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Immune response stability 
to the SARS‑CoV‑2 mRNA vaccine 
booster is influenced by differential 
splicing of HLA genes
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Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain 
largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-
based transcriptome analysis to investigate variability in vaccine response in healthy recipients of 
a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was 
divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV 
IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, 
with antibody values greater than 0.6 percentile of the range in the same period (median 9525 
[185–80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and 
insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our 
understanding of the immune response sustenance. Our analysis revealed a differential expression of 
genes with immunological functions in individuals with low antibody titers, compared to those with 
higher antibody titers, underscoring the fundamental importance of the innate immune response 
for boosting immunity. Our findings also provide new insights into the determinants of the immune 
response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of 
differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine 
immunogenicity.
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The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), posed an unprecedented burden upon global healthcare systems with concurrently 
substantial economic disruptions, as evidenced by prolonged lockdown measures1. COVID-19 vaccines were 
developed, tested, and approved in record time, substantially reducing the number of cases, hospitalizations, 
and deaths worldwide2. This success, particularly in regions with high vaccination coverage, thereby ratifies that 
efficacious vaccination approaches harbor the potential to deal with emerging viruses.

SARS-CoV-2 vaccines encompass a broad spectrum of approaches, including inactivated viral particles, 
live attenuated vaccines, viral vectors encoding the viral spike protein, mRNA constructs, and adjuvanted spike 
protein subunits3. Nonetheless, despite the administration of more than six billion doses of COVID-19 vaccines, 
the high effectiveness of the COVID-19 vaccines reaching up to 95%4, and the fact that the latest viral variants 
exhibit reduced lethality among immunized individuals, SARS-CoV-2 transmission persisted even at a low speed. 
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Besides, many COVID-19 cases occur in vaccinated individuals5. Escape from the immune response or a sub-
optimal immune response can partially contribute to virus spread, favoring new variants’ emergence. However, 
a comprehensive understanding of the factors underlying differentiated host immune responses to COVID-19 
vaccines, even among immunocompetent individuals, is still in progress.

Consistent variations in vaccine immunogenicity are a recurring phenomenon for different viruses. One piv-
otal aspect requiring thorough characterization concerns host differences in sustaining immunogenicity elicited 
by vaccines over time and the identification of genetic drivers influencing the immune response to COVID-19 
vaccines has been the focus of several studies. Indeed, investigations into the spectral individual variation in 
functional immune response have revealed a notable genetic connection with vaccination response. Twin studies 
have provided insights by highlighting that monozygotic twins exhibit lesser variability than dizygotic twins in 
their vaccine-induced responses under controlled environmental conditions6. Furthermore, the host’s genetic 
background, primarily characterized by single nucleotide variants (SNVs) in genes encoding human leukocyte 
antigen (HLA) classes I and II, cytokines, cytokine receptors, and genes involved in innate immune response 
(e.g., Toll-like receptors), can partly elucidate the interindividual variability in the immune response to vaccines, 
such as measles and rubella7–12, hepatitis B7,13–15, influenza16, smallpox17, or Bacillus anthracis18. Besides, differ-
ent ethnic groups living in the same geographical location exhibit diverse immune responses to vaccination or 
antibodies’ decline, suggesting a genetic modulatory influence in the dynamics of vaccine-induced responses19.

Additional factors influencing immune response variability include intrinsic host issues (e.g. age, gender, 
comorbidities, body mass index, micronutrients, microbiota, preexisting immunity) and extrinsic elements (e.g. 
smoking, alcohol consumption, exercise, psychological stress, and toxins exposure)19. Furthermore, compelling 
evidence indicates the existence of ethnic diversity in vaccine-induced antibody levels20. Thus, efforts directed 
towards the comprehensive understanding of the wide-ranging spectrum of immune responses observed among 
healthy individuals and the intricate mechanisms underlying this variability may help to develop more effec-
tive immunogenic vaccines and overwhelm vaccine failures. Indeed, high-throughput methodologies, such as 
RNA-based transcriptome analyses, can be gold standard tools to explore this landscape, since they reflect both 
intrinsic and extrinsic factors affecting humoral, cellular, innate, cytokine, and adaptive immune responses21. 
Transcriptomic analysis in blood, an accessible tissue reflective of immune system dynamics22, can be employed to 
discern potential signatures of vaccine-induced responses or to characterize their minor expression or complete 
absence in less responsive individuals.

On a global scale, Brazil emerged as a prominent hub for SARS-CoV-2 spread during pandemics, marked 
by elevated counts of both cases and deaths23 (https://​coron​avirus.​jhu.​edu/​map.​html). Conversely, it boasts a 
robust immunization program, resulting in significant adherence to SARS-CoV-2 vaccination compared to many 
other countries. Among the COVID-19 vaccines distributed in Brazil, CoronaVac (Sinovac), a whole inactivated 
virus vaccine, received regulatory approval from the Brazilian Health Regulatory Agency (ANVISA) in January 
2021 and then spread as one of the most globally employed vaccines. The Covishield vaccine was the second 
vaccine to be administered in the country. It was developed by the University of Oxford in partnership with 
the pharmaceutical company AstraZeneca, using the modified chimpanzee adenovirus ChAdOx1 as a vector. 
Subsequently, in response to the emergence of several Variants of Concern (VOCs), notably the Delta (B.1.617.2) 
and Omicron variants, the Brazilian government introduced the administration of a booster dose of the mRNA 
BNT162b2 vaccine (BioNTech/Pfizer) to those who had completed the primary vaccination schedule at least six 
months earlier, aiming to reinforce immune protection against COVID-1924,25.

