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Applications of nature‑inspired 
metaheuristic algorithms 
for tackling optimization problems 
across disciplines
Elvis Han Cui 1*, Zizhao Zhang 1,2, Culsome Junwen Chen 3 & Weng Kee Wong 1,4*

Nature-inspired metaheuristic algorithms are important components of artificial intelligence, and are 
increasingly used across disciplines to tackle various types of challenging optimization problems. This 
paper demonstrates the usefulness of such algorithms for solving a variety of challenging optimization 
problems in statistics using a nature-inspired metaheuristic algorithm called competitive swarm 
optimizer with mutated agents (CSO-MA). This algorithm was proposed by one of the authors and 
its superior performance relative to many of its competitors had been demonstrated in earlier work 
and again in this paper. The main goal of this paper is to show a typical nature-inspired metaheuristic 
algorithmi, like CSO-MA, is efficient for tackling many different types of optimization problems in 
statistics. Our applications are new and include finding maximum likelihood estimates of parameters 
in a single cell generalized trend model to study pseudotime in bioinformatics, estimating parameters 
in the commonly used Rasch model in education research, finding M-estimates for a Cox regression 
in a Markov renewal model, performing matrix completion tasks to impute missing data for a two 
compartment model, and selecting variables optimally in an ecology problem in China. To further 
demonstrate the flexibility of metaheuristics, we also find an optimal design for a car refueling 
experiment in the auto industry using a logistic model with multiple interacting factors. In addition, 
we show that metaheuristics can sometimes outperform optimization algorithms commonly used in 
statistics.

A reason behind the very successful and ubiquitous applications of AI and machine learning is the rapid develop-
ment of clever and more effective metahheuristic algorithms for optimization purposes1–5. One such class is the 
class of nature-inspired metaheuristic algorithms that include genetic algorithm (GA), differential evolution (DE) 
and particle swarm optimization (PSO), among many others. Each of these algorithms has been widely tested 
for optimizing different types of complex objective functions successfully across disciplines. The more popular 
and exemplary ones have many variants, which are modified versions or improvements of the original version. 
For example, the variant may converge faster, make the original algorithm less prone to premature convergence, 
or has greater chance of extricating itself from a local optimum. Ease of availability of codes in R, Matlab and 
Python to run metaheuristics greatly facilitate its use and popularity in practice. For example, the website https://​
pyswa​rms.​readt​hedocs.​io/​en/​latest/ houses a comprehensive set of PSO tools written in Python6. More recently,7 
provided a high-level Python package for selecting machine learning algorithms and their parameters using 
PSO. Hybridized algorithms that creatively combine suitable algorithms, metaheuristic or not, can also markedly 
increase the performance of a metaheuristic algorithm; see details and applications in8–10.

There are many applications of nature-inspired metaheuristic algorithm across disciplines. For example, PSO, 
being an exemplary nature-inspired algorithm, is widely used to tackle problems due to COVID-1911–14. There 
are many monographs on nature-inspired metaheuristic algorithms at various levels, see, for example,15–18. Some 
are targeted to specific disciplines; for example, applications in building energy power and storage systems4, 
agriculture19, chemical engineering20, or for feature selection21 with numerous applications in finance and rein-
force learning, to name a few. Overview papers on metaheuristics are plentiful; see for example22–24. A most 
recent paper that gives a comprehensive overview on metaheuristics is25.
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The motivation of our work comes from our observation that nature-inspired metaheuristic algorithms s 
are very under-utilized in research in the statistical and life sciences. The aim of this paper is to demonstrate 
the usefulness of such algorithms to optimize very different types of optimization problems in the statistical 
and life sciences. As an example, we consider a recently proposed metaheuristic algorithm called competitive 
swarm optimizer with mutating agents (CSO-MA) by one of the coauthors26 and demonstrate its utility to solve 
different types of optimization problems in bioinformatics psychology, ecology, biostatistics and also in the 
manufacturing industry.

