives the class-specific precision, and if divided by the sum of all values in each row 
gives the class-specific recall.

Receiver operating characteristic (ROC) curve
ROC curve is a graphical representation that demonstrates the performance of a binary classification model 
across various thresholds. The threshold refers to the decision boundary that the predictive model utilizes to 
classify samples into one of the classes. It plots the true positive rate (sensitivity or recall) versus the false positive 
rate (1 − specificity) at various threshold values.

The key components of a ROC curve are:

• True Positive Rate (TPR): This is the portion of actual positive samples that are correctly classified by the 
classifier. It is calculated as TP/(TP + FN).

• False Positive Rate (FPR): This is the proportion of actual negative samples incorrectly classified as positive 
by the classifier. It is calculated as FP/(FP + TN), where TN is the number of true negatives.

(21)F1−Score = 2
PR

P + R
,
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The ROC curve is drawn by plotting the TPR against FPR, typically at different threshold values. A diagonal 
line, known as the random line, represents a random classifier. It is expected that the ROC curve of a good 
classifier bends towards the top-left corner of the plot, indicating a high recall and high specificity (low false 
positives) simultaneously.

To summarize the overall performance of a binary classifier, the area under the ROC curve (AUC) is used. 
A higher AUC value indicates better classification ability of the model across different threshold settings. For a 
multiclass problem, the ROC curve is created for each class and the AUC of each curve is calculated. Another 
way is to calculate the TPR and FPR for all classes and use their average value to create a single ROC curve with 
a single AUC value. In this study, the former approach is used. This approach provides the ability to analyze the 
performance of a model on each class.

Precision‑recall curve
The precision-recall curve is another graphical representation of a binary classifier’s performance. Similar to the 
ROC curve, the precision-recall curve is generated by changing the threshold of the classifier and plotting the 
precision against recall at different thresholds. The curve shows a trade-off between precision and recall.

The benefit of a precision-recall curve is bolstered when dealing with imbalanced datasets, where one class 
(usually the negative class) significantly outnumbers the other (positive) class. In such cases, relying on the 
accuracy alone is not enough and precision and recall provide a more informative analysis of the classifier’s 
performance. A good classifier is expected to have a precision-recall curve that bends towards the top-right 
corner of the plot.

Similar to the ROC curve, the area under the precision-recall curve is used to quantify the overall performance 
of a classifier. A higher AUC value indicates higher precision and recall values simultaneously across different 
thresholds. An AUC of 0.5, which corresponds to the diagonal line in the plot, represents a random classifier.

Results and discussion
In this section, the results of the individual predictive models along with the results of the PLCM method are 
presented and discussed. To tune the hyperparameters of the individual models, fivefold cross-validation is used. 
The optimal hyperparameters and their investigation ranges are reported for each method.

Table 3 shows the results of hyperparameter tuning along with the investigation ranges and the average 
cross-validation score for the best set of hyperparameters for each method. As the results show, all the methods 
have reached satisfactory cross-validation scores (accuracy), ranging from 0.870 to 0.883. In addition to cross-
validation results, the performance of the methods on training and testing subsets is reported in Table 4 The 
methods are evaluated based on accuracy, recall, precision, and F1-Score.

As presented in Table 4, all the methods have shown reliable performance in predicting the suitable EOR 
techniques for the training and testing samples. Consequently, they are eligible to construct the PLCM model. 
The PSO was used with 50 particles and 50 iterations to optimize the coefficients of the PLCM model. Figure 6 

Table 3.  Optimal hyperparameters and their investigated ranges with cross-validation scores for each method.