SARS-CoV-2 BNT162b2 vaccine (Pfizer-Biontech) is an mRNA vaccine engineered with lipid nanoparticles 
and nucleoside modifications, designed to encode a full-length, prefusion-stabilized SARS-CoV-2 spike protein 
anchored within the viral membrane. It has demonstrated safety and efficacy in preventing COVID-1926. Recently, 
an observational retrospective investigation was conducted to assess the antibody response at intervals of 120 and 
180 days after the BNT162b2 vaccine in 1.115 subjects, evidencing that the second dose of this vaccine allows 
a satisfactory antibody response27. Furthermore, booster vaccination enables higher protection against SARS-
CoV-2 variants than is achieved with a primary series of vaccination, although antibody titers naturally decrease 
over time, requiring additional boosting28,29. However, studies investigating the impact of genetic regulation of the 
immune response to the BNT162b2 vaccine and the antibodies’ stability have been few and ethnically restricted.

To better understand SARS-CoV-2 vaccine-induced immunogenicity and why some individuals sustain anti-
body titers after receiving the booster dose better than others, we analyzed the antibody response elicited by 
the BNT162b2 vaccine. We also carried out bulk RNA-based transcriptome analysis from whole blood 180 days 
after vaccination boosting. Additionally, our systematic bioinformatic analysis showed a potential role for innate 
immune regulatory mechanisms in maintaining humoral response after vaccination boosting. Besides, we found 
high correlations between differential alternative splicing events and vaccine response, mainly concerning HLA 
genes. These genes hold the potential to serve as predictors of vaccine response, highlighting the valuable role 
of molecular profiling in improving the accuracy of vaccine response prediction.

Methods
Study participants and sample collection
Within the context of the Brazilian COVID-19 vaccination campaign, 5,345 individuals from an ethically mixed 
Brazilian population from Rio de Janeiro (Brazil) were recruited at Rio de Janeiro State University for SARS-
CoV-2 IgG evaluation (data not published).

The primary vaccination schedule in both groups was accomplished by Coronavac (Sinovac) or Covishield 
(AstraZeneca). Between April and July 2022, twenty healthy adult volunteers’ recipients of a booster (third dose) 
regimen for the SARS-CoV-2 BNT162b2 vaccine were selected for further evaluation on day 180 after the boost-
ing vaccination (IgG S1 median [min–max] AU/mL, Sinovac: 10,797 [283–80,000], n = 348 and AstraZeneca: 
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8919 [185–80,000], n = 448). Individuals with systemic conditions, such as cancer, diabetes, and obesity, were not 
included in this study (Table 1). Within this cohort, individuals were classified into two age- and sex-matched 
groups of ten individuals, according to the titers/concentrations of SARS-CoV-2 antibodies low-stable (1), in 
which individuals had antibodies titers/concentrations 180 days less than 7000 AU/mL (percentile < 0.4) after 
boosting vaccination; and high-stable (2), with antibodies titers compatible with the population in the same 
period (over 12,800 AU/mL—percentile > 0.6) (Fig. 1).

The collection of serum specimens for SARS-CoV-2 antibodies analysis and whole blood samples for RNA 
analysis occurred at the same time, 180 days after the BNT162b2 booster dose. Serum samples for antibody 
analysis were collected employing vacutainer clot-activator tubes (BD Biosciences, San Jose, CA). Peripheral 
blood samples for RNA-seq analysis were collected using Tempus™ Blood RNA Tube (Thermo Fisher Inc.).

Table 1.   Summary features of participants. Group 1: individuals with a less stable response according 
to IgGS1; Group 2: individuals with a more stable response according to IgGS1; M: male; F: female; SV: 
Coronavac (Sinovac); AZ: Covishield (AstraZeneca); IgGS1: IgG antibodies directed against the nucleoprotein 
or spike protein of SARS-CoV-2.

Code number Study group Gender Age (years) Reported ethnicity
Previous reported 
COVID-19 Primary vaccination IgGS1 (UI/mL)

953418 1 M 60 Black Yes (8 months before 
booster) AZ 730

2318275 1 F 62 Caucasian No AZ 834

2315722 1 F 65 Caucasian No AZ 1428

2260337 1 F 35 Caucasian No SV 2291

1767816 1 F 47 Mixed Yes (18 months before 
booster) SV 4235

1948860 1 F 41 Mixed No SV 4375

1293289 1 F 66 Mixed No AZ 4815

2302804 1 M 65 Caucasian No SV 6546

1830073 1 F 31 Caucasian Yes (19 months before 
booster) SV 6562

1714685 1 M 65 Mixed No SV 6943

2323629 2 F 59 Caucasian Yes (12 months before 
booster) AZ 18,092

2300965 2 F 29 Mixed No (positive IgG) SV 12,756

2271208 2 F 44 Mixed Yes (14 months before 
booster) AZ 12,831

2258909 2 F 26 Caucasian No SV 27,200

2233454 2 F 54 Caucasian No SV 22,442

2304787 2 M 60 Mixed No AZ 30,759

2258,498 2 F 31 Mixed Yes (21 months before 
booster) AZ 16,537

881852 2 M 58 Mixed No AZ 14,364

2269145 2 M 54 Mixed No SV 18,095

2264883 2 F 23 Mixed Yes (14 months before 
booster) SV 17,012

Figure 1.   An illustrative representation of experimental design: vaccine characteristics, temporal blood 
sampling points, and discriminatory antibody profiles for categorizing investigated cohorts.
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Serological assessment of SARS‑CoV‑2 IgG antibodies
Serum specimens underwent comprehensive analysis to discern the qualitative and quantitative presence of IgG 
antibodies directed against the nucleoprotein or spike protein of SARS-CoV-2. The automated immunoassay 
technology was employed, specifically the SARS-CoV-2 IgG and SARS-CoV-2 IgG II Quant assays by Abbott 
Diagnostics (Abbott Parl, IL). The technique harnessed paramagnetic microparticles coated with either the 
nucleoprotein or the receptor binding domain (RBD) situated within the S1 subunit of the spike protein. This 
analytical protocol utilized chemiluminescence (CMIA) processes and outcome measurements are reported as an 
index for nucleoprotein detection or as arbitrary units per mL (AU/mL) for the spike protein, with a diagnostic 
threshold set above 1.4 for nucleoprotein reactivity and above 50.0 AU/mL for spike protein reactivity.

