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Novel T cell exhaustion 
gene signature to predict 
prognosis and immunotherapy 
response in thyroid carcinoma 
from integrated RNA‑sequencing 
analysis
Yang Li 1,2, Zhen Wang 1,2, Fangting Lu 1,2, Yahu Miao 1, Qing Feng 1, Weixi Zhu 1, 
Qingqing Kang 1, Yijing Chen 1 & Qiu Zhang 1*

Exhausted  CD8+ T lymphocytes and tumor‑associated macrophages play critical roles in determining 
cancer prognosis and the efficacy of immunotherapy. Our study revealed a negative correlation 
between exhausted  CD8+ T lymphocytes and prognosis in thyroid carcinoma (THCA). Consensus 
clustering divided patients into two subgroups of exhaustion with different prognoses, as defined 
by marker genes of exhausted  CD8+ T cells. Subsequently, we constructed an eight‑gene prognostic 
signature, and developed a risk score named the exhaustion‑related gene score (ERGS) to forecast 
both prognosis and immunotherapy response in THCA. Bulk RNA sequencing analysis revealed a 
higher prevalence of M2 macrophages, indicative of an immunosuppressive tumor microenvironment 
(TME), in the high‑ERGS group. Single‑cell RNA sequencing showed that  SPP1+ macrophages and 
 CD14+ monocytes infiltrations were positively associated with higher ERGS. Functionally, it was 
determined that  SPP1+ macrophages exert an immunosuppressive role, while  CD14+ monocytes 
were implicated in promoting tumor progression and angiogenesis. Analysis of cell–cell interactions 
between  SPP1+ macrophages and T cells highlighted the activation of the SPP1‑CD44 and MIF‑CD74 
axes, both of which could foster an immunosuppressive TME. Therapeutic strategies that target  SPP1+ 
macrophages,  CD14+ monocytes, and the SPP1‑CD44 and MIF‑CD74 axes may potentially improve the 
prognosis and amplify the immunotherapy response in THCA patients.

Keywords Thyroid carcinoma, T cell exhaustion, Tumor-associated macrophage, Immunotherapy, Single-
cell RNA-sequencing, Gene signature

Thyroid carcinoma (THCA) represents the most prevalent endocrine malignancy and ranks as the fifth leading 
cancer among women in the USA, exhibiting an increasing incidence  worldwide1. It primarily consists of malig-
nancies originating from follicular cells, notably including follicular thyroid carcinoma, invasive encapsulated 
follicular variant papillary carcinoma, and papillary thyroid carcinoma, as delineated by the latest 2022 WHO 
 classification2. While the majority of patients respond to conventional therapies, including surgery, radioactive 
iodine treatment, and thyroid-stimulating hormone suppression, the efficacy of these approaches is limited for 
advanced or metastatic tumors that exhibit poor  differentiation3. Recent clinical findings suggest that immu-
notherapy constitutes a promising targeted approach for treating advanced thyroid  cancer4. Immunotherapy 
response is commonly predicted by PD-L1 expression and tumor mutation burden (TMB) in melanoma and 
other  cancers5. Nevertheless, THCA lacks sufficient biomarkers to predict the efficacy of immunotherapy. Thus, 
the identification of novel biomarkers and a predictive risk model for prognosis and immunotherapy response 
in THCA are crucial.
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The tumor microenvironment (TME) is composed of tumor cells, stromal cells, immune cells, extracellular 
matrix components, and a plethora of cytokines. Emerging research underscores that the elements of the TME 
play a pivotal role in modulating tumor progression, patient prognosis, and the effectiveness of  immunotherapy6. 
Host immune responses are vital in the clinical management of cancer, with  CD8+ T lymphocytes recognized 
as the primary effector cells that penetrate tumors and mediate anticancer  activities7. Within the TME,  CD8+ T 
lymphocytes undergo relentless antigenic stimulation, attenuating their antitumor effectiveness. This state, known 
as "exhaustion," is chiefly characterized by the heightened expression of numerous immune checkpoint genes. The 
sustained activation of these inhibitory pathways can culminate in a state referred to as "terminal exhaustion"7,8. 
Immunotherapeutic strategies aim at these inhibitory receptors to rejuvenate the exhausted T cells, thereby 
enhancing antitumor  responses7,9. Yet, the majority of patients derive limited benefit from immunotherapy, 
likely due to the immunosuppressive milieu of the  TME10. Tumor-associated macrophages (TAMs) act as vital 
mediators, deemed indispensable in both tumor advancement and the modulation of antitumor  immunity10,11. 
Hence, targeting TAMs amplifies the efficacy of immune checkpoint blockade (ICB) therapies by mitigating the 
immunosuppressive traits of the TME, a strategy validated in both experimental models and clinical  trials10–12.

