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Amyloid‑β prediction 
machine learning model using 
source‑based morphometry 
across neurocognitive disorders
Yuki Momota 1,4, Shogyoku Bun 1,11*, Jinichi Hirano 1,11*, Kei Kamiya 1, Ryo Ueda 2, 
Yu Iwabuchi 3, Keisuke Takahata 1,4, Yasuharu Yamamoto 4, Toshiki Tezuka 5, 
Masahito Kubota 5, Morinobu Seki 5, Ryo Shikimoto 1, Yu Mimura 1, Taishiro Kishimoto 8,9, 
Hajime Tabuchi 1, Masahiro Jinzaki 3, Daisuke Ito 6,7 & Masaru Mimura 10

Previous studies have developed and explored magnetic resonance imaging (MRI)-based machine 
learning models for predicting Alzheimer’s disease (AD). However, limited research has focused 
on models incorporating diverse patient populations. This study aimed to build a clinically useful 
prediction model for amyloid-beta (Aβ) deposition using source-based morphometry, using a data-
driven algorithm based on independent component analyses. Additionally, we assessed how the 
predictive accuracies varied with the feature combinations. Data from 118 participants clinically 
diagnosed with various conditions such as AD, mild cognitive impairment, frontotemporal lobar 
degeneration, corticobasal syndrome, progressive supranuclear palsy, and psychiatric disorders, 
as well as healthy controls were used for the development of the model. We used structural MR 
images, cognitive test results, and apolipoprotein E status for feature selection. Three-dimensional 
T1-weighted images were preprocessed into voxel-based gray matter images and then subjected to 
source-based morphometry. We used a support vector machine as a classifier. We applied SHapley 
Additive exPlanations, a game-theoretical approach, to ensure model accountability. The final model 
that was based on MR-images, cognitive test results, and apolipoprotein E status yielded 89.8% 
accuracy and a receiver operating characteristic curve of 0.888. The model based on MR-images alone 
showed 84.7% accuracy. Aβ-positivity was correctly detected in non-AD patients. One of the seven 
independent components derived from source-based morphometry was considered to represent 
an AD-related gray matter volume pattern and showed the strongest impact on the model output. 
Aβ-positivity across neurological and psychiatric disorders was predicted with moderate-to-high 
accuracy and was associated with a probable AD-related gray matter volume pattern. An MRI-based 
data-driven machine learning approach can be beneficial as a diagnostic aid.
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Abbreviations
AD	� Alzheimer’s disease
ADAS-cog-J	� The Japanese version of Alzheimer’s Disease Assessment Scale-Cognitive subscale
ANOVA	� Analysis of variance
APOE	� Apolipoprotein E
AUC​	� Area under the receiver operating characteristic curve
Aβ	� Amyloid-beta
CBS	� Corticobasal syndrome
CDR	� Clinical dementia rating
CSF	� Cerebrospinal fluid
FAQ	� Functional activity questionnaire
FBB	� Florbetaben
FTLD	� Frontotemporal lobar degeneration
GDS	� Geriatric depression scale
GM	� Gray matter
HC	� Healthy controls
IC	� Independent component
ICA	� Independent component analysis
JART​	� Japanese adult reading test
LM I	� Logical memory immediate recall
LM II	� Logical memory delayed recall
MCI	� Mild cognitive impairment
MMSE	� Mini-mental state examination
MRI	� Magnetic resonance images
MTL	� Medial temporal lobe
PCR	� Polymerase chain reaction
PET	� Positron emission tomography
PSP	� Progressive supranuclear palsy
ROI	� Region-of-interest
SBM	� Source-based morphometry
SD	� Standard deviation
SHAP	� SHapley Additive exPlanations
SVM	� Support vector machine
TMT	� Trail making test
WF	� Word fluency
WM	� White matter

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the presence of amyloid-beta (Aβ) 
plaques, neurofibrillary tangles, and brain atrophy1,2. It is the most prevalent cause of dementia3–5 and has a 
significant social impact4. However, the clinical diagnosis of AD can be challenging due to overlapping clinical 
manifestations with other diseases such as frontotemporal lobar degeneration (FTLD) or late-onset psychiatric 
disorders. These diseases may present similar clinical signs and symptoms and occasionally may be comorbid 
with AD3,6,7.

Considering that Aβ is one of the defining characteristics of AD, examining Aβ-positivity may aid in 
differential diagnosis2,8 and precision medicine, including drug choice6,9. Nevertheless, Aβ detection is not 
necessarily convenient to perform in routine clinical practice. Positron emission tomography (PET)10,11 requires 
advanced facility requirements and careful attention to radiation exposure. Cerebrospinal fluid (CSF) testing12,13 
can be risky in patients with bleeding tendencies (e.g., on anticoagulants) or increased intracranial pressure. 
Blood biomarkers have shown potential for high diagnostic performance in a minimally invasive manner14–16, but 
have not been applied in routine clinical practice17. Meanwhile, magnetic resonance imaging (MRI) has achieved 
widespread adoption in general clinical practice despite certain facility limitations. As MRI may be effective in 
excluding non-AD causes of cognitive impairment and contribute to the diagnosis of dementia17, MRI-based 
Aβ prediction may be a useful screening tool before definitive diagnosis by CSF testing or amyloid PET18–20.