Nature‑inspired metaheuristic algorithms
Nature-inspired metaheuristic algorithms have emerged as a dominant component in the field of optimization27,28. 
These algorithms have gained significant popularity in solving real, high-dimensional, and complex optimiza-
tion problems. They have found widespread application in engineering, computer science, and various other 
disciplines to address challenging optimization problems22,29. Despite their versatility, these algorithms are under-
utilized in some disciplines. One of their key strengths is the availability of widely accessible free codes for users 
to implement. In addition, they are fast, assumptions-free, and serve as general-purpose optimization algorithms. 
While they do not guarantee the discovery of an optimal solution, they often yield optimal or near-optimal solu-
tions in a timely manner. Recent studies have demonstrated the ability of swarm-based algorithms to effectively 
search for previously elusive optimal designs that require solving a 3-layer optimization problem30. In the next 
subsection, we briefly discuss competitive swarm optimization (CSO) and one of its variants.

Competitive swarm optimizer
Competitive swarm optimizer (CSO) swarm-based algorithm proposed by31 and has proven its effectiveness 
for solving different types of optimization problems with various dimensions . For example32, applied CSO to 
select variables for high-dimensional classification models, and33 used CSO to study a power system economic 
dispatch, which is typically a complex nonlinear multivariable strongly coupled optimization problem with 
equality and inequality constraints.

CSO minimizes a given continuous function f (x) over a user-specified compact space � by first randomly 
generating a set of candidate solutions. They take the form of a swarm of n particles at positions x1, · · · , xn , 
along with their corresponding random velocities v1, · · · , vn . For tackling design problems, each particle is a 
candidate design and upon convergence, the solution is the optimal design.

After the initial swarm is generated, at each iteration we randomly divide the swarm into 
⌊
n
2

⌋
 pairs and com-

pare their objective function values. At iteration t, we identify xti  as the winner and xtj  as the loser if f (xti ) < f (xtj ) . 
The winner retains the status quo and the loser learns from the winner. The two defining equations for CSO are

where R1, R2, R3 are all random vectors whose elements are drawn from U(0, 1). The operation ⊗ represents 
element-wise multiplication and the vector x̄t is the swarm center at iteration t. The social factor φ controls the 
influence of the neighboring particles to the loser and a large value is helpful for enhancing swarm diversity 
(but possibly impacts convergence rate). This process iterates until a pre-specified stopping criterion or criteria 
are met.

Simulation results have repeatedly shown that CSO either outperforms or is competitive with several state-
of-the-art evolutionary and swarm based algorithms, including several enhanced versions of PSO. This conclu-
sion was arrived at after comparing CSO performance with state-of-the-art EAs using a variety of benchmark 
functions with dimensions up to 5000 and found that CSO was frequently the fastest and with the best quality 
results31,34–36.

Competitive swarm optimizer with mutated agents
Zhang et al. (2017)37 proposed an improvement on CSO and call the enhanced version, competitive swarm 
optimizer with mutated agents (CSO-MA). After pairing up the swarm in groups of two at each iteration, the 
variant randomly chooses a loser particle p as an agent, randomly picks a variable indexed as q and then ran-
domly changes the value of xpq to either xmaxq or xminq , where xmaxq and xminq represent, respectively, the 
upper bound and lower bound of the q-th variable. If the current optimal value is already close to the global 
optimum, this change will not hurt since we implement this experiment on a loser particle, which is not leading 
the movement for the whole swarm; otherwise, this chosen agent restarts a journey from the boundary and has 
a chance to escape from a local optimum. Figure 1 shows the flowchart of CSO-MA. The mutation step (the box 
in purple) is a key feature of CSO-MA that differentiates it from the standard CSO. The mutation is intended 
to increase the diversity of the solutions and prevent premature convergence to a local optimum by allowing 
particles to explore more distant regions of the search space, see37 for details.

Let n be the swarm size and let D be the dimension of the problem. The computational complexity of CSO 
is O(nD) and since our modification only adds one coordinate mutation operation to each particle, its compu-
tational complexity is the same as that of CSO. The improved performance of CSO-MA over CSO for finding 
optimal designs for many complex multi-dimensional benchmark functions has been validated26. In the next 
section, we apply CSO-MA to different estimation problems and show it can produce better quality solutions 
than conventional methods.

(1)vt+1
j = R1 ⊗ vtj + R2 ⊗ (xti − xtj )+ φR3 ⊗ (x̄t − xtj )

(2)and xt+1
j = xtj + vt+1

j ,
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All computations were performed on a MacBook Pro (16-inch, 2021) with an Apple M1 Max chip and 64GB 
of memory. The operating system was macOS Sonoma version 14.1.1 and the programming languages were 
Matlab 2023a and Python 3.9.13. Throughout, the hyper-parameter of CSO-MA was set to φ = 0.3 and the rest 
of its parameters and those for CSO and PSO are all set to default values. The codes for all the computations are 
available from the first author by request.