In this study, an eight-gene signature was established and validated based on the exhaustion-related genes 
(ERGs) to predict the prognosis and the immunotherapy response. By integrating the bulk RNA-sequencing (bulk 
RNA-seq) and single-cell RNA-sequencing (scRNA-seq) data, we further discussed the potential mechanisms 
and molecular targets of TAMs to improve immunotherapy response.

Materials and methods
Ethical statement
The data of the human tissue samples is de-identified and collected from the public databases. The approvement 
and informed consent can be found in the original article cited in this study. Therefore, no further approvement 
and consent are needed.

Data acquisition
The schematic of our study’s methodology is depicted in Fig. 1. A total of 819 samples were amassed for the study, 
comprising 498 thyroid cancer specimens harboring transcriptomic and clinical data from the TCGA database 
(Supplementary Table S1), 298 samples from patients treated with anti-PD-L1 from the IMvigor210 cohort 
(Supplementary Table S2), and 23 specimens featuring single-cell transcriptomic data of thyroid tumors from 
the Gene Expression Omnibus (GEO) database (Supplementary Table S3). Bulk RNA-seq count matrices were 
extracted from the TCGA database and converted to transcripts per million (TPM) formats for standardized 

Figure 1.  The workflow of the bioinformatic analysis. Datasets were collected from TCGA and GEO databases 
and preprocessed. Deconvolution analysis revealed the prognostic significance of the exhausted  CD8+ T cell 
infiltration. Consensus clustering analysis based on exhausted  CD8+ T cell marker genes suggested a differential 
prognosis. Therefore, an eight-gene signature was constructed and validated to predict the prognosis and 
immunotherapy response. The potential mechanisms were then investigated by integrating scRNA-seq and bulk 
RNA-seq datasets.
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cross-sample gene expression comparison. Transcriptomic data and clinical details of the IMvigor210 cohort, 
recipients of ICB therapy, were obtained from the public IMvigor210CoreBiologies package (http:// resea rch- pub. 
gene. com/ IMvig or210 CoreB iolog ies/)13. The 10× genomic scRNA-seq dataset (GSE184362) was sourced from 
the GEO database for in-depth  analysis14.

ScRNA‑Seq data processing
All downstream scRNA-seq data processing was executed in R software employing the "Seurat" package (v4.1.1)15. 
Initially, cells were excluded if they exhibited any of the following: mitochondrial gene composition exceeding 
10%, gene counts below 500, or above 5000. Additionally, genes related to mitochondria and ribosomes were 
removed. Next, the "DoubletFinder" (v2.0.3) was applied with its default settings to detect and remove potential 
 doublets16. Following the filtration, a total of 164,852 cells remained for further analysis. After cell cycle correc-
tion, 5000 highly variable genes (HVGs) were chosen and subsequently scaled. The "Harmony" package (v0.1.0) 
was used to minimize batch  effects17. Utilizing the top 20 principal components (PCs), cell clusters were deline-
ated via the k-nearest neighbor algorithm at a 0.8 resolution. The t-distributed stochastic neighbor embedding 
(t-SNE) algorithm was employed to reduce the cell cluster features to two dimensions, clarifying the distinctions 
among clusters. Finally, differentially expressed genes (DEGs) were determined by the Wilcoxon test and Bonfer-
roni correction and DEGs with a false discovery rate (FDR) < 0.01 and |log2 fold change (FC)|> 0.5 were chosen 
as candidates for cell annotation and marker genes. The second clustering replicated the first in methodology. 
For cell annotation, canonical markers from previous studies were  selected14,18,19.

Deconvolution of the scRNA‑seq dataset
Deconvolution analyses of the scRNA-seq dataset were conducted to quantify cell infiltration levels in bulk 
RNA-seq samples, utilizing the ’BisqueRNA’ package (v1.0.5)20. Considering the variable cellular composition 
across tissues, we isolated cells originating from primary tumors for subsequent examination and employed a 
reference-based approach to deconvolution—a method strongly advocated in the official documentation.

Consensus clustering analysis
Initially, with the aid of the ’survival’ package (v3.2), a univariate Cox regression analysis was performed to 
ascertain the prognostic significance of the cell-type composition within each bulk sample. Subsequently, patient 
stratification was executed using the ’ConsensusClusterPlus’ package (v1.58), based on prognostic markers of 
exhausted  CD8+ T  cells21. Ultimately, comparisons of overall survival (OS) among the patient cohorts were drawn 
employing Kaplan–Meier survival curves and log-rank tests.

Gene sets variation analysis (GSVA) and immune cell infiltration analysis
Pathway activities were calculated using the ’GSVA’ package (v1.42), leveraging gene sets sourced from The 
Molecular Signatures  Database22. Subsequent to the GSVA, variance analyses were conducted employing the 
’limma’ package (v3.50), leading to the identification of significant pathways (FDR < 0.01)23. Immune cell infil-
tration analysis was performed using the CIBERSORT algorithm, which discerns 22 immune cell types based 
on transcriptome data from bulk RNA-seq  samples24. Furthermore, for single-cell level GSVA, gene sets drawn 
from prior studies were  utilized19.