Method Hyperparameter Range Optimal value Cross-validation score

ANN

No. of layers 1–4 3

0.883

No. of neurons 50, 100, 200 100

Activation function relu, tanh, elu tanh

Learning rate 0.001, 0.01 0.01

Optimizer SGD, Adam Adam

CatBoost

Max. depth 2, 3, 4 3

0.873
Max. leaves 10, 31, 50 31

No. of estimators 10–100 20

Leaf regularization 0, 5, 10 0

KNN

Algorithm “auto”, “ball_tree”, “kd_tree”, “brute” auto

0.886
No. of neighbors 1, 3, 5, 7, 9 5

Penalty 1, 2 1

Weights Uniform, distance Distance

SVM

C 1, 10, 100, 1000 100

0.870

Class weight Balanced, none None

coef0 0, 1, 10 0

Degree None, 2, 3, 4, 5 None

Kernel “rbf ”, “poly” rbf

RF

Criterion ‘gini’, ‘entropy’, ‘log_loss’ Entropy

0.867
Max. depth 1, 2, 3 3

Max. features “sqrt”, “log2”, 1, 2 1

No. of estimators 10–100 40
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shows the classification error during the optimization process of the PLCM model. As can be seen, the error has 
significantly reduced, indicating that the PSO algorithm has been successful at optimizing the coefficients of 
the PLCM model. Tables 5 and 6 show the optimal coefficients of the PLCM model and its performance on the 
training and testing subsets, respectively.

According to Table 5, the PLCM method has shown outstanding performance at attributing the correct EOR 
method to the samples in the training and testing subsets. In addition, merging the results of the individual 

Table 4.  Performance of the individual methods on the training and testing subsets.

Method Subset Accuracy Precision Recall F1-Score

ANN
Train 0.926 0.898 0.926 0.911

Test 0.893 0.850 0.893 0.868

CatBoost
Train 0.907 0.873 0.907 0.889

Test 0.872 0.806 0.872 0.836

KNN
Train 0.997 0.998 0.997 0.997

Test 0.906 0.891 0.906 0.894

SVM
Train 0.983 0.981 0.983 0.981

Test 0.906 0.882 0.906 0.892

RF
Train 0.909 0.886 0.908 0.896

Test 0.880 0.828 0.880 0.850

Figure 6.  Classification error during optimization of the PLCM model.

Table 5.  Coefficients of the PLCM method.

α1 β1 α2 β2 α3 β3 α4 β4 α5 β5

0.967 0.098 0.0012 0.893 0.532 1.183 0.036 0.979 0.030 0.539

Table 6.  Performance of the PLCM model on the training and testing subsets.

Metric

Subset

Train Test

Accuracy 0.980 0.963

Precision 0.980 0.964

Recall 0.980 0.963

F1-Score 0.980 0.963
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models using the power-law committee machine has significantly improved the prediction metrics. To have a 
clearer comparison between the individual methods and the PLCM model, their average evaluation metrics on 
all classes of the test subset are shown in Fig. 7. As shown in Fig. 7, there is an evident gap between the evalua-
tion metrics of the PLCM model with the evaluation metrics of the individual models. Also, all metrics are high 
and close to each other, indicating that the PLCM technique can correctly identify positive and negative classes. 
Although the KNN model has better metric than the PLCM model on the training subset, its metrics on the 
testing subset are substantially lower than those of the PLCM model, which indicates the potential overfitting of 
the KNN model. The worst performance goes to the CatBoost algorithm since its F1-Score is the lowest among 
all. Its low F1-Score is related to its low precision (0.806) indicating that the CatBoost algorithm had many false 
positives. The second worst model was the RF with an F1-Score of 0.850, again related to its low precision. As a 
result, tree-based algorithms had a high rate of false positives, meaning that they had many incorrect positive pre-
dictions for specific samples. After the tree-based methods, ANN had a moderate performance with an F1-Score 
of 0.868. This method showed better precision and recall than the tree-based methods, which is the reason for its 
higher F1-Score. The best individual models are the KNN and SVM models with F1-Scores of 0.894 and 0.892, 
respectively. In the meanwhile, KNN showed a higher precision than the SVM. Thereby, KNN is slightly better 
at correctly identifying the true positives. This means that when the KNN says that the class of a sample is A, 
with a high probability the true class is A. However, none of the individual methods could achieve an F1-Score 
higher than 0.90. The low precision of the individual methods indicates that they lack rigor to correctly predict 
actual positive samples as positives. Nonetheless, merging the outputs of the individual models has resolved 
this issue and improved the predictions, achieving an F1-Score of 0.963 and precision of 0.964. This is because 
of taking benefit from the strength of each individual model optimally to overcome the class imbalance issue.