However, visual judgment of MRI may be hindered by the heterogeneity of brain structural changes. In other 
words, objective, data-driven detection of subtle structural changes indicative of Aβ deposition can enhance the 
visual interpretation of MRI for dementia differential diagnosis, streamlining the screening process for potential 
participants undergoing CSF testing or amyloid PET scans18–22.

Large MRI datasets such as Alzheimer’s Disease Neuroimaging Initiative (ADNI)23 has facilitated data-driven 
approaches (e.g., machine learning) (for reviews, see Refs.21,22). Machine learning methods utilizing these datasets 
have achieved classification accuracy of 93–98% in distinguishing between AD and healthy controls (HC)24,25. 
However, one of the limitations of the previous studies is the narrow focus on the AD continuum, including AD, 
mild cognitive impairment (MCI), and HC20,24–27. Consequently, the results may not necessarily be generalizable 
to common clinical populations6,18,28,29. Another limitation of previous MRI-based models is that many predict 
clinical diagnoses24,25 (for reviews, see Refs.21,22) instead of Aβ deposition18,26–28.

To examine the brain structure patterns in neurological or psychiatric disorders, source-based morphometry 
(SBM), a data-driven multivariate analysis method, has garnered increasing attention30–35. SBM is a structural 
neuroimaging analysis technique based on independent component analysis (ICA). It uses masked gray matter 
(GM) images as input features, extracts independent spatial maps representing anatomical variability, and 
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potentially detects co-varying structural patterns in the whole brain30,35. In this regard, SBM may be more data-
driven than region-of-interest (ROI)-based feature extraction and potentially more sensitive than voxel-based 
morphometry for detecting GM atrophy30. SBM has significantly contributed to enhancing our comprehension of 
distinctive brain structural patterns observed in patients affected by various neurological or psychiatric disorders, 
including Parkinson’s disease31, FTLD syndrome33, major depressive disorder34, and schizophrenia32. Applying 
SBM to the AD continuum, the temporo-frontoparietal component could differentiate amnestic MCI (aMCI) 
from HC,major hippocampal and temporal lobe atrophy and occipital atrophy could differentiate AD from 
aMCI and HC31.

Considering the challenges posed by the presence of AD-like signs and symptoms in other neurological or 
psychiatric disorders, which likely hamper diagnosis and patient management, predicting Aβ accumulation based 
on MR-images of heterogeneous diseases may hold greater clinical relevance. The aims of the present study were 
to (1) build a clinically useful prediction model for Aβ deposition from a diverse patient population using SBM, 
and (2) identify influential features in the model. Moreover, we assessed how the predictive accuracies varied 
with feature combinations.

Methods
Participants and clinical measurements
Patients clinically diagnosed with AD, MCI, FTLD, corticobasal syndrome (CBS), progressive supranuclear palsy 
(PSP), or psychiatric disorders were recruited between the 3rd of July, 2018 and 31st of August, 2021, from the 
memory clinic at Keio University Hospital. HC were also recruited as described in a previous manuscript36. For 
these diagnoses, the PET results were not considered.

Inclusion criteria among each diagnosis were: (1) age 40–85 years; (2) years of education ≥ 12, and (3) patients 
whose first language is Japanese.

The diagnosis-specific inclusion criteria were as follows:
AD: (1) clinical diagnosis of AD by a dementia specialist; (2) Logical Memory II subscale in the Wechsler 

Memory Scale-Revised (LM II) ≤ 8 for 16 years of education and ≤ 4 for 12–15 years of education; (3) Mini-Mental 
Scale Examination (MMSE) ≤ 23; and (4) clinical dementia rating (CDR) = 0.5 or 1.0.

MCI: (1) Clinical diagnosis of MCI by a dementia specialist; (2) LM II ≤ 11 for 16 years of education, and ≤ 9 
for 12–15 years of education; (3) MMSE ≥ 24; and (4) CDR 0.5 (memory score 0.5).

Other diseases (i.e., FTLD, CBS, PSP, or psychiatric disorders) were diagnosed by a neurologist or psychiatrist 
according to the diagnostic criteria.

HC: (1) judged as cognitively normal by a dementia specialist; (2) LM II ≥ 9 for 16 years of education, ≥ 5 for 
12–15 years of education; (3) MMSE ≥ 24; (4) CDR 0; and (5) Geriatric Depression Scale (GDS) < 6.