Differentially expressed genes and functional enrichment analysis
To find the DEGs between two groups, we performed the DESeq2 algorithm using the "DESeq2" package 
(v1.34)25, and the genes with FDR < 0.05 and |log2 FC|> 2 were enrolled for subsequent analysis. Functional 
enrichment of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was 
employed utilizing the "clusterProfiler" package (v4.2.2) based on the latest online database (v7.4)26. Pathways 
with FDR < 0.01 were considered significant enrichment.

Construction and verification of the risk model
Firstly, the TCGA dataset was randomly divided into training and testing sets for the purposes of model develop-
ment and validation, respectively. Then, univariate Cox regression analysis was performed to assess the hazard 
ratios of the DEGs. Genes with FDR < 0.05 were regarded as prognostic. Subsequently, the least absolute shrink-
age and selection operator (LASSO) algorithm was applied to minimize overfitting using the "glmnet" package 
(v4.1)27. We chose 1 − SE (standard error) as the tuning parameter, and with tenfold cross-validation, the best 
model was selected. Next, a stepwise multivariate Cox regression analysis was conducted to acquire coefficients 
based on the genes with non-zero coefficients. Finally, the risk score, which was named the exhaustion-related 
gene score (ERGS), was computed by multiplying the mRNA expression of the genes by their corresponding 
coefficients. Patients were then stratified into low-ERGS and high-ERGS cohorts based on the median value of 
ERGS. To evaluate prognostic significance, we applied the Kaplan–Meier survival curve and the log-rank test 
utilizing the "survminer" package (v0.4.9). With the help of the "timeROC" package (v0.4), we could generate 
a receiver operating characteristic (ROC) curve which displayed the precision of OS prediction at a given time 
point. Cox regression analysis was employed to estimate the hazard ratios for both ERGS and clinical features.

Tumor mutation burden analysis
We downloaded the mutation profiles from the TCGA database. The "maftools" R package (v2.10) was then uti-
lized to preprocess them in the form of mutation annotation format. Subsequently, the most frequently mutated 

http://research-pub.gene.com/IMvigor210CoreBiologies/
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genes were identified, and the TMB was computed. Finally, the frequency of mutated genes was compared across 
each ERGS group, and the relationship between ERGS and TMB was performed using correlation analysis.

Prediction of immunotherapy response
Tumor Immune Dysfunction and Exclusion (TIDE, http:// tide. dfci. harva rd. edu/) was a website that could evalu-
ate given transcriptomic data to predict immunotherapy  efficacy28. T cell receptor (TCR) Shannon diversity index 
of the TCGA cohort, which has been demonstrated as a valuable biomarker of immunotherapy efficacy, was 
collected from the previous  study29. By combining the transcriptomic data and the immunotherapy response of 
298 bladder cancer patients from the IMvigor210 cohort, the prediction of the immunotherapy response of the 
ERGS was  validated13. ERGS for each patient was calculated as detailed earlier, with the median ERGS serving 
to split patients into distinct categories.

Single‑Cell regulatory network inference and clustering (SCENIC) analysis
SCENIC analysis was extensively utilized to determine the gene regulatory network in many cell types using 
scRNA-seq  data30. PySCENIC (v0.12.0), a faster version of the SCENIC analysis, was implemented according 
to the pipeline provided in the official tutorial. All the associated databases can be downloaded from the public 
website (https:// resou rces. aerts lab. org/ cista rget/).

Cell–cell communication analysis
To discover the underlying cell–cell communications, the "CellChat" package (v1.4.0) was performed according 
to the official  tutorial31. The databases of secreted signaling, ECM-receptors, and cell–cell contact, were obtained 
from the "CellChat" package. The noteworthy interactions between specific cell types were chosen for analysis 
and visualization.

Statistical analysis
Statistical analyses were conducted using R (v4.1.2) and Python (v3.9.12). For comparing two groups, the Wil-
coxon rank-sum test was employed. The Kruskal–Wallis test was utilized for comparisons across multiple groups. 
Spearman correlation analysis was conducted to assess the linear relationship between two continuous variables. 
The Benjamini–Hochberg method was applied to calculate the multiplicity-corrected p-value, known as the FDR, 
to identify DEGs. All tests were two-tailed, and a p-value lower than 0.05 was considered statistically significant.

Results
Identification of exhausted  CD8+ T cell and its marker genes
After data processing (Supplementary Fig. S1), a total of 164,852 cells from 7 primary tumors, 6 para-tumor 
tissues, 8 metastatic lymph nodes, and 2 distant metastases were incorporated into further analysis. For the first 
round of reduction and clustering, six primary cell subtypes were identified, including T/natural killer (NK) 
cells, B cells, myeloid cells, fibroblasts, thyrocytes, and endothelial cells (Supplementary Fig. S2; Fig. 2A,B). 
Subsequently, we performed further reduction on T/NK cells, and finally, ten main cell populations (Fig. 2C; 
Supplementary Fig. S3) from different tissues of different patients (Fig. 2D) were identified based on the DEGs 
of each cell cluster (Supplementary Table S4). Each cell cluster was annotated mainly according to its functional 
molecule and canonical markers (Fig. 2E)18. For example, the C10-CD8-Tex cluster was characterized by upregu-
lated genes of immune checkpoints (PDCD1, HAVCR2, LAG3, and TIGIT) and associated transcription factors 
(EOMES, TOX, and RBPJ), which corresponded to exhausted  CD8+ T cells.