RNA extraction and whole blood transcriptome
Total RNA was extracted from whole peripheral blood samples stored in Tempus™ Blood RNA Tubes using Tem-
pus™ Spin RNA Isolation Kit (Thermo Fisher Scientific, San Jose, CA, USA) followed by treatment with TURBO 
DNA-free™ Kit (Thermo Fisher Scientific, San Jose, CA, USA). Qubit 2.0 Fluorometer with the Qubit RNA Assay 
Kit (Life Technologies, Carlsbad, CA, USA), and TapeStation 2200 (Agilent Technologies, Santa Clara, CA, USA) 
were employed to assess the concentration, purity, and integrity of the RNA samples. Only those samples with 
an RNA integrity number (RIN) greater than 7.0 were used for subsequent analysis. An average of 0.5 µg of total 
RNA was utilized for library construction through the Illumina Stranded Total RNA Prep, and rRNA depletion 
was performed with Ribo-Zero Plus (Illumina, San Diego, CA, USA), following the manufacturer’s guidelines. 
RNA-Seq libraries were sequenced in an Illumina NextSeq 550 platform (75 bp paired-end reads). The quality of 
sequenced reads was assessed with FastQC30, and trimming was carried out using BBDuk (https://​sourc​eforge.​
net/​proje​cts/​bbmap). STAR tool version 2.7 was employed for the alignment of the reads onto the human genome 
reference (GRCh38.p14)31. The sequencing metrics were assessed with RNA-SeQC software32.

Identification of differentially expressed genes, alternative splicing events, and functional 
enrichment
We compared the groups exhibiting low and high stability concentrations of antibodies to identify genes with 
baseline expression that could potentially serve as predictors for the BNT162b2 vaccination outcome. Differen-
tial gene expression analysis was performed through the DEGRE package for R33, which identifies Differentially 
Expressed Genes (DEGs) in a pairwise manner and considers the insertion of the individuals’ age as random 
effects in the experimental design. It also has a preprocessing step responsible for filtering genes that could 
impair DEGs’ inference. For DEGs’ inference, DEGRE uses a Generalized Linear Mixed Model (GLMM) with 
a negative binomial distribution. Due to the limited number of samples, a stringent threshold for DEGs was set 
with adjusted p-values or q-values < 0.005.

To detect Differential Alternative Splicing Events (DASE) from the RNA-Seq data, the replicate multivariate 
analysis of transcript splicing (rMATS v.4.1.2)34 was employed. This approach identified different alternative 
splicing events including skipped exon (SE), alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), 
mutually exclusive exons (MXE), and retained intron (RI) events. A significance threshold for alternative splicing 
events was set with a false discovery rate (FDR) < 0.01.

Combined enrichment analysis of DEGs and DASE genes was conducted using Enrichr software35–37, 
incorporating Reactome (RT), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) 
Consortium38–40 and DisGeNET41. Stringent adjusted p-values < 0.05 indicated significant enrichments and only 
the top 10 significant terms were considered.

Co‑expression modules in tissue‑specific networks and interactome analysis
The HumanBase tool (https://​hb.​flati​ronin​stitu​te.​org/) was employed to identify coherent gene clusters in blood 
tissue-specific networks from the DEGs and DASE genes. Genes within a cluster share local network neighbor-
hoods, forming a cohesive, specific functional module with systematic association. The approach is based on 
shared k-nearest-neighbors (SKNN) and the Louvain community-finding algorithm. It can mitigate the impact 
of highly connected genes and highlight the local network structure by establishing connections between genes 
that are likely to be functionally clustered.

Additionally, data from the Biological General Repository for Interaction Datasets—BioGrid42 concerning 
curated protein and genetic interactions from humans were used to construct an interaction network from the 
DEGs and DASE genes. Then, information about interactions with SARS-CoV-2 viral proteins, obtained from 
the BioGRID COVID-19 Coronavirus Curation Project, was integrated into the network. The weights of the 
nodes were calculated by adding the inverse of the log2 Fold-Change value (1/log2FC). The software Gephi 0.943 
was employed to visualize interactions.

Variant calling and allelic imbalance analysis
In the context of analyses pertaining to expressed SNVs (eSNVs) and insertions/deletions (indels), an allelic 
imbalance analysis was conducted based on a computational pipeline, PipASE, designed for the detection of 
Allele-Specific Expression (ASE) within transcriptome data44. Initially, the sequencing quality parameters were 
assessed for each FASTQ file using FastQC (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/). Next, 
bad-formed reads were removed using Trimmomatic45. The filtered reads were aligned to the human GRCh38.
p14 reference genome assembly using STAR v3.7 software31. Subsequently, the mapped sequences underwent 
additional processing using SAMtools, which involved sorting, indexing, and read selection based on mapping 
quality parameters (MAPQ ≥ 30) in BAM files46. Then, we masked duplicate reads and performed variant calling 
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in RNA-seq data using MarkedDuplicates and HaplotypeCaller from GATK v4.1, respectively47,48. We used 
ASEReadCounter to determine the read counts for reference and alternative alleles in each position49.