All the clinical data were obtained within 6 months from enrollment.

Standard protocol approval, registration, and patient consent
The Certified Review Board of Keio University approved the study design and protocol. The study was registered 
with the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR; https://​www.​
umin.​ac.​jp/​ctr/​index.​htm, ID# UMIN000032027, the first registration: 31/03/2018) and the Japan Registry of 
Clinical Trials (jRCT; https://​jrct.​niph.​go.​jp/, ID# jRCTs031180225, the first registration: 11/03/2019), and was 
conducted in accordance with the 1964 Declaration of Helsinki and its later amendments. All participants and 
their proxies, if necessary, provided written informed consent.

Cognitive assessment
The following neuropsychological assessments were performed: MMSE37, Wechsler Memory Scale-Revised 
(WMS-R) Logical Memory38 immediate recall (LM I) and delayed recall (LM II), Word Fluency39, Trail Making 
Test (TMT)40, the Japanese version of Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-cog-J)41, 
Japanese Adult Reading Test (JART)42, Clinical Dementia Rating (CDR)43, and Functional Activity Questionnaire 
(FAQ)44.

Apolipoprotein E (APOE) genotyping
Genomic DNA was extracted from 0.2 mL whole blood using a Magnetic Nanoparticle DNA Extraction Kit (EZ1 
DNA Blood 200 μL Kit). APOE genotyping (rs429358 and rs7412) was performed by real-time polymerase chain 
reaction (PCR) using the TaqMan probe on a CFX 96 deep well Real-Time PCR system (Bio Rad, Richmond, 
CA) to analyze the three major isoforms (APOE ε2, ε3, and ε4).

[18F] Florbetaben (FBB) amyloid‑PET imaging
[18F] FBB was manufactured on-site using an automated synthesizer as described elsewhere45,46. Amyloid-PET 
images were acquired for 20 min using a PET-CT (True Point Biograph 40/64, Siemens Japan K.K., Tokyo, Japan), 
90 min after intravenous injection of 300 MBq ± 20% [18F] FBB. The 20-min PET images were visually assessed by 
nuclear medicine experts who had completed a training program offered by the manufacturer (Piramal Imaging 
GmbH, Berlin, Germany). The Aβ positivity/negativity was determined based on the assessment of tracer uptake 
in the GM of the following four brain regions: the lateral temporal lobes, frontal lobes, posterior cingulate cortex/
precuneus, and parietal lobes, in line with the NeuraCeq™ guidelines (http://​www.​acces​sdata.​fda.​gov/​drugs​atfda_​
docs/​label/​2014/​20467​7s000​lbl.​pdf)47. Aβ negativity was established when tracer uptake (i.e., signal intensity) 
in the GM was lower than that in the white matter (WM) in all four brain regions.

https://www.umin.ac.jp/ctr/index.htm
https://www.umin.ac.jp/ctr/index.htm
https://jrct.niph.go.jp/
http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf
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MRI acquisition
High-resolution 3D T1-weighted MR-images were acquired (repetition time: 6.8 ms; echo time: 3.0 ms; flip angle: 
8°; field of view: 230 mm; matrix size: 256 × 256; slice thickness: 1.0 mm; voxel size: 0.9 × 0.9 × 1.0 mm) using a 
Discovery MR750 3.0 T scanner (GE Healthcare, USA) with a 32-channel head coil. All images were visually 
checked for scanner artifacts and anatomical anomalies.

MRI pre‑processing
Structural brain images were first segmented into GM, WM, and CSF using the Statistical Parametric Mapping 
(SPM12; Wellcome Trust Center for Neuroimaging, London, UK) toolbox CAT12 (http://​www.​neuro.​uni-​jena.​
de/​cat/) in MATLAB (R2019a; MathWorks, Natick, Mass, USA). Segmented GM images were used to normalize 
the individual component images to the Montreal Neurological Institute (MNI) template48. Normalized images 
were modulated to preserve the total amount of signal from each voxel, resampled to an isotropic voxel size of 
2 × 2 × 2 mm3, and smoothed using a 5-mm full-width-at-half-maximum Gaussian kernel.

For the subsequent pre-processing, we used SBM30,35. SBM incorporates independent component analysis 
(ICA) and provides automatic decomposition of a given set of anatomical brain images into independent spatial 
maps characterizing different modes of anatomical variability across all individuals30,35.

The preprocessed GM images were loaded with Nibabel (https://​nipy.​org), and a three-dimensional (3D) 
array of 91 × 109 × 91 voxels was transformed into a one-dimensional (1D) array of 1 × 902,629 voxels. We created 
a brain mask for this 1D array using the Neuromorphometric Atlas (provided by Neuromorphometrics, Inc. 
(http://​Neuro​morph​ometr​ics.​com))49 and selected 208,082 voxels on which ICA was performed for all scans 
using the FastICA function of scikit-learn (https://​scikit-​learn.​org/​stable/), a Python machine learning library. 
The number of extracted independent components (ICs) was also used as a definitive hyperparameter to be 
tuned in subsequent model building.