The transcriptome characteristics of the consensus clustering based on the exhausted  CD8+ T 
cell marker genes
To assess T cell clusters’ prognostic significance, we conducted a univariate Cox regression by utilizing bulk 
RNA-seq deconvolution (Supplementary Table S5). We discovered the C10-CD8-Tex was negatively associ-
ated with patients’ OS (p = 0.023) (Fig. 3A). Consensus clustering was carried out based on the C10-CD8-Tex 
prognostic marker genes. Next, two exhaustion-related subtypes have been identified (Fig. 3B), characterized 
by distinct expressions of immune checkpoint genes (Supplementary Fig. S4A). A significant difference in the 
prognosis has been observed (Fig. 3C). For pathway analysis (Supplementary Fig. S4B), we found a comprehen-
sive downregulation of immune-related pathways in the worse prognosis cluster. The GO and KEGG enrich-
ment analyses also showed the same results (Supplementary Fig. S4C,D). The immune cell infiltration analysis 
(Fig. 3D) demonstrated that  CD8+ T lymphocyte infiltration decreased while M2 macrophage increased within 
the worse prognosis cluster.

Establishment and validation of the eight‑gene prognostic signature based on the ERGs
To find the DEGs between the two exhaustion subtypes, we applied the DESeq2 algorithm, and 459 genes with 
FDR < 0.05 and |log2 FC|> 2, which were named ERGs, were analyzed by univariate Cox regression (Supple-
mentary Table S6). Next, 70 prognostic genes (p < 0.05) were utilized for further investigation (Supplementary 
Table S7). The TCGA cohort was randomly split into a training set and a test set, both of which had similar 
clinical characteristics (Supplementary Table S8). The TCGA training cohort was used for model construction, 
and the test set was used for model validation. After LASSO Cox regression analysis, 12 genes with non-zero 
LASSO coefficients (Fig. 4A,B) were used for stepwise multivariate Cox regression analysis, and finally, eight 
genes (CXCL9, CYP17A1, DRGX, ENTHD1, HAS1, LAIR2, RETN, and SPHKAP) were screened out for the 
construction of the risk model (Supplementary Table S9). The TCGA training set was divided into a high-ERGS 

http://tide.dfci.harvard.edu/
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(n = 124) and low-ERGS (n = 125) group according to the median ERGS in the training set, and the test set was 
likewise classified into a high-ERGS (n = 113) and low-ERGS (n = 136) group (Supplementary Table S10).

We discovered that patients older than 50 or who were male seemed to have a higher ERGS (Supplementary 
Fig. S5A,B). However, other clinical features showed no statistical significance (Supplementary Fig. S5C–F). We 
also found that the high-ERGS group obtained an inferior prognosis compared to the low-ERGS group in the 
training, test (Supplementary Fig. S6A,B), and all cohorts (Fig. 4C). Next, we conducted the time-dependent ROC 
curves, and the 1-, 3-, and 5-year AUC values were 0.938, 0.944, and 0.929, respectively (Fig. 4D). The training 
and test sets also showed satisfying AUC values (Supplementary Fig. S6C,D). Meanwhile, the ERGS showed the 
highest AUC values compared with other clinical features (Fig. 4E), suggesting a powerful prognostic signature. 
Furthermore, the accuracy of OS prediction was strengthened when integrating the ERGS and clinical features 
(Fig. 4E). Cox regression analyses also indicated that the ERGS was an independent risk factor (p < 0.001, hazard 
ratio = 1.321, 95% CI 1.137–1.535) (Fig. 4F,G). The ERGS distribution was statistically different between the two 
exhaustion subtypes (Fig. 4H). The Sankey diagram (Fig. 4I) also suggested a close relationship between exhaus-
tion subtype, ERGS group, and survival state.

