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Real space iterative reconstruction 
for vector tomography (RESIRE‑V)
Minh Pham 1,2,3*, Xingyuan Lu 1,4, Arjun Rana 1, Stanley Osher 2,3 & Jianwei Miao 1*

Tomography has had an important impact on the physical, biological, and medical sciences. To date, 
most tomographic applications have been focused on 3D scalar reconstructions. However, in some 
crucial applications, vector tomography is required to reconstruct 3D vector fields such as the electric 
and magnetic fields. Over the years, several vector tomography methods have been developed. Here, 
we present the mathematical foundation and algorithmic implementation of REal Space Iterative 
REconstruction for Vector tomography, termed RESIRE‑V. RESIRE‑V uses multiple tilt series of 
projections and iterates between the projections and a 3D reconstruction. Each iteration consists of 
a forward step using the Radon transform and a backward step using its transpose, then updates the 
object via gradient descent. Incorporating with a 3D support constraint, the algorithm iteratively 
minimizes an error metric, defined as the difference between the measured and calculated projections. 
The algorithm can also be used to refine the tilt angles and further improve the 3D reconstruction. 
To validate RESIRE‑V, we first apply it to a simulated data set of the 3D magnetization vector field, 
consisting of two orthogonal tilt series, each with a missing wedge. Our quantitative analysis shows 
that the three components of the reconstructed magnetization vector field agree well with the 
ground‑truth counterparts. We then use RESIRE‑V to reconstruct the 3D magnetization vector field 
of a ferromagnetic meta‑lattice consisting of three tilt series. Our 3D vector reconstruction reveals 
the existence of topological magnetic defects with positive and negative charges. We expect that 
RESIRE‑V can be incorporated into different imaging modalities as a general vector tomography 
method. To make the algorithm accessible to a broad user community, we have made our RESIRE‑V 
MATLAB source codes and the data freely available at https:// github. com/ minhp ham03 09/ RESIRE‑V.

Tomography has had a radical impact on diverse fields ranging from medical  diagnosis1 to 3D structure deter-
mination of  proteins2, crystal  defects3,4, amorphous  materials5,6 at the atomic resolution. Despite its diverse 
applications, the central problem in tomography remains the same, that is, how to accurately reconstruct the 
3D structure of an object from many projections with noise and incomplete data. Tomography reconstruction 
algorithms can be categorized into three types: (1) a direct inversion method - filtered back projection (FBP)1,2, 
(2) real space or Fourier-based iterative methods, and (3) deep learning related  algorithms7. Here we primarily 
focus on the second type. Conventional iterative algorithms include algebraic reconstruction technique (ART)8, 
simultaneous algebraic reconstruction technique (SART)9, simultaneous iterative reconstruction technique 
(SIRT)10,11, and nonuniform fast Fourier transform (NUFFT)12. These algorithms can incorporate mathemati-
cal regularizations such as total variation (TV)13 and Model-based iterative reconstruction (MBIR)14. In recent 
years, more advanced iterative algorithms, which are inspired by iterative phase retrieval in coherent diffractive 
 imaging15,16, have been developed, including equal slope tomography (EST)17,18, generalized Fourier iterative 
reconstruction (GENFIRE)19,20, and real space iterative reconstruction (RESIRE)5,21.

In particular, RESIRE, using the Radon transform as the forward projection and the Radon transpose as 
the back projection, is superior to other existing tomographic  algorithms21. Furthermore, RESIRE can not only 
work with multiple tilt axes, extended objects, partially blocked projections, and large missing wedges, but also 
improve the tilt angle precision by implementing angular refinement. RESIRE has been used to determine the 3D 
atomic structure of amorphous  materials5,6, heterogeneous  nanocatalysts22, the chemical order and disorder in 
medium/high entropy  alloys23 and 3D nanoscale imaging of mesoporous  structure24. Despite these applications, 
they only deal with scalar tomography, where each voxel in a 3D reconstruction has a magnitude but no direction. 
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However, in some important applications vector tomography is required, where each voxel has a magnitude and 
a direction such as the electric and magnetic field.