After conducting the ICA, we reshaped the data matrix (i.e., ICs) back into a 3D image (91 × 109 × 91) using 
nipy (https://​nipy.​org). The 3D image was then superimposed onto the MNI-normalized template brain using 
BrainNet Viewer50, for visualization. The extracted ICs were used as spatial regressors for each participant’s GM 
images (IGM).

In the above formula, each β represents the weighting coefficient associated with the effect of each IC for the 
GM image and K indicates the number of extracted ICs. Accordingly, the β-values could be loosely regarded as 
“weighted total gray matter volume” of the brain parcel represented by the given IC51. The β-values were then 
used as representative GM measures associated with each component, in the subsequent analyses.

Machine learning
We built predictive models for Aβ-positivity using scikit-learn (https://​scikit-​learn.​org/​stable/​index.​html)52 
which is supported by Python ver. 3.4. The input feature values were based on the ICA’s β-values, demographic 
characteristics (i.e., age and sex), cognitive assessments, and APOE genotype. First, we used all input features 
and built the final model. Second, we investigated the model performance for each combination of features (e.g., 
brain images alone, brain images and cognitive assessments). Third, we investigated model performance for each 
combination of diagnoses (e.g., AD + HC and AD + MCI + HC).

Throughout the model building, we used a Gaussian kernel support vector machine (SVM) as the classifier 
and the model was validated using fivefold cross-validation (Additional Fig. 1). For a fivefold training/test split, 
the model was fitted to the training data, and the predictive value was assessed using the test data over all splits 
(five times). We tuned the hyperparameters (i.e., Gamma and C in SVM and the number of ICs) with a grid 
search in all model buildings.

To improve the interpretability of the model, we applied the SHapley Additive exPlanations (SHAP) (https://​
shap.​readt​hedocs.​io/​en/​latest/​index.​html) which makes the output of any machine learning model explainable as 
a model itself53. Based on the Shapley value in game theory, a large absolute SHAP value has a strong influence on 
the prediction. In the present study, the clinical features with positive and negative SHAP values were associated 
with Aβ-positivity and Aβ-negativity, respectively.

Statistical analysis
For the statistical analyses, we used Scipy (https://​www.​scipy.​org), supported by Python version 3.4. Demographic 
and clinical variables were compared using a two-tailed t-test, or chi-square test, where appropriate. Relationships 
among features were examined using Pearson’s correlation analysis for continuous variables. Analysis of variance 
(ANOVA) was conducted to determine associations with diagnoses. Statistical significance was defined by a 
p-value of < 0.01 or < 0.05 after the Bonferroni correction for multiple corrections.

Ethics approval and consent to participate
The study protocol was prepared in accordance with the ethical standards of the Declaration of Helsinki and 
approved by the Certified Review Board of Keio University. Written informed consent was obtained from all 
participants who were included in the study and their proxies, if necessary.

IGM = β1IC1 + β2IC2 + ...βKICK.

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://nipy.org
http://Neuromorphometrics.com
https://scikit-learn.org/stable/
https://nipy.org
https://scikit-learn.org/stable/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://www.scipy.org
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Results
Demographic and clinical characteristics
Among 118 cases used for the final model building (AD [n = 24], MCI [n = 29], FTLD [n = 12], CBS [n = 3], PSP 
[n = 3], psychiatric disorders [n = 5], HC [n = 42)), 45 cases (38.1%) were Aβ-positive and 73 cases (61.9%) were 
Aβ-negative (Table 1). The demographic and clinical characteristics are shown in Table 1.

Model performance
The final model (C = 0.01, gamma = 100, number of ICs = 7), which used brain images, cognition, and APOE 
data as input features achieved 89.8% accuracy (sensitivity = 88.4%, specificity = 90.7%, positive predictive 
value = 84.4%, negative predictive value = 93.2%), whereas the model based on brain images alone showed 
84.7% accuracy (sensitivity = 82.9%, specificity = 85.7%, positive predictive value = 75.6%, negative predictive 
value = 90.4%) (Table 2). The area under the receiver operating characteristic curve (AUC) of the final model 
was 0.888 (95% confidence interval [CI] 0.854–0.973) and that of the brain images alone model was 0.830 (95% 

Table 1.   Demographic and clinical characteristics. Values are expressed as mean ± SD unless otherwise 
indicated. The between-group differences were examined using the independent sample t-test (a) for 
continuous variables, and χ2 test (b) for categorical variables. AD Alzheimer’s disease, ADAS-cog-J the 
Japanese version of Alzheimer’s Disease Assessment Scale-Cognitive subscale, APOE Apolipoprotein E, CBS 
Corticobasal syndrome, CDR Clinical Dementia Rating, FAQ Functional Activity Questionnaire, FTLD 
Frontotemporal lobar degeneration, HC Healthy controls, JART​ Japanese Adult Reading Test, LM I Logical 
Memory immediate recall, LM II Logical Memory delayed recall, MCI Mild cognitive impairment, MMSE 
Mini-Mental State Examination, PSP Progressive supranuclear palsy, Psychiatric Psychiatric disorders, SD 
Standard deviation, TMT-J The Japanese version of Trail Making Test, WF Word Fluency. *p < 0.01.