Figure 2.  Single-cell RNA-sequencing analysis identified exhausted  CD8+ T cell marker genes. (A) t-SNE plot 
showed six main cell types. (B) Dot plot displayed the canonical markers of the six main cell types. (C) t-SNE 
plot colored by T cell subtypes. (D) The proportion of T cell subtypes in each scRNA-seq sample. (E) Heatmap 
showed the expression of classical marker genes of the T cell subtypes.
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The eight‑gene signature could predict immunotherapy response in THCA patients
First, we compared the gene expression of well-known immunotherapy biomarkers between each ERGS group 
and discovered a significant downregulation of immune checkpoint genes in the high-ERGS group (Fig. 5A). 
Next, the TIDE website tools showed that the high-ERGS group had a lower dysfunction score but a higher exclu-
sion score and TIDE score (Fig. 5B–D; Supplementary Table S11), indicating a less beneficial treatment of the 
ICBs. Furthermore, the TCR Shannon diversity index also suggested that tumors with high-ERGS had a lower 
TCR Shannon diversity index (Fig. 5E; Supplementary Table S11) and could be insensitive to the ICBs treat-
ment. Finally, patients who underwent anti-PD-L1 therapy in the IMvigor210 cohort were utilized to evaluate 
the prediction effectiveness of the ERGS (Supplementary Table S12). We found that higher ERGS was associated 
with worse anti-PD-L1 effectiveness (p = 0.00011; Fig. 5F), and the treatment efficacy was decreased in the high-
ERGS group (p = 0.0015; Fig. 5G). Survival analysis suggested an inferior prognosis after anti-PD-L1 treatment 
in the high-ERGS group (p < 0.001; Fig. 5H).

Tumors in the high‑ERGS group have an immunosuppressive TME with higher M2 macrophage 
infiltration but lower M1 macrophage and  CD8+ T cell infiltration
First, we discovered that numerous immune-related pathways were downregulated in the high-ERGS group 
(Fig. 6A), suggesting an immunosuppressive TME with impaired function of antigen presentation, innate 
immunity, and cytokine or chemokine production. Meanwhile, there was also a comprehensive upregulation of 
metabolic pathways in the high-ERGS group. Furthermore, the GO and KEGG analyses also suggested similar 
results (Supplementary Fig. S7). Subsequently, CIBERSORT results demonstrated that the high-ERGS tumors 
had decreased infiltrations of  CD8+ T cells and M1 macrophages but increased infiltrations of M2 macrophages 
(Fig. 6B). Hopefully, the ERGS was strongly correlated with immune cell infiltration. For instance, the  CD8+ T 
cell and M1 macrophage infiltrations showed a negative linear correlation with the ERGS (Fig. 6C,D ). However, 

Figure 3.  The transcriptomic features of the consensus clustering based on the exhausted  CD8+ T cell marker 
genes. (A) Forest plot showed the prognostic value of the T cell subtypes utilizing the deconvolution analysis. 
(B) Two exhaustion subtypes were identified using consensus clustering based on the exhausted  CD8+ T cell 
marker genes. (C) The comparison of the prognosis between the two exhaustion states using the Kaplan–Meier 
survival curve and the log-rank test. (D) The comparison of immune cell infiltrations between the two clusters 
using the CIBERSORT algorithm.
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the M2 macrophage showed a positive linear correlation (Fig. 6E). These results further confirmed the immu-
nosuppressive nature of the TME in the high-ERGS group.

The relationship between somatic mutations and ERGS was then explored. First, the top 10 genes with the 
highest frequency of mutations in each ERGS group were identified (Supplementary Fig. S8A,B). Although they 
had similar mutated genes, we found that BRAF (p = 0.0012) and NRAS (p = 0.011) were considered statistically 
significant between the two groups (Supplementary Fig. S8C,D). Next, the TMB was calculated, suggesting that 
the high-ERGS tumors had increased TMB (Supplementary Fig. S8E). Moreover, the ERGS was shown to be 
positively correlated with TMB (p = 0.0015, R = 0.15) (Supplementary Fig. S8F).

Figure 4.  The construction of an eight-gene prognostic signature based on exhaustion-related genes. (A) 
Penalty plot of the LASSO analysis of the 15 prognostic exhaustion-related genes. (B) Variation of the gene 
coefficient with an increasing penalty parameter. (C) The Kaplan–Meier survival curve and the log-rank test 
showed an inferior prognosis in the high-ERGS group. (D) AUC curves showed the accuracy of 1-, 3-, 5-year 
OS prediction in the TCGA THCA cohort. (E) The ERGS had the highest prediction accuracy compared to 
other clinical features. (F,G) Forest plots of univariate and multivariate Cox regression analysis indicated an 
independent risk factor. (H) Boxplot showed that the cluster with a worse prognosis had a higher ERGS. (I) 
Sankey plot displayed the relationship of the consensus clusters, ERGS groups, and survival states.
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SPP1+ macrophage and  CD14+ monocyte infiltrations were correlated with ERGS and associ‑
ated with M2 macrophage infiltration and angiogenesis
As mentioned, the high-ERGS group had an immunosuppressive TME, and the ERGS was highly correlated 
with M1 and M2 macrophage infiltrations. Therefore, we concentrated on the myeloid cells in the TME to better 
explain the underlying biological processes.