Over the years, several vector tomography reconstruction methods have been developed, including vector 
electron tomography with Lorentz transmission electron microscopy and  holography25–32, soft and hard x-ray 
vector  tomography15,33–41. In particular, the combination of ptychography, a powerful coherent diffractive imaging 
 method16,42, and vector tomography can in principle achieve the highest spatial resolution, which is only limited 
by the wavelength and the diffraction  signal34,38,41. Very recently, we have merged soft-x-ray magnetic circular 
dichroism and ptychography with vector tomography to image the 3D topological magnetic monopoles and their 
interaction in a ferromagnetic meta-lattice with a spatial resolution of 10  nm41. We have also applied it to observe 
the topological magnetic order in superparamagnetic nanoparticles self-assembled at the liquid-liquid  interface43.

Here, we present the mathematical foundation and implementation of the real space iterative reconstruction 
algorithm for vector tomography (RESIRE-V), which represents an important advance over RESIRE for scalar 
tomography. RESIRE-V can accurately reconstruct the 3D magnetization vector field from multiple tilt series 
each with a limited number of experimental  projections41,43. Furthermore, due to the experimental error, the 
measured tilt angles may not always coincide with the true orientations of the projections. To tackle this problem, 
we further implement an iterative angular refinement procedure to reduce the tilt angle  error21, enabling us to 
obtain more accurate vector tomographic reconstruction. Both numerical simulations and experimental data 
have been used to demonstrate the effectiveness of our method. In addition, we provide an analysis of the vector 
tomography reconstruction, requirement, and robustness.

Methods
We begin with some setup and conventions. First, we employ Euler angles to describe the orientation of a rigid 
body with respect to a fixed coordinate system. For example, the orientation representation ZYX used inten-
sively in our research fits well with vector tomography experiments: samples are rotated about the Z-axis (in-
plane rotation) before a set of tilt series (rotation about the Y-axis) are acquired, where the in-plane-rotation is 
defined as the rotation of the samples in the XY plane, i.e. around the Z-axis of the beam direction (Fig. 1). The 
last rotation about the X-axis is helpful in angular refinement. We use the notation ZφYθXψ to represent Euler 
angle rotations: the first rotation is about the Z-axis by an angle φ , followed by a rotation about the Y-axis by 
an angle θ , and ends with a rotation about the X-axis by an angle ψ , respectively. The corresponding rotation 
matrix RZφYθXψ = RZ

φ RY
θ RX

ψ is defined to be the product of three single-axis rotation matrices about the Z, Y, 
and X axes by angles ψ , θ and φ respectively:

For short notation, we write R� instead of RZφYθXψ
 where � = {φ, θ ,ψ} (no orientation is specified). In perfect 

experimental conditions where there is no X-axis rotation, ψ is zero. Otherwise, ψ can be non-zero and we use 
angular refinement to determine ψ . The convention finishes and we move to the formulation part.

Formulation
For an x-ray beam propagating along the z direction (standard unit vector �ez = [0, 0, 1]T ), only the z com-
ponent of the magnetization contributes to the 2D signals. The contribution takes either positive or negative 
values depending on the left or right circular polarization. In the case of rotation, we need the inner product 
〈

R� M(R†
��r), �k

〉

 to count for the contribution. Here, M = [Mx , My , Mz] is the magnetization vector field, which 
is a function of the Cartesian coordinate vector �r = (x, y, z) , and R†

� is the adjoined, and also inverse and 

RZ
φ :=

[

cosφ − sin φ 0

sin φ cosφ 0

0 0 1

]

, RY
θ :=

[

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]

, RX
ψ :=

[

1 0 0

0 cosψ − sinψ
0 sinψ cosψ

]

Figure 1.  Schematic of sample rotation geometry in vector tomography. An X-ray beamline with left- or right-
circular polarization is focused onto a sample, which can be rotated around the X axis (green arrow), termed the 
in-place rotation. At each in-plane rotation angle, a tilt series is acquired by rotating the sample around the X 
axis (red arrow). At each tilt angle, the focused beam scans across the sample and two sets of diffraction patterns 
with left- and right-circular polarization are collected by a charge-coupled device (CCD) detector.
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transpose, of R� . Adding the non-magnetic term O and taking the integral along the z axis (projection), we 
obtain the 2D signal:

where c is a constant that relates the XMCD signal to the magnetization and the pixel size. We can temporarily 
let M absorb c in the derivation for simplicity and then rescale M after the reconstruction. We then write this 
equation using the change of variable �r ← R†

��r:

Rotating the sample by some Euler angles � and taking the integral along the z-axis is equivalent to taking the line 
integral along the opposite rotation direction (passive rotation). To solve this equation numerically, we need to 
discretize the equation. Replacing the line integral with a projection operator and expanding the inner product, 
we represent the equation algebraically:

where �� is the projection operator and P� is the corresponding projection with respect to Euler angles 
� = (φ, θ , ψ) . In this notation, we drop the spatial variables (x, y, z) for simplicity. Let �n� = [α�, β�, γ�] be 
the last column of R†

� . Specifically, if we use the orientation representation ZφYθ , then the normal vector is given 
by: �n� = [α�, β�, γ�] = [sin θ cosφ, sin θ sin φ, cos θ ].