The performance of the individual methods and the PLCM method on each class is revealed by the confu-
sion matrix, ROC curve, and precision-recall curve. The confusion matrix is illustrated in Fig. 8, which shows 
the number of correct and incorrect predictions by each data-driven method for each EOR technique (class) 
on the test data. The EOR methods are encoded to numeric values. Each row represents a unique class and the 
sum of values in each row represents the total number of samples belonging to that class. For example, the total 
number of class 24 (steam injection) in the test subset is 130. As shown in Fig. 8, all methods have approximately 
the same performance on classes with a high number of samples. For example, all predictive methods have the 
highest number of true positives on classes 8, 9, 15, 22, and 24, which is the reason for the high accuracy of the 
methods. However, the main difference between them is the number of correct predictions on rare classes, that 
is reflected in the precision and recall values. One of the rare classes is class 3 with only 5 samples in the testing 
subset. For this class, the ANN had zero, the CatBoost had zero, the KNN had one, the SVM had three, and the 
RF had only one true positive(s). There are also other rare classes that the individual methods had the identical 
performance as on class 3. This indicates the inability of the individual methods to handle the class-imbalance 
issue. This issue is resolved by the PLCM method as shown in the bottom-right confusion matrix. For example, 
this method could predict the correct class of all five samples of class 3. Also, some other examples of rare classes 
are class 21 and class 20, where the PLCM method had the correct predictions for all samples.

To have a more convenient way of comparing the ability of different predictive methods to handle the class-
imbalance issue, the ROC and Precision-Recall curves are used. Figure 9 shows the ROC curves for all methods 
and classes. Also, the AUC values are reported under each plot. As shown in Fig. 9, the individual methods have 
resulted in many ROC curves close to the diagonal line, indicating their weak performance on those classes. 
According to the reported AUCs and class numbers below each plot, the low AUC values are obtained on rare 

Figure 7.  Evaluation metrics for all utilized methods for EOR screening.
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classes. However, this problem is not seen on the ROC curve of the PLCM method. Most of the curves are close to 
the top-left corner of the plot and AUC values are above 0.95, except for class 10. This shows the great capability 
of the PLCM method to capture the positive classes while identifying the negative classes correctly.

Figure 10 illustrates the Precision-Recall curve and AUCs for all methods and classes. Same as the ROC 
curves, the individual methods exhibit many curves far from the optimal point of the plot (top-right corner). 
The reported AUCs reveal that the pitfall of the individual methods are the rare classes. Nonetheless, the PLCM 
method has resolved this issue with Precision-Recall curves close to the top-right corner. This method has 

Figure 8.  Confusion matrix for all data-driven methods and classes.
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achieved AUCs of 1 for most of the rare classes and there are only few rare classes that have AUCs below 1. 
However, all AUCs are above 0.80. Consequently, combining the individual methods by the PLCM method has 
effectively increased the precision and recall of the model simultaneously.

Sensitivity analysis
In the end, a sensitivity analysis is conducted to obtain the features importance. To do so, the Pearson’s correla-
tion  coefficient62 is used. This method determines the importance of each feature, denoted by rj , known as the 

Figure 9.  ROC curves for all data-driven methods and classes.



17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9200  | https://doi.org/10.1038/s41598-024-59387-8

www.nature.com/scientificreports/

relevancy factory. The relevancy factor varies between − 1 and 1. A relevancy factor of 1 indicates a strong direct 
relationship between a feature and the output, while a relevancy factor of − 1 indicates a strong inverse relation-
ship. The relevancy factor for a feature is defined as

(22)rj =

∑M
i=1

(

Xj,i − Xj

)(

yi − y
)

√

∑M
i=1

(

Xj,i − Xj

)2 ∑n
i=1

(

yi − y
)2

, for (j = 1, . . . , n)

Figure 10.  Precision-Recall curves for all data-driven methods and classes.
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where Xj is the average of feature j over the entire dataset,  yi is the output of sample i , and y is the average of 
all outputs.