Aβ-positive (n = 45) Aβ-negative (n = 73)

t value p-valueMean ± SD Mean ± SD

Demographicsa

 Age (years) 72.38 ± 9.09 67.71 ± 9.78 2.58 0.011

 Education (years) 14.47 ± 1.85 14.73 ± 2.29  − 0.64 0.523

Cognitive tests

 MMSE 22.73 ± 5.96 27.37 ± 3.39

 CDR global 0.53 ± 0.33 0.23 ± 0.34

 CDR sum 2.22 ± 2.38 0.84 ± 1.73

 FAQ 4.18 ± 4.44 1.58 ± 3.31

 LM I 4.07 ± 3.58 10.05 ± 5.08

 LM II 2.44 ± 3.58 8.99 ± 5.64

 ADAS-cog-J 14.94 ± 9.99 6.82 ± 6.68

 WF category 27.98 ± 13.29 35.47 ± 12.83

 WF initial 21.53 ± 9.24 24.3 ± 10.92

 TMT-J A 153.58 ± 239.11 83.79 ± 156.68

 TMT-J B 310.22 ± 326.13 131.32 ± 163.87

 JART​ 25.42 ± 15.21 32.49 ± 13.38

N Men (%) N Men (%) χ2 p-value

Diagnosisb

 All 45 53.00 73 54.79 51.09  < 0.01*

 AD 21 52.38 3 33.33 33.46  < 0.01*

 MCI 16 56.25 13 61.54 13.41  < 0.01*

 FTLD 1 0.00 11 54.55 0.03

 CBS 2 50.00 1 0.00 2.90

 PSP 0 0.00 3 33.33 0.10

 Psychiatric 0 0.00 5 40.00 0.00

 HC 5 60.00 37 59.46 –

APOE alleleb

 ε2/2 0 0.00 2 0.00 NaN NaN

 ε2/3 0 0.00 8 62.50

 ε2/4 0 0.00 0 0.00

 ε3/3 21 61.90 47 53.19

 ε3/4 18 38.89 16 62.50

 ε4/4 6 66.67 0 0.00
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CI 0.825–0.958) (Fig. 1). The final model performance based on the combination of each feature set is presented 
in Table 2.

Table 3 shows the performance of the final model to predict Aβ positivity in each diagnosis. The final model 
achieved an accuracy of 89.8% when including all the participants. The accuracy of the model based on AD, MCI, 
and HC was slightly lower (i.e. 88.4%), whereas that based solely on MCI was the lowest (i.e. 75.9%). Notably, 
Aβ-positivity/negativity was completely (i.e. 100%) identified in FTLD syndromes and in psychiatric disorders.

SBM
Seven ICs (IC 1–7) were derived from the final SBM model (Table 4 and Additional Fig. 2). Each component 
showed spatially maximally independent GM volume patterns. Upon examining the relationship between 
each component and clinical information, IC 1 showed a significant correlation with cognitive measures and 
Aβ-positivity. Meanwhile, IC 4 was significantly correlated with age (Table 4).

We assessed whether each clinical diagnosis was associated with the ICs. Only AD-diagnosis and IC 1 showed 
a significant association (Games-Howell test was applied for multiple comparisons, p < 0.001), whereas the other 
diagnoses were not associated with any ICs. The GM volume pattern of IC 1 is shown in Fig. 2. The spatial pattern 
of the loading coefficients from IC 1 showed higher z-scores in the lateral parietal lobes than in the other ICs.

Feature importance of the model
The SHAP values were calculated (Fig. 3), in which IC 1 showed the strongest impact on the model, followed by 
Logical Memory I and II, IC 3, and APOE x/4.

Discussion
Using SBM, our machine learning model predicted Aβ-positivity with an accuracy of 89.8% and an AUC of 0.888 
based on brain MRI, cognitive, and genetic data from 118 participants. It also correctly predicted Aβ-positivity/
negativity in non-AD participants, such as those with FTLD syndrome and psychiatric disorders. Even a model 
based solely on brain images achieved 84.7% accuracy and an AUC of 0.830. Among all the covariates in the final 
model, IC 1 had the strongest impact related to Aβ-positivity prediction, followed by Logical Memory I and II. 
This suggests that our model may be beneficial in clinical settings.