The differential expression of genetic variants across the human genome was calculated by the reference allele 
ratio (ref ratio) in each sample using the following equation: ref ratio = (# of reads with the reference allele)/(# 
of reads with the reference allele + # of reads with the alternative allele). We required coverage of at least twelve 
reads per variant site for differential ASE analysis.

Splice site alteration and haplotype identification around the identified eSNVs from DASE 
genes
In silico analysis was performed to investigate splicing site alterations around the eSNVs found in the DASE 
genes. The prediction analysis was performed using ESEfinder and NNSplice tools, with corresponding prediction 
score thresholds and sequence lengths to reach a sensitivity, and specificity ≥ 80%50,51. To perform read-based 
phasing analysis the HapCUT2 was used with default parameters accessing germline WES BAM files and respec-
tive VCFs files. The analysis limitation includes the infeasibility of linking distant variants in haplotypes, since 
Illumina technology generated short read lengths (100–250 bases)52.

Sequence‑based HLA typing using RNA‑seq data
The HLA alleles identification was performed directly from RNA-Seq reads in each sequence. First, RNA-Seq 
reads in fastq format were mapped to the human chromosome 6 (GRCh38.p14) using bowtie253. The mapped 
sequences were assembled into 200 bp contigs using the TASR tool54 and aligned to HLA reference sequences 
using the NCBI BLAST + 2.13.0 package (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi). The following alignment 
parameters were used: -b 5 -v 5. The HLA reference sequences of classes I and II genotypes were retrieved in 
fasta format from the IMGT/HLA database. After alignment, the selected sequences were used to predict HLA 
alleles in the HLAminer tool with the default parameters55.

Institutional review board statement
The study was conducted in accordance with and under the approval of the Pedro Ernesto University Hospital 
Ethical Committee code: CAAE 0135320.0.0000.5259 version, approved on 01 Sept 2021 version 4).

Informed consent statement
Informed consent was obtained from all subjects involved in the study or their representatives. Written informed 
consent was obtained from the participants to publish this paper.

Results
Cohort data and transcriptome metrics
Between the low- and high-stable groups, no significant difference was noted in gender composition (sex 
ratio = 0.43 for both groups) and mean age (53.7 ± 13.8 and 43.8 ± 15.03, respectively). Concerning ethnicity, 
Group 1 (black—10%, caucasian—50%, mixed—40%) and Group 2 (black—0%, caucasian—30%, mixed: 70%) 
were also similar (Fisher’s exact test—p = 0.5). Two doses of Coronavac accomplished the primary vaccination 
schedule in six individuals (60%) in Group 1 and five individuals (50%) in Group 2. The remaining individuals 
in both groups were vaccinated with two doses of Covishield (Table 1).

The analysis of sequencing metrics reveals that 99% of RNA-seq reads were successfully mapped to the refer-
ence genome with a high degree of quality. Approximately 2.8% of the sequencing reads exhibited ambiguity 
in their mappings. In terms of their distribution across genomic regions, exonic reads constituted 47.8% of the 
total, while intronic reads accounted for 44.4%, and a mere 0.07% of reads were mapped to rRNA sequences. 
On average, 83.9% of the bases targeted by the probes exhibited coverage by at least 30 reads. On average, a total 
of 23,326 genes were detected, and the efficiency of expression profiling was quantified at 0.478%. These results 
collectively demonstrate the effectiveness of the RNA-seq methodology employed in this study for characterizing 
gene expression patterns (Supplementary Table 1).

Differentially expressed genes, alternative splicing events, and functional enrichment
Ten DEGs were identified between the two groups, from which six were downregulated (ACP3, BIRC3, VNN3, 
SLPI, MT-ATP6, MT-ND4L) and four were upregulated (KTN1, PYHIN1, WDR82, TMED10) genes in the low-
stable group compared to the high-stable group (Supplementary Table 2). No long non-coding RNAs were 
recognized as DEGs in this comparison.

DASE analysis from the RNA-Seq data identified twenty-six significant genes (FCRL3, NAGK, SLMAP, RNF4, 
WDFY3, LEF1, HLA-A, HLA-C, HLA-B, HDDC2, ARL4A, UBAP2, ZMYND11, TBC1D10C, NCOR2, RUBCNL, 
DCAF11, SPG11, PSTPIP1, DNAJA3, CIITA, MAP3K3, AKAP8L, RASGRP4, CNOT3, and HMGN1). Exon skip-
ping (ES) was the commonest differential splicing event, representing 44.5% of DASE genes, followed by a 
retained intron (RI) (33.3%), mutually exclusive exons (MXE) (7.4%), alternative 5’ splicing (A3SS) (7.4%), and 
alternative 5’ splice site (A5SS) (7.4%) events. The HLA-B gene was involved in two simultaneous differential 
splicing events (ES and A3SS) (Supplementary Fig. 1, Supplementary Table 2).