One can verify that the second magnetization component does not contribute to the measured projections 
when φ = 0 . It implies that other types of rotation are required for successful vector tomography reconstruc-
tions. Since �� is linear, we can apply the commutative property and distribute the linear operator to each 
magnetization component:

Equation 4 describes that the three 3D magnetization components and the non-magnetic structure are coupled 
via a linear constraint. So far, we have formulated the vector tomography in perfect condition (noise free). In the 
presence of noise and assuming that the noise is Gaussian with mean 0 and variance σ 2 , we add the noise term 
N (0, σ 2) to the left-hand side of the equation.

We first denote P+� and P−� are random variables, with the same variance σ 2 , that represent the left and right 
polarized projections by Euler angles � respectively. Let b−� = 1

2

(

P+� − P−�
)

 be a random variable as describe, 
we obtain a simpler linear equation:

Note that, by the law of large numbers, taking the average of two random variables with the same mean and 
variance results in a new random variable where the mean stays the same, but the variance gets reduced by  half44. 
We can use maximum likelihood estimation to recover three-dimensional magnetization from corrupted 2D 
signals. Specifically for Gaussian noise, the log maximum likelihood function is the sum of the squared errors 
(or l2 distances) between the desired and measured signals:

We can always write the minimization problem in the form ε(M) = 1
2

∑

�

∥

∥��

(

α�Mx + β� My + γ� Mz

)

− b−�
∥

∥

2 
thanks to the linearity of the projection operator. For efficient implementation, the latter form is preferred over 
Eq. 7.

The maximum likelihood function will appear different for other types of noise; however, the famous least-
squares form can still handle other circumstances because of its simplicity and effectiveness. Equation 7 is our 
final form of vector tomography formulation. To recap, we highlight our innovation:

• Before this work, Eq. 4 is used to solve the 3D magnetization vector  field34,35,38.
• In our new approach, we use left and right polarization to derive Eq. 6. RESIRE is then used to reconstruct 

the scalar object from which the support is evaluated.
• We solve the minimization 7 for the three magnetic components using the above support as a constraint.

Separating the reconstruction into the above two steps makes the result more accurate. The remaining part is 
designing a numerical scheme to solve the minimization 7.

(1)
∫

z
c
〈

R� M(R†
��r), �ez

〉

+ O(R†
��r) dz = P�

(2)
∫

L�

〈

M(x, y, z),R†
��ez

〉

+ O(x, y, z) dz = P�(x, y)

(3)��

(

α�Mx + β�My + γ� Mz + O
)

= P�

(4)α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)+��(O) = P�

(5)α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)+��(O)+N (0, σ 2) = P�

(6)α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)+N

(

0,
σ 2

2

)

= b−�

(7)min
M

ε(M) = 1

2

∑

�

∥

∥α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)− b−�
∥

∥

2
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RESIRE‑V algorithm
We develop our algorithm based on the real space iterative technique. Noticing that the projection operator is 
linear, one can construct a matrix representation for each �� . We assume that the projections have size n× n , 
and the sample gets reconstructed with thickness n. In that case, each projection matrix �� has O(n3) non-zero 
elements. In the case of over-constraint, Eq. 7 can be solved using the normal equation. Otherwise, in the case of 
under-determined system, we need to add a regularizer to prevent overfitting. When adding a damping term as 
a regularizer, we have an overconstrained system again and we can solve the equation using the normal equation 
as in the over-constraint case. In either case, storing projection matrices is tremendously expensive since the size 
expands in the cubic order of the projection size. Here, to save memory usage, we do not need to store the pro-
jection matrices but compute the forward projections at every iteration instead. This procedure will increase the 
number of computations; however, GPU parallel computing can help reduce the computational time significantly.