Figure 11 demonstrates the feature importance (relevancy factor) of the features for the individual data-driven 
methods. All methods show the highest sensitivity to oil gravity and porosity with an average relevancy factor of 
− 0.76 and 0.73, respectively. The depth of the reservoir shows a relatively high impact on the performance of the 
models with an average importance of − 0.63. Then, permeability, formation type, and the previous production 
mechanism show a moderate sensitivity with an average relevancy factor of 0.46, 0.44, and − 0.40, respectively. 
Finally, the temperature and viscosity have the least importance with average importance of − 0.26 and − 0.20, 
respectively.

The reason for the high impact of the oil gravity on the screening of EOR techniques is that the oil gravity 
affects the density difference between the injected fluid into the reservoir and the oil in-place. The density differ-
ence is one of the most influential factors at designing EOR projects. Porosity is mainly connected to the storage 
capacity (oil-in-place), capillary pressure, rock and fluid interaction, and fluid flow. Capillary pressure determines 
the ability of fluids to flow through small pores and into smaller capillaries. Capillary forces can facilitate the oil 
displacement from small pores, but it can also cause trapping oil in larger  pores63. The oil-in-place is one of the 
main factors for the success of any EOR project. Higher porosity means higher oil-in-place volume and higher 

Figure 11.  Importance of the features for the individual methods.
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revenue from the project. In addition, higher porosity generally provides a larger pathway to the injected fluid, 
leading to a better sweep efficiency. Depth of the reservoir is also a crucial factor that affects the success of an 
EOR technique. For example, depth is a limiting factor for steam injection since the steam can cool down before 
reaching the desired depth. Temperature and oil viscosity show the least importance among the input variables. 
This is because different EOR techniques can be applied to different reservoirs with similar temperature and oil 
viscosity. For example, water-flooding, steam injection, in-situ combustion, hot water injection, immiscible gas 
injection  (CO2 or hydrocarbon gas) are applicable within a wide range of viscosities and temperatures.

Computational cost and complexity
In addition to the accuracy of the models, the computational cost and complexity of the models should be taken 
into account. Computational complexity indicates how the computational cost of an algorithm scales with the 
size of the inputs and samples. It is a measure of the required resources, such as time, memory, or energy by 
algorithms. This subsection summarizes the computational cost and complexity of the utilized methods. The 
computational complexity of the models is calculated as follows:

• ANN64:
  Training complexity = O (M × N × h× T) , where M is the number of training samples, N is the number 

of features, h is the number of hidden neurons, and T is the number of epochs.
  Prediction complexity = O (M × N × h).
• RF65:
  Training complexity = O(M × N × log(N)× T) , where T is the number of trees.
  Prediction complexity = O(N × log(T)).
• CatBoost38:
  Training complexity = O (M × N × log(N)× T) , where T is the number of trees.
  Prediction complexity = O (N × log(T)).
• SVM66:
  Training complexity = O(M2 × N).
  Prediction complexity = O(N × ns) , where ns is the number of support vectors.
• KNN39:
  Training complexity = brute force: O(1) , as it only stores the training examples, KD Tree: 

O (M × N × logM) , Ball Tree: O (M × N × logM).
  Prediction complexity = brute force: O (M × N × K) , KD Tree: O (K × log M) , Ball Tree: O (K × log M)

.
• PLCM:
  Training complexity = O (M × P × It) , where P and It is the number of particles and iterations in the PSO.
  Prediction complexity O (M).

Since the PLCM needs training the individual methods, its overall complexity is the sum of the complexity of 
the individual methods and the complexity of training and testing of the PLCM. Similarly, its overall prediction 
complexity is the sum of the prediction complexity of the individual methods and its own prediction complexity.

Table 7 reports the computational cost of training and testing of the employed models. The computational 
cost is represented by the CPU time needed to train and test the models. Training also includes the tuning of 
the hyperparameters. As shown in Table 7, the ANN has the highest computational costs due to its enormous 
number of trainable weights/parameters. However, all methods have a negligible testing/inference time. Among 
the methods, the CatBoost and PLCM have shown the fastest inference with a CPU time of 0.2 s. Although the 
PLCM method requires the training of individual methods, its own computational cost is negligible. On the other 
hand, generally, we train some data-driven methods to solve the classification tasks. Thereby, the only thing we 
have to do is optimizing the weights of the PLCM method to combine the outputs of those models. Consequently, 
we can exclude the computational cost of the individual methods from the computational cost of the PLCM. All 
runs were conducted on an Intel Core i7-7500U CPU with 12 GB RAM.