Combined functional enrichment analysis of DEGs and DASE genes through Reactome showed significant 
associations with pathways like endosomal/vacuolar pathway, antigen presentation of class I MHC, interferon-
gamma signaling, immune system, innate immune response, neutrophil degranulation, interferon signaling, 
interferon alpha and beta signaling, and ER-phagosome pathway. In the context of the KEGG database, antigen 
processing and presentation emerged as the most noteworthy term. Global GO enrichment analysis revealed 

https://blast.ncbi.nlm.nih.gov/Blast.cgi


6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8982  | https://doi.org/10.1038/s41598-024-59259-1

www.nature.com/scientificreports/

significant values for all three classes. Enriched Biological Processes (BP) primarily centered around antigen 
processing and presentation of endogenous peptide antigens via MHC class I. For Molecular Function (MF), 
enriched terms encompassed histone deacetylase binding and DNA binding. Regarding Cell Component (CC), 
significant GO terms included MHC class I protein complex and ER to Golgi transport vesicle membrane. Fur-
thermore, disease enrichment analysis using DisGeNET indicated substantial associations with various autoim-
mune conditions, such as autoimmune primary adrenal insufficiency, Addison’s disease due to autoimmunity, 
hypersensitive syndrome, spondyloarthropathies, and autoimmune thyroiditis (Fig. 2).

Co‑expression modules and SARS‑CoV‑2 interactome
Analysis of co-expression modules in a blood-specific network through HumanBase revealed one significant 
module (innate immune response, q value = 0.0022), involving four functionally associated genes: class II major 
histocompatibility complex transactivator (CIITA), Fc receptor-like 3 (FCRL3), pyrin and HIN domain family 
member 1 (PYHIN1), and vanin 3 (VNN3) (Supplementary Fig. 2). PYHIN1 and VNN3 were upregulated and 
downregulated DEGs, respectively, whereas CIITA and FCRL3 were found to be DASE genes (Supplementary 
Table 2).

In the interaction network analysis between human and SARS-CoV-2 proteins, it was observed that out of the 
36 proteins encoded by the DEGs and DASE genes, a total of 17 human proteins exhibited robust connectivity 
with 24 viral proteins, accounting for 88.9% of the entire set of 27 SARS-CoV-2 proteins. Noteworthy interac-
tions in this network were particularly evident for the DASE genes HLA-A, HLA-B, and HLA-C, as well as for 
the upregulated DEGs TMED10 and KTN1. No interactions were identified for the upregulated DEGs. Moreover, 
within this group of 17 human proteins, four exhibited interactions amongst themselves: HLA-A, HLA-B, HLA-C, 
and WDFY3. Amongst the proteins displaying specific interactions with the SARS-CoV-2 spike protein, which 
is the basis for the mRNA BNT162b2 vaccine, three proteins were retrieved (HLA-A, HLA-C, and KTN1), with 
direct interactions between HLA-A and HLA-C (Fig. 3).

Variants in differentially spliced genes and allelic imbalance
We compared the allelic expression profiles of eSNVs in bulk RNA-Seq data from the two groups. We interro-
gated 222 eSNVs detected across the groups, with coverage ≥ 12 reads at each site. Only one synonymous variant, 
NM_001330683.2 (TTC3):c.5115G > A p.Lys1705 = , displayed differential ASE (Fig. 4). The genetic variants of the 
DASE genes were subjected to comprehensive analysis, leading to the identification of twelve eSNVs distributed 
across the exons 3, 4, 5, and 9 of the HLA-A gene and exons 2, 3, 4, and 8 of the HLA-B gene (Supplementary 
Table 3). Group 1, harbored 58.3% (n = 7) of all eSNVs in DASE genes and group 2 showed the smallest amount 
of eSNVs in DASE genes with 41.6% (n = 5) (Fig. 4, Supplementary Table 3).

A splice site prediction analysis of each eSNV of DASE genes revealed a splice site alteration for eight eSNVs 
(HLA-A: rs879577815, rs3098019, rs1137160; HLA-B: rs1055149, rs709052, rs1050379, rs41553715, rs1055348) 
(Fig. 5, Supplementary Table 4). Employing HapCUT2, a read-based phasing analysis was executed to explore 
additional eSNVs associated with splice site alterations. Two of the aforementioned eSNVs were found to be in 
phase: the eSNV rs1050379 exhibited phased alignment with rs709055 within exon 3 of the HLA-B gene both in 

Figure 2.   Enrichment analysis conducted on the enrichment of 36 DEGs and DASE genes. The y-axis shows 
the categories, while the x-axis shows the proportion of genes mapped against the total. Classes are represented 
by colours and statistical significance by circle size.
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a prospective 3′ acceptor splice site, and rs1137160 was in phase with rs74408957 in exon 5 of the HLA-A gene 
in a prospective 5′ donor splice site (Supplementary Table 5).

HLA alleles associated with vaccine response
The HLA typing analysis revealed a wide range of HLA alleles across the studied groups. The HLA class I alleles 
HLA-A*02:01 and HLA-B*40:01, related to high COVID-19 vaccine response, were found, as well as HLA-
A*03:01, HLA-B*08:01 HLA-B*18:01, and HLA-C*07:01 related to low vaccine response. The HLA class II alleles 
predominantly found were HLA-DQB1*06:02 and HLA-DRB1*07:01, both associated with high vaccine response. 
In addition, two haplotypes previously related to vaccination were identified HLA-DRB1*01:01-DQA1*01:01-
DQB1*05:01 and HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 linked to low and high COVID-19 vaccination 
response respectively (Supplementary Table 6).