Our gradient descent algorithm incorporates two steps: forward projection and back projection. For the 
first step, we institute our 3D Radon transform using the idea of 2D Radon transform which can be found 
 elsewhere45,46. The algorithm first divides pixels in a 3D image into four sub-pixels and projects each sub-pixel 
individually. Specifically, at a tilt angle, we compute the corresponding coordinate of each pixel and project it on 
the XY plane. The value of each sub-pixel is distributed proportionally to the four nearest neighbors, according 
to the distance between the projected location and the pixel centers.

For example, consider that the pixel projection hits a position (x, y), and let ⌊x⌋ and ⌊y⌋ be the largest integers 
less than x and y, respectively. Then the four nearest bins, centering at (⌊x⌋, ⌊y⌋) , (⌊x⌋, ⌊y⌋ + 1) , (⌊x⌋ + 1, ⌊y⌋) 
and (⌊x⌋ + 1, ⌊y⌋ + 1) , take (1+ ⌊x⌋ − x)(1+ ⌊y⌋ − y) , (1+ ⌊x⌋ − x)(y − ⌊y⌋) , (x − ⌊x⌋)(1+ ⌊y⌋ − y) and 
(x − ⌊x⌋)(y − ⌊y⌋ − x) values of the pixel, respectively. Hence, if the pixel projection hits the center point of a 
bin, the bin on the axis gets the entire value of the pixel. In the specific case where the pixel projection hits the 
border between four bins, the pixel value is split evenly between these four bins. Other techniques to compute 
the contribution of the value of a pixel projection can be found  elsewhere47. Illustration of 2D Radon transform 
can be found in the Supplementary Fig. 1.

Next, we establish the transpose of the Radon transform for the back-projection step. This process is similar 
to the forward projection but in reverse order. According to the distance between the projected location and the 
pixel centers, the four nearest neighbors to a projection sub-pixel proportionally contribute their values to the 
sub-pixel. If the pixel projection hits the border between 4 bins, the pixel takes a quarter value of each of these 
four bins. Our sub-pixel division and linear interpolation are efficient with the complexity O(N3) and can be 
highly parallelized using GPU cuda programming. Other forward and back-projection techniques with higher 
accuracy, such as separable  footprint47 and gram  filtering48,49, can be considered. With these methods, there will 
be a trade-off between accuracy and computational cost/memory usage. Error analysis on the discretization and 
projection operator can also be found  elsewhere48,49.

After specifying the forward and back projection, we can now take the gradient of the error metric ε(M) in 
Eq. 7 with respect to each magnetization component:

where �T
� is the transpose operator of the Radon transform for Euler angles � . As mentioned above, the second 

form of the gradient will be used for the C++/Cuda implementation.
Next, we show that the gradient is L-lipschitz and the algorithm will converge to the global minimum with 

an appropriate step size. Specifically, we want to find an L such that the following inequality is true:

The Lipchitz constant L gets calculated as 
√
3nNz where n and Nz are the number of projections and the thickness 

in pixels of the reconstruction, respectively. Hence, we can choose the step size to be 1/L for the convergence 
guarantee. Details of the proof can be found in the Supplementary, step-size analysis. The algorithm is finalized 
and described step by step in pseudocode 1 and Fig. 2.

(8)

∂ε

∂Mx
=

∑

�

α� �T
�

(

α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)− b−�
)

=
∑

�

α� �T
�

(

��

(

α�Mx + β� My + γ� Mz

)

− b−�
)

(9)
∥

∥∇ε(M1)−∇ε(M2)
∥

∥ ≤ L
∥

∥M1 −M2

∥

∥ ∀M1, M2
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Algorithm 1.  RESIRE-V
For efficient implementation, the gradient w.r.t. each component ∂ε

∂Mx
= ∑

i
∂εi
∂Mx

 will be accumulated. In 
addition, the step size is generalized to be t√

3nN
 where t ≈ 1 is the normalized step size. According to our analysis, 

t should be less than or equal to 1 for the convergence guarantee. The analysis uses triangle inequalities and 
considers the worst-case scenario. In practice where better scenarios are more popular, the algorithm can con-
verge with t’s values slightly larger than 1. The analysis is complete, and we move to the discussion on conditions 
for vector tomography reconstruction.

Analysis: conditions for vector tomography reconstruction
Scalar tomography is a well-posed problem and can obtain a faithful reconstruction from single-axis tilt series, 
provided the Nyquist-Shannon sampling theorem is satisfied. But 3D vector tomography has three scalar com-
ponents to be reconstructed, thus requiring more stringent data acquisition schemes.