The myeloid cells of 23 thyroid carcinoma samples collected from GSE184362 were extracted for further 
reduction, clustering, and annotation (Supplementary Fig. S9). According to the previous pan-cancer  study19, 
nine cell types were annotated (Fig. 7A), which came from different tissues or patients (Fig. 7B,C). For instance, 
cells that specifically expressed SPP1, FBP1, FABP5, MARCO, and ACP5 were annotated as  SPP1+ macrophages 
(Fig. 7D). Subsequently, to describe the biological functions of each cell type, we applied the GSVA to com-
pute the canonical makers of  TAMs19. We discovered that the  ISG15+ macrophage had the highest M1 score 
(p < 2.2e−16; Fig. 7E), indicating an M1-like macrophage. However, the  SPP1+ macrophage showed the highest 
M2 score (p < 2.2e−16; Fig. 7F), suggesting the anti-inflammatory and pro-tumor characteristics of M2-like 
macrophages. Furthermore, the  CD14+ monocyte with the highest angiogenesis score played a crucial role 
in tumor progression (p < 2.2e−16; Fig. 7G). Next, the infiltration of each cell type was calculated using the 
deconvolution of the scRNA-seq data (Supplementary Table S13).  CD14+ monocyte infiltration was identified 
as a risk factor using Cox regression analysis and the survival analysis also showed a negative association with 
the OS of THCA patients (Supplementary Fig. S10A,B). However, limited evidence was found to support the 
poor prognosis of  SPP1+ macrophage infiltration (Supplementary Fig. S10A,C). Moreover, the infiltration of the 
 SPP1+ macrophage and the  CD14+ monocyte positively correlated with the ERGS (Supplementary Fig. S10D,E), 
which deserved further investigation.

The transcriptome features of the  CD14+ monocyte and  SPP1+ macrophage
To explore the function of the cell, we conducted the GSVA algorithm using the gene sets of KEGG pathways. 
For  SPP1+ macrophages, there was a comprehensive upregulation of several metabolism-related pathways (Sup-
plementary Fig. S11A). Higher glutathione levels in the TME are related to tumor development, enhanced 
metastasis, and resistance to chemotherapy and  radiotherapy32. Meanwhile, the PPAR family is critical to M1/M2 
macrophage polarization and serves as a key regulator of oxidative phosphorylation and energy homeostasis in 

Figure 5.  The eight-gene signature could predict immunotherapy response in THCA patients. (A) The 
expression of immune checkpoint genes in each ERGS group. (B–E) The dysfunction score, exclusion score, 
TIDE score, and TCR Shannon diversities of the high-ERGS and low-ERGS groups. (F) Patients who did not 
respond to immunotherapy had a higher ERGS. (G) Patients in the high-ERGS group were less likely to benefit 
from immunotherapy. (H) Patients classified into the high-ERGS group had an inferior prognosis, although they 
have received immunotherapy.
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 macrophages33,34. Furthermore, the activities of glycolysis, gluconeogenesis, oxidative phosphorylation, and the 
TCA cycle, which are considered significant for M2 macrophages, are higher than those of other myeloid  cells35. 
For  CD14+ monocytes, there was also substantial upregulation of tumor-associated pathways (Supplementary 
Fig. S11A). The higher activity of the bladder cancer pathway demonstrates a higher probability of invasion and 
 metastases36. Likewise, the VEGF signaling pathway is associated with angiogenesis and could contribute to 
tumor  metastasis37. Moreover, the ErbB signaling pathway is correlated with tumorigenesis, immune escape, and 
resistance to  immunotherapy38. In addition, the TGF-beta signaling pathway could also promote tumorigenesis 
and  metastasis39.

The SCENIC analysis revealed the potential gene regulatory network of each cell type. For  SPP1+ mac-
rophages, the top 5 TFs with the highest activity were ATF7, PPARG, TFDP1, HMGA1, and NFIB (Supplementary 

Figure 6.  The transcriptome features of the ERGS group. (A) Heatmap showed the top 10 upregulated 
KEGG pathways in the low-ERGS and high-ERGS groups with corresponding clinical characteristics. (B) 
The comparison of immune cell infiltrations between the high-ERGS and low-ERGS groups calculated by the 
CIBERSORT algorithm. (C–E) The correlation analysis demonstrated a positive linear correlation between M2 
macrophage infiltration and ERGS but a negative linear correlation between M1 macrophage or  CD8+ T cell 
infiltration and ERGS.
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Fig. S11B). ATF7 inhibits the expression of innate immunity-related genes in  macrophages40. PPARG is essential 
to the polarization of M2 macrophages and functions as a critical regulator of cell  metabolism33,34. HMGA1 
was found to affect cell proliferation, apoptosis, and autophagy, which were linked to tumor  progression41. For 
 CD14+ monocytes, the top 5 TFs were ZBTB7B, FOSL2, KLF8, FOSB, and CLOCK (Supplementary Fig. S11B). 
FOSL2 activation in macrophages promotes the polarization of M2 macrophages and is related to lung cancer 
development and  migration42. Overexpressed KLF8 in cancer cells contributes to tumor metastasis through 
extracellular matrix remodeling and increased  angiogenesis43.