In response to a referee’s comment, we show further that CSO-MA is competitive with recently proposed 
metaheuristic algorithms. As noted in38, there is a continuing plethora of new or slightly modified proposed as 
nature-inspired metaheuristics and it is desirable to limit the number of them, unless they are competitive. To 
this end, we further compare performance of CSO-MA with PSO and CSO using 3 more randomly selected CEC 
static benchmark functions not used for comparison in26 and described in39. These additional three functions 
have different mathematical and geometric properties: function f9 is the Weierstrass function (separable), f10 is 
the Quartic function and f11 is the Ackley function (non-separable). All three functions have a global minimum 
of 0, and their optimum were attained at 0 for f9 and f11 , and f10 achieved its optimum at 1 . We also tested the 
3 algorithms for their ability to optimize a sphere function f12 , which is a 2022 CEC dynamic benchmark func-
tion. This function was selected at random from the list and is much harder to optimize because it came from a 
dynamic optimization problem40,41). The dimensions of the four functions selected for additional comparison 
were D = 100 and D = 500.

Table 1 displays the comparison results after 30 repeated runs. We observe from the table that CSO-MA found 
the smallest mean values of the optimum when compared with CSO or PSO for f9, f11, f12 , but not for f10 . To test 
whether there is a significant difference in the medians of the optimal values found by CSO and PSO compared 
with that from CSO-MA, we applied a Wilcoxon’s non-parametric test. Table 2 reports their p-values and suggest 

Figure 1.   Flowchart of CSO-MA.

Table 1.   Performances of the three algorithms for minimizing 3 CEC2008 benchmark static functions 
( f9, f10, f11 ) and 1 CEC2020 benchmark dynamic function with multiple optima ( f12). Significant values are in 
bold.

D = 100 (5 for f12) D = 500 (10 for f12)

f9 f10 f11 f12 f9 f10 f11 f12

CSO-MA

 Mean 1.21E+01 8.08E−01 1.48E−09 4.31E+02 7.88E+02 4.44E+01 1.56E+01 5.56E+02

 SD 0.97E+01 1.09E−01 4.01E−09 4.09E+01 4.04E+01 2.67E+01 5.31E−02 4.52E+01

CSO

 Mean 1.81E+01 8.76E−01 4.98E−08 4.39E+02 8.04E+02 5.08E+02 2.64E+01 6.00E+02

 SD 1.91E+01 4.21E−01 1.05E−07 5.03E+01 2.27E+01 5.07E+01 6.43E−02 7.42E+01

PSO

 Mean 5.62E+02 7.53E−02 2.45E−02 5.06E+02 7.97E+02 7.23E+01 1.67E+01 5.81E+02

 SD 7.55E+01 1.23E−01 9.19E−02 4.55E+01 2.89E+01 1.05E+01 5.05E−01 3.39E+01

Table 2.   The p values of the Wilcoxon’s tests for comparing differences in the medians of the optimized values 
found from the three algorithms for functions in Table 1. They show CSO-MA outperforms 2 PSO and CSO in 
2 of the 3 2008CEC benchmark static functions and the 1 2022CEC benchmark dynamic function algorithms.

D = 100 (5 for f12) D = 500 (10 for f12)

f9 f10 f11 f12 f9 f10 f11 f12

CSO-MA versus CSO 0.131 0.391 0.014 0.501 0.063 0.000 0.000 0.007

CSO-MA versus PSO 0.000 0.000 0.000 0.000 0.325 0.000 0.000 0.018
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that CSO-MA tends to perform more similarly with CSO than PSO in low dimensional optimization problems 
and that CSO-MA outperforms PSO significantly for the two dimensions tested.

Estimation problems
Metaheuristics has been used to find estimates for model parameters and there is work that showed they can out-
perform those from statistical packages or find them when the latter fail to do so. For example42, showed that PSO 
can find more optimal L1-estimates for some models than those in statistical packages. In what is to follow, we 
demonstrate the CSO-MA can find more optimal maximum likelihood estimates and also able to find them when 
some statistical packages cannot. Our applications include finding maximum likelihood estimates for models 
in bioinformatics and research in education, and M-estimates for a Cox regression in a Markov renewal model.