Table 2.   Model performance using brain image, cognition, and APOE data for input features (by feature 
set). *1Accuracy = (TP + TN)/(TP + TN + FN + FP). *2Specificity = TN/(FP + TN). *3Sensitivity = TP/(TP + FN). 
*4Positive predictive value = TP/(TP + FP). *5Negative predictive value = TN/(FN + TN). “ALL” model used 
brain image (i.e., gray matter volume), cognition, and APOE data. APOE apolipoprotein E., FN false negative, 
FP False positive, TN True negative, TP True positive.

Feature

Accuracy*1 Sensitivity*2 Specificity*3 Positive predictive value*4 Negative predictive value*5

% % % % %

Brain image 84.7 82.9 85.7 75.6 90.4

Cognition 78.8 71.7 83.3 73.3 82.2

APOE 81.4 74.5 85.9 77.8 83.6

Brain image + Cognition 84.7 84.6 84.8 73.3 91.8

Brain image + APOE 87.3 84.1 89.2 82.2 90.4

ALL 89.8 88.4 90.7 84.4 93.2

Figure 1.   The area under the curve (AUC) of the final model and the brain image-alone model. The area under 
the receiver operating characteristic curve (AUC) of the final model (a) was 0.888 (95% CI 0.854–0.973), and of 
brain image-alone model (b) was 0.830 (95% CI 0.825–0.958).
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Model performance
Our model yielded the best accuracy (i.e. 89.8%) when it included non-AD cases, whereas the model based only 
on the AD continuum achieved slightly lower accuracy (i.e. 88.4%). It can be interpreted that the heterogeneity 
of clinical features among non-AD participants was informative in refining the accuracy of the final model.

While numerous machine learning models based on brain images have been developed, most of them have 
focused on the clinically determined AD continuum20,24–27, and predicted the clinical diagnoses of AD instead 
of imaging/pathology-based Aβ deposition18,28.

As patients visiting physicians’ offices would have various neurocognitive disorders beyond the AD 
continuum18,26,27, our model, which was based on diverse clinical populations may be better suited for application 
in clinical settings. Even our model, based only on structural brain images which yielded an 84.7% accuracy, 
may assist clinicians’ deciding and screening of potential candidates for AD-related clinical trials. These results 

Table 3.   Model performance using brain image, cognition, and APOE data for input features (by diagnosis 
set). *1Accuracy = (TP + TN)/(TP + TN + FN + FP). *2Specificity = TN/(FP + TN). *3Sensitivity = TP/(TP + FN). 
*4Positive predictive value = TP/(TP + FP). *5Negative predictive value = TN/(FN + TN). The “ALL” model uses 
data from HC and patients with AD, MCI, FTLD, CBS, PSP, or other psychiatric disorders. AD Alzheimer’s 
disease, CBS Corticobasal syndrome, FN False negative, FP False positive, FTLD Frontotemporal lobar 
degeneration, HC Healthy controls, MCI Mild cognitive impairment, PSP Progressive supranuclear palsy, 
Psychiatric Psychiatric disorders, TN True negative, TP True positive.

Diagnosis

Accuracy*1 Sensitivity*2 Specificity*3 Positive predictive value*4 Negative predictive value*5

% % % % %

HC 92.9 40.0 100.0 100.0 92.5

AD 95.8 95.2 100.0 100.0 75.0

HC + AD 93.9 84.6 100.0 100.0 90.9

MCI 75.9 81.3 69.2 76.5 75.0

HC + MCI 85.9 71.4 92.0 78.9 88.5

HC + MCI + AD 88.4 83.3 92.5 89.7 87.5

FTLD 100.0 100.0 100.0 100.0 100.0

CBS 100.0 100.0 100.0 100.0 100.0

PSP 100.0 N/A 100.0 N/A 100.0

Psychiatric 100.0 N/A 100.0 N/A 100.0

ALL 89.8 88.4 90.7 84.4 93.2

Table 4.   Relation between each independent component and clinical data. A group comparison analysis of 
variance (ANOVA) was conducted, and *p < 0.05 after Bonferroni correction. ADAS-cog-J The Japanese version 
of Alzheimer’s Disease Assessment Scale-Cognitive subscale, Aβ amyloid-β, CDR Clinical Dementia Rating 
FAQ Functional Activity Questionnaire, JART​ Japanese Adult Reading Test, LM I Logical Memory immediate 
recall, LM II Logical Memory delayed recall, MMSE Mini-Mental State Examination, TMT-J The Japanese 
version of Trail Making Test, WF Word Fluency.