The landscape of  SPP1+ macrophage and  CD14+ monocyte crosstalk with T cell
It was found that  SPP1+ macrophages and  CD14+ monocytes widely communicated with T cells based on the Cell-
Chat results (Supplementary Fig. S12A). There were several interactions in common. The interactions between 
the MHC molecules and CD4/CD8 receptors represent the antigen presentation activity of macrophages. CCL3 

Figure 7.  The identification of myeloid cell subtypes. (A,B) t-SNE plots showed the nine myeloid cell subtypes 
and their tissue distributions. (C) Bar plot displayed the proportion of myeloid cell subtypes in each patient. (D) 
Heatmap showed the expression of canonical marker genes of myeloid cell subtypes. (E–G) The GSVA results of 
the classical gene sets of M1 macrophage, M2 macrophage, and angiogenesis.
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exerts both antitumor and pro-tumorigenic effects by recruiting cytotoxic  CD8+ T cells or Tregs. The interactions 
of CLEC2B-KLRB1 and CLEC2C-KLRB1 induce T cell  activation44. LGALS9 could induce immune cell death 
and the differentiation and maintenance of  Tregs45,46.

SPP1+ macrophages had some unique interactions (Supplementary Fig. S12A). The interaction of SPP1-CD44 
inhibits T-cell activation and promotes tumor immune  evasion47,48. The MIF-CD74 interaction could suppress 
both  CD8+ T cell infiltration and pro-inflammatory M1 conversion of macrophages in the  TME49. For  CD14+ 
monocytes, the extracellular NAMPT contributes to tumor angiogenesis, decreased antitumor immunity, and 
resistance to  ICBs50,51. THBS1 could affect the immune cell by inducing senescence or cell death via the CD47 
 receptor52.

The landscape of  SPP1+ macrophage and  CD14+ monocyte crosstalk with tumor cell
Several shared cell–cell interactions were critical to tumor development (Supplementary Fig. S12B). Secreted 
NAMPT in the TME promotes tumor proliferation by increasing the  NAD+ pool and affects cancer metastasis 
and treatment resistance in many solid human  tumors50,51. The interaction of HBEGF-EGFR increases tumor cell 
intravasation and  metastasis53. GRN stimulated tumor cell proliferation, migration, and  invasion54.

However, both  SPP1+ macrophages and  CD14+ monocytes had many unique communications (Supplemen-
tary Fig. S12B). For  SPP1+ macrophages, the activation of the SPP1-CD44 axis promotes the stemness of the 
tumor cells, contributing to tumor metastasis in pancreatic  cancer48. For  CD14+ monocytes, the VEGFA/PGF-
VEGFR1 axes play a significant role in tumor angiogenesis, which is related to a poorer  prognosis37,55. The 
EREG/AREG-EGFR communications serve as a pivotal factor in tumor proliferation and migration in several 
solid human  cancers56.

Discussion
In this study, we established an eight-gene signature collected from the ERGs to predict prognosis and immu-
notherapy response in THCA. Moreover, we further discussed the potential molecular mechanisms and targets 
which might benefit the immunotherapy response.

Utilizing the deconvolution analysis, exhausted  CD8+ T lymphocytes were found to serve as a risk factor that 
attracted our attention. Two exhaustion subtypes with different prognosis were clustered based on the marker 
genes of exhausted  CD8+ T lymphocytes. To explore the distinct biological process in the two exhaustion states, 
we performed differential expression analysis, and the DEGs were called ERGs, from which an eight-gene model 
was constructed and the ERGS was computed. Patients with a higher ERGS have an inferior prognosis than those 
with a lower ERGS, and the ERGS can effectively predict the prognosis of THCA patients compared with other 
clinical features. Furthermore, Cox regression analyses demonstrated that the ERGS served as an independent 
risk factor. For transcriptomic features, GSVA results revealed that the high-ERGS group had an immunosup-
pressive TME and abnormal metabolic pathways. Moreover, the high-ERGS tumors had increased infiltrations 
of M2 macrophage but decreased infiltrations of M1 macrophage and  CD8+ T cell. Meanwhile, the ERGS had a 
positive linear correlation with M2 macrophage infiltration but a negative linear correlation with M1 macrophage 
and  CD8+ T cell infiltrations. All these features indicate that tumors with high ERGS have an immunosuppressive 
TME due to the infiltration of M2 macrophages and the lack of M1 macrophages and  CD8+ T cell, which could 
be the leading contributor to the poor prognosis.

The discrepancy in immune cell infiltration and function across ERGS groups encouraged us to investigate 
the predictive efficacy of ERGS for immunotherapy response. We first analyzed the expression of 7 immune 
checkpoint genes and found they were increased in the low-ERGS group. Next, the low-ERGS tumors had 
higher TCR diversities. Subsequently, TIDE analysis suggested patients with low ERGS were more likely to 
benefit from immunotherapy due to their lower TIDE  score28. To further verify the predictive value of ERGS, 
an immunotherapy cohort (the Imvigor210 cohort) was used for validation, despite the fact that it is a bladder 
cancer  cohort13. Hopefully, we discovered that patients in this cohort with reduced ERGS obtained a greater 
immunotherapy response rate and a longer survival time. Taken together, we can infer that THCA patients with 
lower ERGS may have higher probabilities of benefiting from immunotherapy.