Discussion
Our knowledge about COVID-19 vaccine-induced immunity and host response immune variability is still limited 
compared to the ongoing understanding of immunity developed in response to natural SARS-CoV-2 infection. 
Particularly, COVID-19 mRNA vaccines obtained approval for human emergence use recently and it remains 
uncertain to what extent these vaccines elicit immune responses or interindividual variability that are either 
similar to or different from those activated by other vaccine categories, such as inactivated or live-attenuated 
vaccines. The utilization of high-throughput RNA-based transcriptome analysis to investigate vaccine response 
and the variability in immune reactions emerges as an exceptionally well-suited tool for uncovering the dynamics 
of immune responses and gene regulatory networks. Identifying expression changes, differential splicing events, 
impact variants, and associated biological pathways can offer insights into the interplay between intrinsic genetic/
epigenetic background and the extrinsic variable environmental factors. Thus, transcriptome profiling of the host 
immune response to vaccines is crucial for rationalizing efficient vaccination strategies.

In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome 
analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule 
of the mRNA BNT162b2 vaccine against COVID-19. Notably, the studies concerning host vaccine response 
to different viruses are conducted with participants of Caucasian descent and such limited ethnic diversity 
constrains the extrapolation to other populations. To the best of our knowledge, this is the first comprehensive 
transcriptome study regarding vaccine response to SARS-CoV2 from a mixed population of Latin America. 
Furthermore, differential splicing events were not previously explored in the context of immune vaccine response 
against SARS-CoV-2.

Figure 3.   SARS-CoV-2 interactome analysis with DEGs and DASE genes. (a) Interactions with all SARS-CoV-2 
viral proteins; (b) Interactions with SARS-CoV-2 spike protein. The green circles represent genes from SARS-
CoV-2, the yellow circles represent DASE genes, and the blue circles indicate the three up-regulated genes. 
Circle size is proportional to degree (number of interactions), and edge color reflects type: red for interactions 
between human proteins and SARS-CoV-2, and black for interactions between human proteins.
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Figure 4.   Genomic distribution of eSNVs across the human genome. The outermost layer displays the 
chromosomal arrangement, followed by the cytoband organization. Within the chromosome layout, all eSNVs 
with a read count over 12, found in the variant calling step, were represented by black dots. Furthermore, eSNVs 
shared between the two study groups are represented by red dots. The innermost layer illustrates the distribution 
of the DASE genes with colored bars. The dots beneath the arrow symbolize the eSNVs located within the DASE 
genes.

Figure 5.   Distribution of the splice site alterations across HLA-A and HLA-B genes. The structure of HLA-A 
and HLA-B genes with exon identification is depicted in dark blue. The sequence context of splice site alterations 
is visually presented across the genes. eSNVs within the sequence (black bold) are identified by colored dots. 
Additionally, splice sites (read bold) and their specific alterations are indicated by red arrows.
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Stringent RNA-seq data analysis of the vaccine response to mRNA BNT162b2 booster revealed subtle changes 
in gene expression, with ten differentially expressed genes between low and high-stable groups. However, DASE 
analysis identified, for the first time, that distinct differential splicing events mainly regarding HLA genes can 
consistently contribute to variability in vaccine-induced cellular immunity. DEGs and DASE genes were enriched 
for immune pathways (e.g. antigen presentation of class I MHC, interferon-gamma signaling, innate immune 
response, neutrophil degranulation, and interferon signaling) and autoimmune diseases (Supplementary Table 2, 
Fig. 2). Interestingly, two mitochondrial genes (MT-ATP6 and MT-ND4L) are overrepresented among the DEGs. 
Mitochondrial metabolism is crucial in regulating a broad spectrum of immunological functions. These func-
tions include the differentiation of T cells, the polarization of macrophages, and the response of the immune 
system against tumors. However, it remains unclear how mitochondrial reactive oxygen species (mROS) and 
metabolites that originate from mitochondria exert control over immunity56.

The significant co-expression module in a blood-specific network ratified the role of CIITA, FCRL3, PYHIN1, 
and VNN3 genes in innate immune response (Supplementary Fig. 2). CIITA gene is a class II major histocompat-
ibility complex transactivator. The ability of an individual to mount an immune response that results in antibody 
production depends on HLA Class II molecules. SARS-CoV-2 in silico binding affinity to such molecules was 
demonstrated to predict vaccine effectiveness across Variants Of Concern57. Moreover, interindividual variability 
in antibody responses against SARS-CoV-2 spike protein (ChAdOx1 nCov-19 vaccine) and its receptor-binding 
domain after the first vaccination showed genome-wide significant association with MHC class II alleles58. 
FCRL3 gene encodes a member of the immunoglobulin receptor superfamily and is one of the Fc receptor-like 
glycoproteins genes clustered on the long arm of chromosome 1. Its protein possesses immunoreceptor-tyrosine 
activation motifs and immunoreceptor-tyrosine inhibitory motifs in its cytoplasmic domain and might act to 
regulate the immune system59. FCRL3 pathogenic variants are related to different autoimmune diseases, such as 
rheumatoid arthritis60. PYHIN1 is a member of the HIN-200 family of interferon-inducible proteins, character-
ized by a 200-amino acid motif at their C-termini. Its role encompasses controlling both adaptive and innate 
immunity, through modulating cytokine production, macrophage, and T cell function, as well as the transcription 
of a specific target gene61. Finally, VNN3 is a pseudogene that belongs to the vanin family and is responsible for 
producing an ectoenzyme with pantetheinase activity. The vanin gene family has established roles in oxidative 
stress and inflammation62. Recently, VNN3 was found to integrate an 11 immune-related gene signature as a 
biomarker for acute myocardial infarction63.