IC_1 IC_2 IC_3 IC_4 IC_5 IC_6 IC_7

r p-val r p-val r p-val r p-val r p-val r p-val r p-val

Gender  − 0.036 0.349  − 0.145 0.059  − 0.092 0.160  − 0.019 0.419 0.597 0.000* 0.140 0.066  − 0.300 0.000*

Age  − 0.271 0.002*  − 0.032 0.364  − 0.216 0.009*  − 0.556 0.000* 0.117 0.104 0.244 0.004* 0.194 0.018

Education 0.043 0.321 0.012 0.451  − 0.105 0.128 0.262 0.002* 0.243 0.004* 0.003 0.488  − 0.123 0.092

MMSE 0.498 0.000*  − 0.046 0.312  − 0.186 0.022* 0.120 0.099 0.196 0.017* 0.070 0.226  − 0.354 0.000*

CDR_Global  − 0.371 0.000*  − 0.149 0.054* 0.194 0.017*  − 0.206 0.013*  − 0.140 0.066  − 0.114 0.110 0.315 0.000*

CDR_Sum  − 0.397 0.000*  − 0.102 0.136 0.134 0.074  − 0.168 0.034*  − 0.151 0.051*  − 0.192 0.019* 0.335 0.000*

FAQ  − 0.326 0.000*  − 0.070 0.227 0.166 0.036*  − 0.166 0.036*  − 0.140 0.066  − 0.224 0.007* 0.330 0.000*

LM_I 0.447 0.000* 0.042 0.328  − 0.141 0.064 0.198 0.016* 0.096 0.150 0.083 0.185  − 0.271 0.001*

LM_II 0.461 0.000* 0.063 0.248  − 0.088 0.171 0.221 0.008* 0.046 0.312 0.106 0.126  − 0.246 0.004*

ADAS-cog-J  − 0.461 0.000* 0.007 0.469 0.107 0.124  − 0.168 0.035*  − 0.114 0.110  − 0.165 0.037* 0.487 0.000*

WF_Category 0.374 0.000* 0.083 0.187  − 0.146 0.058 0.232 0.006* 0.122 0.095 0.142 0.063  − 0.325 0.000*

WF_Initial 0.242 0.004* 0.021 0.412  − 0.122 0.094 0.219 0.009* 0.089 0.169 0.173 0.031*  − 0.254 0.003*

TMT-J_A  − 0.329 0.000*  − 0.109 0.120 0.189 0.020*  − 0.060 0.260  − 0.098 0.145  − 0.011 0.451 0.240 0.004*

TMT-J_B  − 0.419 0.000*  − 0.034 0.356 0.218 0.009*  − 0.122 0.094  − 0.144 0.060  − 0.047 0.308 0.325 0.000*

JART​ 0.261 0.002* 0.005 0.477  − 0.244 0.004* 0.102 0.137 0.278 0.001*  − 0.111 0.115  − 0.239 0.005*

Aβ-positivity  − 0.516 0.000*  − 0.037 0.347 0.224 0.007*  − 0.088 0.172  − 0.090 0.167 0.097 0.148 0.065 0.241
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may be due to the advantages of SBM, namely its ability to detect subtle morphological changes and unknown 
patterns in brain structures associated with neurodegenerative diseases without relying on existing atlases30,35. 
These strengths could be exploited in a patient population with diversified diseases, as in this study.

Our model achieved a predictive accuracy of 75.9% for Aβ-positivity in individuals with MCI. Notably, it 
surpassed the accuracy of the physicians’ clinical diagnosis of AD, which is approximately 70%3. Furthermore, 
our model demonstrated predictive accuracy comparable to previous studies that aimed to predict Aβ-positivity26 
or future AD diagnosis in MCI patients using structural MRI20.

While no definitive treatment is currently available to slow the progression of AD54, new drugs aimed at 
disease-modifying therapies are being approved in some countries55. In the context of the growing availability 
of disease-modifying drugs for AD, accurate and early diagnosis will become a higher priority55. Although Aβ 
deposition is one of the earliest detectable pathological changes in AD2,6,8,19, its detection by PET or CSF test 
may be hampered by the need for specialized facilities, length of time required, or some degree of invasiveness 
or risk14–16. Since MRI is safe and applicable to a wide population, an MRI-based Aβ prediction model based on 
a heterogeneous population may be valuable for clinicians.

Feature importance
SHAP analyses indicated that IC 1, LM I, and LM II were important predictive features. These three leading 
features showed two or more strong impacts compared to the others.