Considering the macrophage infiltrations and immunosuppressive TME between different ERGS groups, 
we focused on the TAMs for further investigation. We discovered that the  SPP1+ macrophage was more likely 
to be M2-like, and the  CD14+ monocyte could contribute to tumor angiogenesis. According to the CellChat 
results, several vital communications in common were found. For  SPP1+ macrophages, SPP1-CD44 inhibits 
T-cell activation and promotes tumor immune  evasion47,48. The MIF-CD74 interaction could suppress both  CD8+ 
T cell infiltration and pro-inflammatory M1 conversion of macrophages in the  TME49. For  CD14+ monocytes, 
the VEGFA/PGF-VEGFR1 axes play a significant role in tumor  angiogenesis37,55, and the EREG/AREG-EGFR 
communications serve as a critical factor in tumor proliferation in several solid human  cancers56. In conclusion, 
we revealed that  SPP1+ macrophages and  CD14+ monocytes were highly associated with immunosuppressive 
TME and tumor angiogenesis, respectively.

In this research, the ERGS was composed of 8 ERGs (CXCL9, CYP17A1, DRGX, ENTHD1, HAS1, LAIR2, 
RETN, and SPHKAP), some of which were pivotal to the tumor progression. CXCL9 is located in the dendritic 
cells and macrophages and could generate a "hot"  TME57. CYP17A1, a key enzyme for producing several steroids, 
is considered a risk factor for prostate  cancer58. HAS1 encodes hyaluronic acid, and its upregulation potentiates 
tumor development and progression by remodeling the  TME59. LAIR2 is proven to be a T cell exhaustion bio-
marker and correlated with worse survival in  cholangiocarcinoma60. RETN has a significant impact on tumor 
growth, metastasis, angiogenesis, and therapy  resistance61.

TAMs represent a critical category of immune cells within the TME, playing multifaceted roles in tumor 
growth, metastasis, immune evasion, and therapeutic response. The significant function of  SPP1+ macrophages 
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across various cancer contexts, especially in terms of tumor progression, metastasis, and the modulation of 
immune responses, is noteworthy. SPP1, a protein secreted by macrophages, plays a pivotal role in cellular 
communication and immune regulation within the TME. One study demonstrated that the  SPP1+ macrophage 
subpopulation promotes endothelial invasion and metastasis of tumor cells in the TME of head and neck squa-
mous cell  carcinoma62. Additionally, research in colorectal cancer found that  SPP1+ macrophages are associated 
with suppressed T cell infiltration in the TME, with a higher presence of  SPP1+ macrophages correlating with 
less benefit from  immunotherapy63.  CD14+ monocytes are crucial in regulating the tumor’s immune response, 
facilitating tumor proliferation and metastasis. In high-grade serous ovarian cancer,  CD14+ monocytes play a 
key regulatory role in tumor progression, including the modulation of tumor inflammation and  angiogenesis64. 
Furthermore,  CD14+ monocytes can suppress the action of T cells, associated with poor outcomes in melanoma 
 patients65. This comprehensive analysis underscores the complex interplay between different immune cell types 
within the TME, highlighting their potential impact on cancer progression and treatment response.

Although this study obtained promising findings, it also had several limitations. Firstly, the eight-gene signa-
ture was constructed and validated only on the TCGA THCA cohort. Thus, more thyroid cancer datasets need to 
be utilized to further validate the prognostic value of our ERGS in the future. Secondly, further transcriptome-
level and protein-level verification is required to demonstrate the differential expression between the normal 
and tumor tissues. Absolutely, in vitro and in vivo experiments are needed to confirm the potential mechanisms 
postulated by us. Lastly, the predictive ability of immunotherapy response is limited due to the lack of immuno-
therapy cohorts in THCA, and the bioinformatic analyses could only serve as a suggestion. The target cells and 
axes will need experimental and clinical verification in the future.

In conclusion, we established and validated an eight-gene signature based on the ERGs which could predict 
prognosis and immunotherapy response in THCA patients. Furthermore,  SPP1+ macrophage was revealed to 
have an immunosuppressive function, and  CD14+ monocyte was found to contribute to tumor progression and 
angiogenesis. Finally, the SPP1-CD44 and MIF-CD74 axes in the communication between  SPP1+ macrophages 
and T cells might be candidates for target therapy, which might reverse the immunosuppressive TME and enable 
patients to benefit from immunotherapy.

Data availability
The datasets used and provided here are available for download from various digital archives. Both the 
repository(s) and accession number(s) are listed in the article/supplementary materials.
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