In the interaction network analysis between human and SARS-CoV-2 proteins, a great proportion (88.9%) of 
the viral proteins interact with 17 out of the 36 genes found to be DEGs or DASE genes. Significant connections 
within this network were especially noticeable concerning the DASE genes HLA-A, HLA-B, and HLA-C, as well 
as the upregulated TMED10 and KTN1 DEGs. Interestingly, according to Gene Ontology, TMED10 and KTN1 
are not directly related to immune responses, but their products interact with SARS-CoV-2 proteins, suggesting 
a role in the viral infection. Research into protein–protein interactions has revealed that SARS-CoV-2 proteins 
can interact with distinct host genes, disrupting crucial cellular processes, including splicing, translation, and 
trafficking. As a result, essential biological pathways like the interferon response, which plays a pivotal role in 
countering viral infections, are suppressed64.

Taken together, almost all differential mechanisms found between the low-stable and high-stable groups, 
regarding DEGs, DASE genes, variants analysis, allelic imbalance, and SARS-CoV-2 network analyses are 
involved in immune responses, mainly innate immune response. Previous transcriptome analyses for elucidat-
ing vaccine effectiveness for different viruses, such as influenza65, Hantavax66, and VSV-EBOV67, have effectively 
illuminated the intricate patterns of the host’s immune response following vaccination. In the context of inacti-
vated influenza vaccines, DEGs at different times of post-vaccination were linked to the IL-17 signaling pathway 
and oxidative phosphorylation65. The Hantavax vaccine, on the other hand, exhibited significant upregulation of 
DEGs associated with innate immunity and cytokine pathways following vaccination66. For VSV-EBOV, tran-
scriptional response displayed characteristics of both innate antiviral immunity and B cell activation67.

SARS-CoV-2 vaccines induce widespread immune responses, in both innate and adaptive systems, with 
extensive crosstalk between them68–71. Various pathways within the innate immune system were identified for 
COVID-19-inactivated vaccines, including the TNF signaling pathway, IL-17 signaling pathway, interactions 
between viral proteins and cytokines, cytokine-receptor interactions, NF-kappa B signaling pathway, comple-
ment and coagulation cascades, B-cell receptor signaling, and Toll-like receptor signaling pathway72,73. Previous 
research on the BNT162b2 mRNA vaccine revealed that it not only triggers a robust innate immune response, 
including pathways like the Toll-like receptor signaling pathway but also induces epigenetic reprogramming of 
myeloid cells68. Furthermore, BNT162b2 booster vaccination stimulates an increased innate immune response 
compared to primary vaccination, which is evidenced by a greater frequency of CD14 + CD16 + inflammatory 
monocytes, a higher concentration of plasma IFNγ, and a transcriptional signature of innate immunity68. It 
demonstrates the ability of mRNA vaccines to prepare the innate immune system for a more robust response 
after booster immunization. Transcriptome analysis in the elderly demonstrated the activation of interferon-
activated genetic programs after a single booster dose of the BNT162b vaccine 15 months after recovering from 
COVID-1974. Besides, the transcriptome of peripheral blood immune cells was also used to evaluate the impact 
of prior BNT162b2 vaccination on the innate immune response of hospitalized COVID-19 patients infected 
with the SARS-CoV-2 Beta variant, revealing an enhanced JAK-STAT-mediated immune response at day 10 
in vaccinated individuals, in comparison to unvaccinated ones75. Recently, time-series transcriptome analysis 
(before the first vaccination; day 22 after the second vaccination; days 90 and 180 before the third vaccination; 
and day 360 post-third vaccination) of peripheral blood mononuclear cells from individuals who received the 
SARS-CoV-2 mRNA vaccine identified genes with fluctuating expression levels and gradual increasing in expres-
sion levels from the time before vaccination to the day 360 after a booster dose, as well as genes with increased 
expression levels at day 360 alone. Besides, pathway enrichment analysis indicated that consistently upregulated 
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genes were associated with immune system signaling, including pathways like interferon signaling and cytokine 
signaling. Conversely, genes that were consistently downregulated showed a more general connection to terms 
like ribosomal proteins and translation but were still linked to T-cell functions76. Investigations into COVID-
19 vaccines and patients infected with COVID-19 have also indicated enriched pathways related to oxidative 
phosphorylation, ribosomes, and certain human conditions68,77,78. However, further investigation is required to 
determine whether the gene expression within these pathways is linked to the effects of the vaccine.

Notably, HLA alleles have been linked to differential responses to vaccination79, and immune responses to viral 
vaccines are impacted by genetic variants within the HLA genes80. HLA genes play a prominent role in activat-
ing and regulating the immune system, establishing the mechanism by which processed antigenic epitopes are 
presented to T cells. Thus, the potential to initiate an immune response to a vaccine is partially governed by the 
immune response genes found within the HLA complex. The HLA genes are categorized into class I genes (A, 
B, and C), class II genes (DR, DP, and DQ), non-classical genes positioned within the class II cluster (TAP and 
DM), and class III genes. Due to the constraint of HLA-restricted antigen recognition and presentation, as well 
as the ethnic variation in HLA loci, different types of vaccines (such as live attenuated, inactivated, peptide-based, 
mRNA, and adjuvanted vaccines) might not uniformly exhibit effectiveness across populations.

Like other viruses, the genetic diversity of HLA molecules can also impact the incidence, susceptibility, and 
severity of COVID-19, as well as the host response variability81,82. Curiously, an underlying genetic factor that 
could potentially contribute to the reduced frequency of SARS-CoV-2 cases in Africa is the presence of distinct 
HLA alleles within the African population, when contrasted with other geographical areas. So, it was speculated 
that populational HLA variability could be correlated with COVID-19 incidence81.