Single‑cell generalized trend model (scGTM)
Cui et al. (2022)43 proposed a model called scGTM to study relationship between pseudotime44 and gene expres-
sion data. The model assumes that the gene expression has a ‘hill’ trend along the pseudotime and can be 
modeled using a set of interpretable parameters. Below is a brief description of the model and shows CSO-MA 
outperforms PSO algorithm for all but one gene in terms of finding the optimal value of the negative loglikeli-
hood function; details in43.

For a hill-shaped gene, the scGTM parameters are � = (µmag, k1, k2, t0,φ,α,β)
T and they are estimated from 

from the observed expression counts y = (y1, . . . , yC)
T and cell pseudotimes t = (t1, . . . , tC)

T using the con-
strained maximum likelihood method. Here C is the number of cells and the interpretations of the parameters in 
the model are given in Section 2.1 of43. If log L(� | y, t) is the log likelihood function, the optimization problem is:

such that

where

and

which are all functions of � . There are two difficulties in the optimization problem (3). First, the likelihood func-
tion (5) is neither convex nor concave. Second, the constraint is linear in µmag , k1 , k2 , and t0 but φ is a positive 
integer-valued variable. Hence, conventional optimization algorithms, like P-IRLS in GAM45,46 and L-BFGS in 
switchDE47 are unlikely able to work well. The authors proposed PSO to solve for the constrained MLEs and a 
Python package is available online. We now apply CSO-MA to the same problem and compare results from the 
Python package. In addition, we compared CSO-MA’s performance with results from two recently proposed 
metaheuristic algorithms: the prairie dog optimization algorithm (PDO) proposed by48 and the Rutta and Kutta 
optimization (RUN) algorithm proposed by49. Table 3 displays the negative log likelihood function values found 
by CSO-MA and PSO for the 20 exemplary genes in50 after 1000 function evaluations of Eq. (5) for the two algo-
rithms and it shows that CSO-MA outperformed PSO and PDO in all but three of the 20 genes. The Wilcoxon 
test of CSO-MA against the other two algorithms produced p-values less than 0.001 (0.00077 for PSO and 0.00026 
for PDO), suggesting that CSO-MA indeed outperformed PSO and PDO in this example.

Figure 2 displays the fitted PAEP gene given by CSO-MA, PSO and PDO. We observe that CSO-MA captures 
the “fast decreasing trend” when t ≥ 0.8 better than PSO does, and it reaches the higher peak than PDO does. 
Figures for other genes also show a consistent pattern.

Parameter estimation for a Rasch model
The Rasch model is one of the most widely used item response models in education and psychology research51. 
Estimating the parameters in the Rasch and other item response models can be challenging and there is 

(3)max
�

log L(� | y, t)

(4)
min

c∈{1,...,C}
log(yc + 1) ≤ µmag ≤ max

c∈{1,...,C}
log(yc + 1) ,

k1, k2 ≥ 0 , min
c∈{1,...,C}

tc ≤ t0 ≤ max
c∈{1,...,C}

tc , φ ∈ Z+ ,

(5)

log L(� | y, t) = log

[
C∏

c=1

P(Yc = yc | tc)

]

=

C∑

c=1

log
[
(1− pc)f (yc|tc)+ pc I(yc = 0)

]

f (yc|tc) =
τ
yc
c

yc!

Ŵ(φ + yc)

Ŵ(φ)(φ + τc)
yc

1
(
1+ τc

φ

)φ ,

log(τc + 1) =

{
b+ µmag exp (−k1(tc − t0)

2) if tc ≤ t0
b+ µmag exp (−k2(tc − t0)

2) if tc > t0
,

log

(
pc

1− pc

)
= α log(τc + 1)+ β ,
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continuing interest to estimate them using different methods and studying the various computational issues. 
For example52,53, reported that there are at least 27 R packages indexed with the word “Rasch” and 11 packages 
capable of estimating parameters and analysis for the Rasch model.

The expectation-maximization (EM) algorithms is a common method for parameter estimation in 
statistics54–56. The Bock-Aitkin algorithm is a variant of the EM algorithm and is one of the most popular algo-
rithms for estimating parameters in the Rasch models57. Because the Rasch model also has many extensions with 
applications in agriculture, health care studies and in research in marketing58–60, this subsection compares, for 
the first time, how metaheuristic algorithms perform relative to the Bock-Aitkin’s method.