Figure 2.  RESIRE-V diagram: Inputs are the differences between the left and right polarization projection and 
the support from the scalar reconstruction. The algorithm uses a for loop to refine the magnetization vector field 
M . At each iteration, it calculates the forward projections and computes their differences with the measured 
ones. The residuals (or differences) are back-projected to yield gradients. The algorithm will use these gradients 
to update the magnetization and apply the support constraint. The step size t√

3nN
 is replaced by s for 

simplification purposes.
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In the 1980s, Norton showed that the reconstruction of a diverge-less 2D vector field appeared to be  unique50. 
Prince gave a more generalized discussion of the reconstructions of arbitrary vector fields in the 1990s. He dem-
onstrated that, for reconstructing an arbitrary n-dimensional vector field, n tomographic projection datasets in 
which the probe is sensitive to n different directions of the vector field needed to be  acquired51,52. The idea of 
using more than one tilt rotation axes has been used successfully in scalar tomography to reduce the missing 
wedge  artifacts53,54. That idea is also believed to be a key to solving the vector tomography problem.

In our research, we use the Fourier slice theorem to show specific experimental conditions for the recon-
struction of arbitrary vector fields. The theorem states that the 2D Fourier transform of a 2D projection equals 
a 2D slice through the origin of the 3D Fourier transform of an object. The 2D slice is defined based on the 
corresponding rotation angle. In the case of noise-free, we apply the Fourier transform to both sides of Eq. 6.

Applying the Fourier slice theorem, we have a linear constraint involving the Fourier transforms m̂x , m̂y and m̂z 
of the three magnetization components Mx , My and Mz . This constraint applies to every Fourier point �ξ on a 2D 
Fourier slice through the origin.

The extra constraint ��ξ , �n�) = 0 is required by the requirement that a point belongs to a plan through the origin 
if the inner product between �ξ and the normal vector of the plan is zero. If sufficient measurements are provided, 
one can sample the values of all Fourier points on the frequency domain and we can extend Eq. 11 to every point 
�ξ on the 3D Fourier domain.

In order to separate m̂x(�ξ) , m̂y(�ξ) and m̂z(�ξ) for a given 3D frequency point 
−→
ξ  , we need to find three 2D 

Fourier slices whose normal vectors �n� form a linear independent system in R3 and that go through the origin 
and contains 

−→
ξ  . This is impossible since the set of normal vectors �n� that satisfies the constraint ��ξ , �n�� = 0 lies 

in a linear subspace of dimension two.
We give an example of in-plane rotations where the orientation is given by ZφYθ . Recalling that the normal 

vector corresponding to the in-plane rotation has the form �n� = (sin θ cosφ, sin θ sinφ, cos θ) , we can find 
infinitely many 2D slices that contain the point �ξ = (1, 1, 1) . For example, we name three projections with 
the corresponding Euler angles (φ1, θ1) = (0◦,-45◦) , (φ2, θ2) = (120◦,-69.90◦) and (φ3, θ3) = (−120◦, 36.21◦).

One can check that the corresponding normal vectors (-1/
√
2, 0, 1/

√
2) , (0.4695, -0.8133, 0.3437), and (-0.2953, 

-0.5116, 0.8069) are linearly dependent with rank two. Consequently, Eq. 12 does not have a unique solution. It 
verifies that in-plane rotations are not sufficient for the reconstruction of the magnetization M.

This analysis differs from  Norton50 and Phatak’s theoretical  development25, which analyzes the reconstruction 
of the magnetic vector field instead. In that case, the authors can find a linearly independent system of three equa-
tions to separate the frequency signals of the magnetic vector field B . While the first two constraints are obtained 
from rotations, the last constraint is found by Gauss’s law ∇ · B = 0 (since B is divergence-free). The magnetiza-
tion vector field is not divergence-free but has another important property: the magnetization field can only exist 
in a magnetic material. Hence, one can utilize a support (defined as a 3D boundary of the magnetic material) as 
the necessary and complimentary constraint for the completeness of a magnetization reconstruction algorithm.