An effective presentation of viral peptides via HLA class I alleles comprises a faster infection clearance, reduc-
ing the susceptibility and severity of COVID-1982. Possible reasons for the influence of the marked DASE in HLA 
genes over BNT162b2 booster vaccine response in our study may encompass reduced efficacy of specific HLA 
proteins in binding and displaying SARS-CoV-2 peptides to T lymphocytes compared to others and distinct 
HLA alleles showcasing a diverse range of epitopes. Notably, the HLA alleles previously associated with distinct 
COVID-19 vaccine responses83–85 were indeed detected across the different groups we examined. Surprisingly, 
though, we did not observe a deterministic link between these HLA alleles and the categorization of individuals 
into low-stable or high-stable vaccine response groups. This observation prompts us to consider the complex 
interplay of factors contributing to vaccine responses in a mixed Brazilian population with a complex genetic 
landscape, characterized by a wide range of HLA alleles and haplotypes86.

Among the individuals in group 1, 30% had a prior reported COVID-19 history, and the remaining stated that 
they had never been diagnosed with COVID-19. In group 2, 40% of the individuals had experienced COVID-19. 
Since both groups had individuals with a history of COVID-19 that occurred long before the booster (Table 1), 
the influence of prior natural infection on the vaccination response might be minimal. Although BNT162b2 
is a mRNA vaccine designed to encode SARS-CoV-2 spike protein, we cannot fully discard the possibility of a 
previous exposition to natural SARS-CoV-2, even in individuals of the low-stable group reporting to had no 
history of previous COVID-19. From December 2021 to August 2022, the highly transmissible Omicron vari-
ant rapidly spread worldwide and became the predominant strain circulating in Brazil87, causing mild or no 
symptoms in most of the population (https://​outbr​eak.​info/​locat​ion-​repor​ts?​xmin=​2023-​02-​14&​xmax=​2023-​
08-​14&​loc=​BRA). Moreover, all the individuals in our study had a primary vaccination schedule with a whole 
inactivated virus vaccine or a modified chimpanzee adenovirus ChAdOx1 as a vector. Hence, we suggest that 
an insufficient or suboptimal innate immune response during the primary vaccination schedule, attributed to 
the differential processes elucidated by our study, might influence the immune response to subsequent mRNA-
boosting vaccinations.

An aspect that draws significant attention in our study is the involvement of different alternative splic-
ing events affecting HLA genes in the variability of the immune response. The regulation of gene expression 
through post-transcriptional mechanisms, including the process of differential splicing of precursor mRNAs 
(pre-mRNAs), plays a critical role in governing the cell-type and tissue-specific patterns of immune response 
gene expression88,89. Shifts in intron usage such as exon skipping, the inclusion of alternative 5’ exons, the use 
of alternative 3’ splice sites, mutually exclusive exons, and intron retention can amplify the intricacy of gene 
expression and contribute to distinct functional roles in orchestrating a cohesive immune response88,89. Differ-
ential splicing is controlled by RNA-binding factors that interact with cis-acting RNA elements, thus impacting 
the assembly of cellular spliceosomes at neighboring splice sites. This regulation can exhibit variability across 
various immune cell types90. The relative abundance of diverse transcript isoforms is further modulated by the 
expression levels of trans-acting splicing factors91. The process of intron removal from nascent RNA, along with 
exon ligation facilitated by the spliceosome, plays a pivotal role in dictating splice site preference, influencing 
the profiles of transcript isoforms and differential gene expression, and governing transcriptional processes92. 
Interestingly, enrichment for molecular function through Gene Ontology retrieved “DNA binding’ as a significant 
term, and splicing events are essentially governed by DNA and RNA binding factors.

There are some limitations in the current study. Firstly, we based our transcriptome correlations analysis on 
humoral immunity, not exploring cellular immune response biomarkers. Although serum antibody levels serve 
as a proxy for gauging the initial vaccine response and most of the studies surrounding vaccine response have 
focused on humoral immunity93, it is known that SARS-CoV-2-specific cell-mediated immune response takes 
part from the immune repertoire induced by COVID-19 vaccines in parallel to the humoral response. Nonethe-
less, the relevance of antibody levels is demonstrated through investigations concerning protection and prophy-
laxis with passive immunization. This is also underscored by studies of interference with vaccination by passive 
immunity, and by research delving into vaccine efficacy, emphasizing quantitative measures of vaccine response94. 
Moreover, antibody response to SARS-Cov-2 has been usually employed in evaluating vaccine efficacy95, and 
transcriptome analyses can reflect both humoral and cellular immune responses. Finally, the comprehension of 

https://outbreak.info/location-reports?xmin=2023-02-14&xmax=2023-08-14&loc=BRA
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virus-specific T-cell immunity prompted by COVID-19 vaccines remains to be elucidated. Assessing cellular 
parameters after vaccination, in contrast to antibody assays, presents challenges, thereby diminishing the reli-
ability of these measures. We did not access baseline antibody levels before or in the first weeks after boosting 
vaccination. So, we do not know the intensity and quality of the booster vaccine response.

Conclusions
In conclusion, collectively our data indicate that RNA-seq-based transcriptome offers a predictive instrument 
to assess the diversity in immune reactions within genetically heterogeneous healthy populations. Furthermore, 
the innate immune response plays a pivotal role in COVID-19 vaccination, shaping the adaptive response after 
boosting. Also, there is a clear relationship between differential splicing events in HLA genes and variability in 
boosting immunity.

Data availability
The datasets used in the study are available online via the Gene Expression Omnibus database under accession 
number PRJNA1015225 (https://​www.​ncbi.​nlm.​nih.​gov/​sra/?​term=​PRJNA​10152​25).
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