We give a brief review of the Rasch model before we compare the estimation results given by CSO-MA, 
Bock-Aitkin’s (in the R package ltm) and two other metaheuristic algorithms CA and PSO in terms of the likeli-
hood values. In a Rasch model, we work with N × I binary item response data where 1 indicates correct and 0 
indicates incorrect responses. The data come from a cognitive assessment (e.g., math or reading) that includes 
I test items. A group of N students gave their responses to the I items, and their binary answers to each of the N 
items were scored and analyzed51. The Rasch model is given by:

The item parameter βi represents the difficulty of item i and parameter θj represents the ability of person j. We 
assume that θj ∼ N(0, σ 2) . This model is called the one-parameter model because it considers one type of item 
characteristic (difficulty). Let pji = P

(
Yji = 1|θj

)
 and write the marginal likelihood function for model (6) as

(6)logit
(
P
(
Yji = 1|θj

))
= θj − βi , θj ∼ N(0, σ 2).

Table 3.   Optimized negative log likelihood (NLL) values (multiplied by 105 ) obtained by CSO-MA, PSO and 
PDO after 1000 function evaluations. Lowest NLL values among the three algorithms are in bold for each gene 
and overall results suggest that CSO-MA outperforms PSO and PDO in almost all cases.. Significant values are 
in bold.

Gene CSO-MA PSO PDO Gene CSO-MA PSO PDO

PLAU 1.1115 1.1291 1.1177 MMP7 1.6562 1.6573 1.6963

THBS1 1.7491 1.7498 1.7569 CADM1 0.9903 0.9907 1.0316

NPAS3 0.4519 0.4598 0.4885 ATP1A1 1.0570 1.0571 1.1407

ANK3 1.0473 1.0501 1.1171 ALPL 0.6232 0.6235 0.6315

TRAK1 0.7759 0.7758 0.7785 SCGB1D2 2.0608 2.0501 2.0952

MT1F 0.7851 0.7907 0.8637 MT1X 0.8060 0.8065 0.9026

MT1E 0.6580 0.6597 0.6735 MT1G 1.1025 1.1414 1.1290

CXCL14 0.7939 0.8512 0.7244 MAOA 0.8094 0.8820 0.8161

DPP4 0.5503 0.5535 .5528 NUPR1 0.7307 0.7854 0.7739

GPX3 1.7413 1.7881 1.7904 PAEP 2.1034 2.3693 2.2036

Figure 2.   Comparison of CSO-MA, PDO and PSO results for the fitted scGTM with gene PAEP.
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where � =
(
β1, · · · ,βI , σ

2
)T and π(θ) is the prior of θ.

Metaheuristics has been shown that it can provide superior performance over statistical methods. For 
instance61, tackled the challenge of deriving the maximum likelihood estimates for parameters in a mixture 
of two Weibull distributions with complete and multiple censored data. Their simulation outcomes indicated 
that the Particle Swarm Optimization (PSO) frequently outperformed the quasi-Newton method and the EM 
algorithm in terms of bias and root mean square errors.

In this study, we present similar results and show that the nature-inspired metaheuristic algorithm Mutation 
Algorithm (CSO-MA) can also give more precise maximum likelihood estimates compared to three of its com-
petitors: PSO, the Bock-Aitkin’s method, and the Cat Swarm Algorithm (CA). PSO is legendary and an exemplary 
nature-inspired swarm based algorithm and CA was introduced by62, and its effectiveness as an optimizer for a 
single objective function was demonstrated in63, where they showed its superior competitive edge against several 
contemporary top-performing algorithms.

We employed the “Verbal Aggression” data set the R Archive64 and let NLL denote the minimized value of 
the negative log-likelihood function. Table 4 displays the NLLs from the 4 algorithms, where a swarm size of 
30 was used for the 3 metaheuristic algorithms. The hyper-parameter for CSO-MA, was set to φ = 0.3 , and the 
hyper-parameters for PSO and CA were set to the default values in the R package metaheuristicOpt65. Evidently, 
CSO-MA has the smallest NLL value and is the winner. The estimated NNL values from CSO-MA, PSO, and 
Bock-Aitkin are similar, but that from CA is not, suggesting that CA appears less reliable since its estimated 
NLLs (gold points and lines on the left panel do not come close to the others.