Furthermore, for the case of micro-magnetic and no external dynamics at the boundary, we can add in the 
boundary condition that the gradient of the magnetization is parallel to  surface55–57, i.e. ∂M

∂n
= 0 . In practice, since 

the support and boundaries are difficult to get computed exactly, one should not enforce the constraint rigidly 
but relax it as a regularizer instead. We add this regularizer to the minimization (7):

For the regularizer part, n∂� = (n1, n2, n3) is the normal vector to the boundary surface ∂� of the magnetic 
sample and ǫ is the regularizer parameter. The regularizer term �∇M · n�2∂� only takes places on the boundary 
and should not affect the magnetization within the magnetic structure. In further expansion, we can write the 
regularizer explicitly as �∇M · n∂��2∂� =

∥

∥n1
∂Mx
∂x + n2

∂My

∂y + n3
∂Mz
∂z

∥

∥

2

∂�
 . ǫ is tunable and should be small for 

non-exact support. We can even ignore this regularizer (or set ǫ = 0 ) when the support cannot be computed 
accurately. In contrast, we can choose large ǫ for larger effect if the exact support is given. The final gradient will 
get computed with the extra term as below:

Next, we discuss the robustness of each magnetization component reconstruction Mx , My , and Mz concerning 
the in-plane rotation angles φ . The linear constraint for in-plane rotations as in Eq. 12 reveals that the x and 

(10)α� F
[

��(Mx)
]

+ β� F
[

��(My)
]

+ γ� F
[

��(Mz)
]

= F
[

b−�
]

(11)
α� m̂x(�ξ)+ β� m̂y(�ξ)+ γ� m̂z(�ξ) = b̂−�(�ξ) where ��ξ , �n��

= 0, and �n� = [α�, β�, γ�]

(12)











sin θ1 cosφ1 m̂x(�ξ)+ sin θ1 sinφ1 m̂y(�ξ)+ cos θ1 m̂z(�ξ) = b̂−�1
(�ξ)

sin θ2 cosφ2 m̂x(�ξ)+ sin θ2 sinφ2 m̂y(�ξ)+ cos θ2 m̂z(�ξ) = b̂−�2
(�ξ)

sin θ3 cosφ3 m̂x(�ξ)+ sin θ3 sinφ3 m̂y(�ξ)+ cos θ3 m̂z(�ξ) = b̂−�3
(�ξ)

(13)min
M

ε(M) = 1

2

∑

�

∥

∥α� ��(Mx)+ β� ��(My)+ γ� ��(Mz)− b−�
∥

∥

2 + ǫ

2
�∇M · n∂��2∂�

(14)

∂ε

∂Mx
=

∑

�

α� �T
�

(

��

(

α�Mx + β� My + γ� Mz

)

− b−�
)

+ ǫ n1
∂T

∂x

(

n1
∂Mx

∂x
+ n2

∂My

∂y
+ n3

∂Mz

∂z

)

∂�
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y components are coupled by linear factors sin θ cosφ and sin θ sin φ while the linear factor of z is only cos θ . 
So, the x and y parts are coupled at a higher degree than the z component. As a result, the z component will get 
decoupling easier and yield a high-quality reconstruction than the other two. Assuming that two in-plane rota-
tion φ1 and φ2 are chosen, then these two angles should be chosen equally distanced on half of the unit circle to 
improve the robustness of the reconstruction. We can choose φ1 = 0◦ and φ2 = 90◦ as a simple option.

Side rotations can improve the robustness of the x and y components, but that approach is experimentally 
infeasible. The summary of our analysis is shown below: 

1. In-plane rotations are necessary but not sufficient to decouple the Fourier coefficients of the three magnetiza-
tion components.

2. Other constraints, such as support and boundary constraints, and regularizers, need invoking, if possible, 
for highly accurate reconstruction.

3. The z component gets reconstructed with higher quality than the x and y components in in-plane rotation 
systems.

With the help of a support constraint, we will show that highly accurate vector tomography reconstruction can 
be obtained numerically with in-plane rotations. Finally, to end this session, we present the experimental scheme 
of our X-ray vector tomography in Fig. 1. In this case, diffraction patterns are collected, and the projections are 
obtained via ptychography  algorithms58–60 before RESIRE-V is used to reconstruct the magnetization.