This study showed the strong ability of the PLCM method to effectively combine the outcome of individual 
EOR screening methods to tackle the class-imbalance issue, which is common in EOR screening problems. 
This is important because identifying rare EOR methods is difficult, and suggesting wrong EOR techniques for 
a candidate reservoir may result in severe damages to the reservoir or financial losses. Therefore, this method is 
recommended as a quick tool to evaluate different EOR techniques for a specific field. Since this study has used a 
larger dataset sampled from a greater number of countries than any previous work in the field of EOR screening, 
the developed model is more generalizable to unseen cases around the world.

One of the limitations of this work is that it uses the average reservoir characteristics (permeability, porosity, 
etc.); however, these properties are heterogeneous and significantly impact the fluid flow in porous media. Also, 

Table 7.  Training and testing computational cost of the utilized data-driven methods.

KNN RF CatBoost SVM ANN PLCM

Train (s) 7 543 285 120 5470 6428 + 3

Test (s) 0.27 0.40 0.20 0.81 1.42 3.1 + 0.2
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the current study did not take into account economic factors, which is an important parameter in assessing 
the success of an EOR project. One of the challenges in developing the models is tuning the hyperparameters. 
Because of the large number of hyperparameters for each model, high computational resources should be used 
to have a more comprehensive investigation of these parameters.

It is suggested to consider the heterogeneity of the reservoir properties to model EOR screening in future 
works. Including more samples and more reservoir features for model development would be helpful.

Conclusions
The power-law committee machine (PLCM) coupled with the particle swarm optimization (PSO) was used to 
merge the predictions of five machine learning models, including an ANN, SVM, RF, KNN, and CatBoost, to 
resolve the class-imbalance problem in classification of EOR techniques. The machine learning models and the 
proposed method were trained, validated, and tested using 2563 successful real-field EOR applications around 
the world. The individual machine learning models could achieve an average F1-Score of 0.868, where the KNN 
and SVM had the highest F1-Scores with the values of 0.894 and 0.892, respectively. In addition, the individual 
methods achieved an average accuracy, precision, and recall of 0.891, 0.850, 0.891, respectively, indicating their 
inability to handle the class-imbalance issue. The low value of the precision revealed that the utilized machine 
learning methods lacked rigor to correctly predict positive classes as positives. The novelty of this paper is to 
utilize the PLCM method to combine the outputs of the individual machine learning methods to tackle the class-
imbalance issue by taking benefit from the strength point of each individual method. The results show that the 
proposed method could effectively combine the predictions by different models to overcome the class-imbalance 
challenge. The F1-Score on the test subset increased to 0.963, and the accuracy, precision, and recall improved 
to 0.963, 0.964, and 0.963, respectively, indicating the ability of the proposed model to correctly identify the 
positive classes (high precision) while having a high rate of true positives (recall), which was shown in the ROC 
and precision-recall curves. A sensitivity analysis was conducted in this study, which found the oil gravity and 
the formation porosity as the most influential parameters on screening of the EOR techniques. This is because 
the gravity of the oil greatly affects the density difference between the injected and formation fluids, influencing 
the macroscopic sweep efficiency. Also, the formation porosity is related to the oil-in-place, fluid flow, capillary 
pressure, and rock and fluid interactions, where these parameters significantly determine the success of an EOR 
project. On the other hand, temperature and viscosity had the least importance since a variety of EOR techniques 
can be applied to different reservoirs with similar temperature and oil viscosity. Finally, this paper showed that 
the PLCM is a fast and accurate model to predict the suitable EOR technique for oilfields. Therefore, reservoir 
engineers can have a quick evaluation of the EOR technique for a specific field without spending too much time 
and financial resources.
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