Figure 3 presents a two-panel visualization. The upper panel illustrates the estimated parameters derived 
from the four algorithms: CSO-MA, Bock-Aitkin, PSO, and CA. Here, the x-axis represents all 24 parameters 
(encompassing 23 items in addition to the variance parameter) in the model, while the y-axis depicts their esti-
mated values. The lower panel delineates the progression trajectories of the negative log-likelihood functions 
of the four algorithms, spanning about 100 function evaluations. The left panel shows that except for the CA 
algorithm, Bock-Aitkin, PSO and CSO-MA give similar parameter estimates; the right panel shows that Bock-
Aitkin converges fastest in terms of number of function evaluations while PSO is the slowest. However, CSO-MA 
has the smallest negative log-likelihood value, or equivalently, the largest log-likelihood value.

M‑estimation for Cox regression in a Markov renewal model
In this subsection, we show CSO-MA can solve estimating equations and produce M-estimates for model param-
eters, that are sometimes more efficient than those from statistical packages. Askin et al. (2017)66 correctly noted 
that metaheuristics is rarely used to solve estimating equations in the statistical community.

(7)L(�) =

N∏

j=1

∫ I∏

i=1

p
Yji
ji (1− pji)

1−Yjiπ(θ)dθ ,

Table 4.   Negative log likelihood values from the four algorithms with CSO-MA outperforming the other 
three algorithms..

Algorithm CSO-MA Bock-Aitkin PSO CA

NLL 4038.77 4072.93 4041.23 4780.49

Figure 3.   The left panel shows estimated parameters from the four algorithms: CSO-MA, Bock-Aitkin, PSO 
and CA. The x-axis refers to all 24 parameters (23 items plus the variance parameter) in the model and the y-axis 
refers to the estimated parameter values. The right panel shows the trajectories of the negative log likelihood 
functions of the four algorithms as they evaluate the negative log-likelihood functions about 100 times..
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In a survival study, the experience of a patient may be modelled as a process with finite states67 and model-
ling is based on transition probabilities among different states. We take bone marrow transplantation (BMT) as 
an example. BMT is a primary treatment for leukemia but has major complications, notably Graft-Versus-Host 
Disease (GVHD), where transplanted marrow’s immune cells react against the recipient’s cells in two forms: Acute 
(AGVHD) and Chronic (CGVHD). The main treatment failure is death in remission, often seen in patients with 
AGVHD or both GVHD types, occurring unpredictably before relapse. The term “death in remission” in the 
context of leukemia refers to the death of a patient who is in remission from leukemia. This means the patient 
has achieved remission, where there are no detectable leukemia cells in the body, but they died from other causes 
that are not directly related to the active progression of leukemia. However, both AGVHD and CGVHD reduce 
leukemia relapse risks. Hence, there’s a five-state model: transplant (TX), AGVHD, and CGVHD are temporary 
states, while relapse and death in remission are absorbing states68. Figure 4 shows the possible transitions among 
different states (i.e., TX, AGVHD, CGVHD, Relapse and Death).

To model such a process in a mathematically rigorous way, we assume observations on each indi-
vidual form a Markov renewal process with a finite state, say {1, 2, · · · , r}69. That is, we observe a process 
(X,T) = {(Xn,Tn) : n ≥ 0} where (for simplicity, we do not consider censoring in this subsection), and 
0 = T0 < T1 < T2 < · · · are calendar times of entrances into the states X0,X1, · · · ,Xn ∈ {1, 2, · · · , r} . In the BMT 
example, r = 5 and Xn takes values in {TX, AGVHD, CGVHD, Relapse, Death in Remission} and Wi = Tn − Tn−1 
represents the sojourn time staying in the state Xn . We also observe a covariate matrix Z = {Zij : i, j = 1, 2, · · · , r} 
where each Zij itself is a vector. In practice, we assume that the sojourn time Wn given Xn−1 = i and Z has survival 
probability70

and the transition probability is ( i  = j)

where β is the parameter of interest, A0,ik(x) =
∫ x
0 α0,ik(s)ds is the baseline cumulative hazard from state i to 

state k and α0,ik(x) is the hazard function from state i to state k71. Suppose we observe M iid individuals and 
suppose the risk process for an individual is given by Yi(x) =