Vector tomography reconstruction of simulated data
In this simulation, the sample is a meta-lattice with size of 100× 100× 100 pixels. The signals of the magneti-
zation make up around 1.65% of the total signal. Two tilt series from two in-plane rotations where φ = 0◦ and 
90◦ are inspected. For each tilt series, 45 projections of each left and right polarization P+� and P−� are generated 
in the range of [−66◦, 66◦] with an increment of 3 degrees. So totally, we generate 180 projections with size 
100× 100 pixels. To make it realistic, we add Poisson noise to the projections by selecting a flux of 4e8 photons. 
This flux yields an SNR of 200 and less than 1% noise. Reconstructing the non-magnetic part is not the interest 
of this research. However, we need to assume that the support of the non-magnetic part is given since it plays an 
essential role in the reconstruction of the magnetization M.

Next, we take the left and right projection difference b−� = 1
2
(P+� − P−�) . Since the magnetic part only makes 

up a fraction of the total signal, its SNR is much smaller than that of the non-magnetic part. The SNR of the 
projection difference is approximately 1.65%× 200 = 3.3 , which is quite small. The high noise level in the projec-
tion differences causes the reconstruction of the magnetization M to be less robust than the scalar one. Assuming 
the noise level in the non-magnetic part stays the same, the robustness of the reconstruction will decline as the 
magnetization signals decrease relative to the non-magnetic signals.

Now we use our algorithm to reconstruct the three magnetization components Mx , My , and Mz . The model 
and result are shown in Fig. 3. Since the support constraint is enforced, that is, the magnetization field only 
appears in the magnetic material. In addition, since we use two tilt series at φ = 0◦ and φ = 90◦ , the missing 
wedge artifact does not significantly affect the reconstruction. Fig. 3d–f, shows Mx , My , and Mz components 
in the central slice along the z-axis, which are in good agreement with the model. The qualities of reconstruc-
tions in all directions are comparable and as good as the model (Fig. 3a–c). To quantify the vector tomography 
reconstruction, we calculate the Fourier shell correlation of the three components between the model and the 
reconstruction (Fig. 3g). The large correlation coefficients indicate the excellent quality of the vector tomography 
reconstruction. Additionally, we observe that the reconstructed Mz has higher quality than Mx and My , which is 
consistent with our analysis. Figure 3h–i shows the 3D magnetization vector field of the reconstruction and the 
central slice along the z-axis, respectively, which agree with the model (Fig. 3l,m). We also plot two topological 
defects with one positive topological charge (Fig. 3j) and the other negative charge (Fig. 3k), both of which are 
in accordance with the model (Fig. 3n,o). All these analyses confirm that RESIRE-V can reconstruct a high-
quality 3D vector field from multiple tilt series each with a limited number of projections with a missing wedge.

To verify the effectiveness of the regularizers, we add three more reconstructions with regularizers: the first 
with l2 norm ‖M‖ , the second using l2 norm squared ‖M‖2 and the third with l2 norm squared of the gradient 
�∇Mx�2 + �∇My�2 + �∇Mz�2 . The reconstructions are shown in Supplementary Fig. 2 and the FSC curves are 
shown in Fig. 4. The l2 norm regularizer (Fig. 4a) does not help due to the high density of the vector field in this 
case. The l2 norm squared regularizer (Fig. 4b) helps to improve the high-frequency information, but slightly 
reduces the low frequency information. In contrast, the squared of the l2 norm of the gradient regularizer (Fig. 4c) 
improves the low-frequency correlation but decreases the high-frequency correlation.

Other regularizers can be considered such as total variation (TV)13 and Markov random field-based regular-
izer, which have been applied in model-based iterative  reconstruction14. One should proceed with regularizers 
with caution. Regularizers can only be applied when prior knowledge is given.