IC 1, the most important feature in our model, was significantly correlated with Aβ-positivity (r = 0.516) 
and most of the cognitive measures included in the analyses, as shown in Table 4. Furthermore, the spatial 
pattern of the loading coefficients from IC 1 roughly followed the “cortical pattern” of neurodegeneration in 
AD that is characterized by cortical atrophy, particularly in the parietal lobe56 as depicted in Fig. 1. The parietal 
lobe, including the precuneus, is known to contribute to episodic memory57–59 which is likely to be impaired in 
AD60,61, and is possibly associated with Aβ pathology62,63. In our study, however, another “typical AD” pattern56, 
medial temporal lobe (MTL) atrophy64, was not observed in any IC. One possibility is that MTL atrophy does not 
necessarily indicate Aβ pathology, but may be a signal for tau pathology, such as primary age-related tauopathy65 
or coexistent transactive response DNA-binding protein 43 pathology66. These clinicopathological relationships 
may explain why IC 1 was of greater importance in the prediction and represented the AD-related GM volume 
pattern.

The importance of Logical Memory scores indicated that memory impairment, a typical cardinal symptom 
of AD67, will also be essential for prediction.

APOE-ε4, a widely-accepted AD risk factor68, was also indicated as an important feature, as both “APOE x/
ε4” (i.e., ε2/ε4, ε3/ε4, ε4/ε4) and “APOE ε4_number” (i.e., pairwise or not) showed large SHAP values.

Interestingly, all ICs showed greater importance than demographic and cognitive features, including scores on 
the MMSE, an assessment scale suitable primarily for screening for dementia. Among the ICs, IC 4 was uniquely 
extracted as a normal aging GM volume pattern (Additional Fig. 3) and lacked any significant association 

Figure 2.   The gray matter volume pattern of independent component 1 in a three-dimensional brain map 
derived from source-based morphometry. A three-dimensional brain map of independent component 1. The 
color bar indicates the z-score. The z-score is calculated as (value—mean) / standard deviation, and regions 
with z-scores greater than or equal to 1 are color-coded. The 3D image was generated using BrainNet Viewer 1.7 
(https://​www.​nitrc.​org/​proje​cts/​bnv).

https://www.nitrc.org/projects/bnv
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with cognitive measures or Aβ-positivity (Table 4). The separate associations between IC 1 and Aβ-positivity 
and between IC 4 and age might indicate that our model discriminates AD-related neurodegeneration from 
normal aging in brain imaging. These results imply that the pathological process of AD is not necessarily age 
dependent. In other words, brain atrophy patterns in normal aging processes can be distinguished from those 
in neurodegenerative diseases51, even though the deposition of Aβ plaques is likely to increase with age, and 
several age-related pathologies may be comorbid with AD69,70.

Overall, the SHAP analyses imply that SBM-derived GM volume patterns and Logical Memory results might 
be important for predicting Aβ-positivity across diverse neurocognitive disorders.

Limitation
This study has some limitations. First, Aβ-positivity was determined only by amyloid-PET scan, whereas CSF 
Aβ would be a more sensitive marker, particularly in the pre-clinical status9. Second, the number of samples in 
machine learning is expected to affect accuracy71, however, our study had a limited number of samples. Therefore, 
future studies will require larger sample sizes and independent test datasets72. Third, longitudinal follow-up data 
might improve model performance, rather than a cross-sectional approach73.

Conclusions
Our model achieved 89.8% accuracy to predict Aβ-positivity across a diverse range of neurological and psychiatric 
disorders. Notably, the SBM revealed a GM volume pattern that had the strongest impact on prediction. Even 
when using structural brain images alone, the accuracy still reached 84.7%. This MRI-based data-driven machine 
learning approach may aid clinicians in patient management and early decision-making processes.

Data availability
The data and code supporting the conclusions of this article are available from the corresponding author or J.H 
(hjinichi@keio.jp), upon reasonable request.

Figure 3.   Mean SHAP value in fivefold cross-validation. The horizontal and vertical axes represent the mean 
SHAP value in fivefold cross-validation and features, respectively. (a) Shows the relationship between each 
feature and the absolute value of SHAP in the analysis. A large absolute SHAP value indicates a significant 
influence on the prediction. (b) Shows the SHAP values for each participant. This plot summarizes how the 
top features in the dataset affect the output of the model in the form of information density. The x position of 
the dots is based on the SHAP value of the feature, and the dots are stacked along each feature row to indicate 
density. Positive and negative SHAP values were associated with Aβ-positivity and Aβ-negativity, respectively. 
The red dots indicate high values for each feature, while the blue dots indicate low values for each feature. If the 
red dots are in the positive SHAP, then the higher the feature value, the more it contributes to the Aβ-positivity. 
Likewise, if blue dots are in the positive SHAP, the lower the feature value, the more it contributes to the 
Aβ-positivity. For example, lower scores on immediate and delayed recall of Logical Memory (i.e., LM I and 
LM II) were associated with Aβ-positivity. IC independent component, JART​ Japanese Adult Reading Test LM 
Logical Memory, SHAP SHapley Additive Explanations, TMT-J The Japanese version of Trail Making Test, WF 
Word Fluency.
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