∑
n≥1 I(Wn ≥ x,Xn−1 = i) . For a fixed x, Yi(x) 

counts the number of visits to state i with sojourn time more than x for a particular individual. In the five-state 
model in Figure 4, since we cannot revisit the states that we have already exited, Yi(x) is a binary variable. Then 
from68,72,73, the estimating equation for β is

Here Nijm(x) =
∑

n≥1 I(Tn ≤ x,Xn = j,Xn−1 = i) , S(0)ij (x,β) = 1
M

∑M
m=1 Yim(x)e

βTZijm and S(1)ij (x,β) is the 
first partial derivative of S(0)ij  with respect to β . The M-estimates of β are obtained by solving U(β) = 0 . To apply 
CSO-MA to obtain the estimates, we turn the problem of solving U(β) = 0 into a minimization problem as 
follows:

P(Wn > x|Xn−1 = i,Z) = exp



−

r�

k=1,k �=i

A0,ik(x)e
βTZik





P(Xn = j|Xn−1 = i,Wn) =
α0,ij(Wn)e

βTZij

∑
k �=i α0,ik(Wn)eβ

TZik
,

(8)U(β) =

M∑

m=1

r∑

i �=j

∫ ∞

0

[
Zijm −

S
(1)
ij (x,β)

S
(0)
ij (x,β)

]
dNijm(x).

Figure 4.   A five-state Markov renewal model for BMT failure. Reproduced from68. TX = Transplant, AGVHD 
= Acute Graft-Versus-Host Disease, CGVHD = Chronic Graft-Versus-Host Disease, Relapse = Relapse of 
leukemia, Death in Remission = Death of a patient who is in remission from leukemia.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9403  | https://doi.org/10.1038/s41598-024-56670-6

www.nature.com/scientificreports/

where p ∈ [1,∞] is a user-selected constant. If the solution exists for U(β) = 0 , then we have min �U(β)�p = 0 
for any p ≥ 1 . Using metaheuristics to creatively solve the system of nonlinear equations74,75, results from our 
simulation study suggest that the choice of p does not affect the convergence speed of CSO-MA nor the estimated 
parameters.

For simulation, we set p = 2 and assume r = 3 , A0,ij(x) = 0.5x for all i  = j , the true parameter vector 
β = (0.901, 0.759, 0.348)T and elements of the covariance matrix Z are random uniform variates from [−1, 1] . 
In total, we generated M = 100 individuals and the left panel of Figure 5 shows one of the realizations. The 
swarm size for CSO-MA was 20 and we ran it for 100 function evaluations and the right panel of Figure 5 shows 
the convergence of CSO-MA. The estimated parameter is β̂ = (0.908, 0.753, 0.329)T , which is close to the true 
value. The observed vector of biases (0.007, 0.006, 0.017)T is likely due to both the optimization algorithm and 
the method of partial likelihood itself. The first issue can be reduced by trying using different initialized values 
of CSO-MA and the second issue may be solved by having a larger sample size so that consistency of the estima-
tors is guaranteed theoretically. For space consideration, we omit additional simulation results that support the 
effectiveness of CSO-MA for estimating the true parameters correctly.

To further investigate the scalability of CSO-MA and compare it with other algorithms, we perform another 
simulation study where the state space of Xi consists of two, i.e., {1, 2} and 2 is an absorbing state. Consequently, 
the Markov renewal model is equivalent to a two-state Markov model or a Cox proportional hazards model71, the 
sample size is M = 10, 000 and the β parameter has is the 100× 1 vector with all entries equal to 1. The elements 
of the covariance matrix Z are again generated uniformly from [−1, 1] to mimic the high-dimensional scenario 
in statistical applications76. The simulation is performed on the Matlab 2023a platform. Instead of minimizing the 
norm of U(β) , we minimize the negative partial log-likelihood (NLL) value68. We compare CSO-MA with PDO 
and Runge Kutta optimization (abbreviated as RUN, it is another recently proposed metaheuristics49) in terms 
of their optimum values, stability and running time. The results are given in Table 5. We run each algorithm 30 
times to get reasonable statistical results and the number of function evaluation is set to 1000, the swarm size 
for each algorithm is set to 30. The results suggest that RUN performs the best in terms of NLL and its stability; 
The CSO-MA has the best performance in terms of average elapsed time and PDO is the slowest among the 
three algorithms.