Vector tomography reconstruction of an experimental data of a ferromagnetic 
meta‑lattice
The ferromagnetic meta-lattice consists of 60 nm silica nanoparticles forming a face-centred cubic structure infil-
tered with nickel. The vector tomography experiment was conducted at the COSMIC beamline at the Advanced 
Light Source, Lawrence Berkeley National Lab. Circularly polarized x-rays of left- and right-helicity were used 
to achieve differential magnetic contrast based on x-ray magnetic circular  dichrosim33,61. The x-ray energy was 
set as 856 eV, slightly above the nickel L3 edge. Three in-plane rotation angles ( 0◦ , 120◦ and 240◦ ) were chosen, 
and tilt ranges is from −62◦ to +61◦ for each in-plane rotation angle. At each tilt angle, 2D diffraction patterns 
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were reconstructed using the regularized ptychographic iterative engine, producing two projections with left 
and right polarization at each tilt angle (Fig. 5a,b). The scalar tomography reconstruction was performed from 
three sets of tilt series by summing each pair of the oppositely polarized projections, from which a 3D support 
was obtained to separate the magnetic materials from the non-magnetic region. For the vector tomography 
reconstruction, the difference of the left- and right-circularly polarized projections was calculated (Fig. 5c), 
producing magnetic contrast projections of three independent tilt series. Using RESIRE-V with the support, we 
reconstructed the 3D magnetization vector field. Figure 5d shows the 3D vector field of the magnified square 
region with dotted lines in Fig. 5a–c, where the colors represent the different directions of the vectors. A thinner 
slice of the magnified region and a topological defect with a positive charge are shown in Fig. 5e,f, respectively. 
A more detailed analysis of the 3D magnetization vector field and the topological defects in the ferromagnetic 
meta-lattice can be found  elsewhere41.
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Figure 3.  Vector tomography reconstruction of simulated data. (a-f) Three magnetic components at the central 
slice in the z direction of the model (a–c) and vector tomography reconstruction (d–f) from the simulated 
data where the normalized cross correlations are 94.1%, 93.8% and 99.1% for Mx , My and Mz respectively. (g) 
Fourier shell correlation of the three magnetic components, also confirming that the z component has higher 
quality than the x and y components. (h–k) 3D magnetization vector field of the model, including the overall 
vector field (h), the central slice along the z direction (i), two topological defects with positive charge (j) and 
negative charge (k), where the colors represent the different directions of the vectors. (l–o) Reconstructed 3D 
magnetization vector filed, including the overall vector field (l), the central slice along the z direction (m), two 
topological defects with positive charge (n) and negative charge (o), which are in good agreement with (h–k).
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Conclusion
We present the mathematical formulation and implementation of RESIRE-V, an iterative algorithm for the 3D 
reconstruction of the vector field. RESIRE-V requires the acquisition of multiple tilt series of projections and 
the algorithm iterates between these projections and a 3D structure by using a forward and a backward step. 
The forward and backward steps consist of the Radon transform and a linear transformation, respectively. Our 
analysis indicates that incorporating a 3D support to separate the magnetic region from a non-magnetic region 
can help RESIRE-V achieve accurate and robust reconstruction of the 3D vector field. To validate RESIRE-V, we 
perform a numerical simulation of the 3D magnetization vector field in a meta-lattice. Using only two tilt series 
and a support, we reconstruct the 3D vector field with high accuracy. We also observe that the reconstructed z 
component has higher quality than the x and y components, which is consistent with our mathematical analysis. 
Finally, we apply RESIRE-V to an experimental data set of a ferromagnetic meta-lattice, consisting of three tilt 
series with different in-plane rotation angles. Each tilt series has two sets of projections with left and right polari-
zation. By using a support constraint, we reconstruct the 3D magnetization vector field inside the ferromagnetic 
meta-lattice, showing topological defects with positive and negative charges. We expect that RESIRE-V can be a 
general vector tomography method for the 3D reconstruction of a wide range of vector fields.
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Figure 4.  Fourier shell correlation (FSC) of the vector tomography reconstruction of the simulated data 
using regularziers: (a) l2 norm ‖M‖ , (b) squared l2 norm ‖M‖2 and (c) squared l2 norm of the gradient 
�∇Mx�2 + �∇My�2 + �∇Mz�2 . The high-frequency information improves under the squared l2 norm 
regularizer while the low-frequency information decreases. In contrast, the squared l2 norm of the gradient 
enhance the low-frequency information via smoothing but destroy some important high-frequency 
information. The l2 norm regularizer worsens the signal since it is not a proper regularizer for this case.

Figure 5.  3D reconstruction of the magnetization vector filed in a ferromagnetic meta-lattice. (a, b) 
Representative project with left (a) and right (b) polarization at 0◦ . (c) The magnetic contrast projection at the 
0
◦ , which is the difference of the left and right polarization projections. (d) 3D magnetization vector field in the 

square with dashed lines in (a–c), where the colors represent the different directions of the vectors. (e) A thin 
layer of (d). (f) A representative topological defect with positive charge. Scale bar 200 nm.
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Data availability
The MATLAB source codes of RESIRE-V and the simulated and experiment data of the meta-lattice are available 
at the github repository https:// github. com/ minhp ham03 09/ RESIRE-V.
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