(9)β̂ = argmin
β

�U(β)�p

Figure 5.   Application of CSO-MA to find M-estimates for a Cox regression in a Markov renewal model. The 
left panel is one of the realizations of 100 individuals; the red dots represent the jump times and the transitions 
for the pair (Xn,Tn) . The right panel shows the convergence trajectory of CSO-MA.

Table 5.   Negative log likelihood values from the three algorithms with CSO-MA outperforming the other two 
recently proposed algorithms.

Algorithm CSO-MA PDO RUN

NLL 1868.51 (248.61) 1825.20 (2.79) 1636.39 (4.34)

Elapsed time 250.10s (10.16s) 472.09s (5.59s) 270.40s (2.41s)
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Matrix completion (missing data imputation) in a two‑compartment model
In real studies, such as clinical trials, missing or incomplete data is omnipresent. They occur in computer 
vision, clinical trials and genomics, just to name a few77. Missing data also appear a lot in a recommendation 
or recommender system, which is defined as a decision making strategy for users under complex information 
environments78; see79 for an overview of this emerging area of research to alleviate the problem on information 
load. The best strategy in dealing with missing data is to avoid having them in the first place. This would require 
constant monitoring of the data and filling in the missing data as soon as they are discovered. Despite the best 
efforts, missing data abounds and pose problems in data analysis. Matrix completion is the task of filling in the 
missing entries of a partially observed matrix that represents the data structure. In many instances, the task is 
equivalent to performing data imputation in statistics. The leads to matrix completion problems and they occur 
across disciplines. Ensembled models have also been built based on matrix completion for computational drug 
repurposing to fight the virus SARS-COV-280.

In this subsection, we apply CSO-MA to a missing data imputation problem in a non-linear Gaussian regres-
sion model using simulated data. Missing data is ubiquitous in all research fields. Imputation is one of the most 
common ways to fill in and analyze missing data81 and the Expected Maximization (EM) method54 is a popular 
choice for imputing multivariate normal data. We briefly describe the problem and the EM algorithm below.

Suppose that (Y1,Y2) ∈ R
2 has a bivariate normal distribution with mean µ(θ) = (µ1(x, θ),µ2(x, θ))

T and 

a known covariance matrix � =

(
σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
 where θ is a vector of parameters characterizing µ and x is 

(possibly) a vector of covariates. We observe n realizations yi = (yi1, yi2)
T , i = 1, 2, · · · , n and yij contains missing 

values for some i and j. Let Y(0) and Y(1) denote the observed and missing parts, respectively. On page 250-251 
in Little and Rubin (2019)81, at the (t + 1)th iteration, the E step of the algorithm calculates

and

for j, k = 1, 2, · · · ,K where

and

After the E-step, missing values are replaced by the conditional expectation derived above. Next, for the M-step, 
we maximize the following conditional log-likelihood with respect to θ using CSO-MA:

where y(t+1)
i = (y

(t+1)
i1 , y

(t+1)
i2 ) and C is a constant independent of θ . Section 8.6 in Wild and Seber (1989)82 (page 

414) illustrates a two-compartment model with (see also chapter 7 in83)

where x refers to time, (ǫi1, ǫi2)T are independently drawn from N2(0,�) , and the two means are

where

Suppose at some time point x, the operator failed to record either yi1, yi2 or both and we observe Y(0) and Y(1) (n 
observations in total). To make inference about θ , however, we still want to make use of the partially observed 
data. In this case, we apply the EM algorithm described above to maximize the conditional likelihood (10).

We analyze a real data set to illustrate this idea. The data set comes from Beauchamp and Corenell (1966)84, 
see also section 11.2 in Wild and Seber (1989)82. We randomly mask some of the values of the data in to be miss-
ing in Table 6 and denote them by NA.

E

(
∑

i=1

yij

∣∣∣Y(0), θ
(t)

)
=

n∑

i=1

y
(t+1)
ij

E

(
∑

i=1

yijyik

∣∣∣Y(0), θ
(t)

)
=

n∑

i=1

(
y
(t+1)
ij y

(t+1)
ik + c

(t+1)
jki

)

y
(t+1)
ij =

{
yij if yij ∈ Y(0)

E
(
yij

∣∣∣Y(0), θ
(t)
)

if yij ∈ Y(1)

c
(t+1)
jki =

{
0 if yij or yik is observed.

Cov
(
yij , yik

∣∣∣Y(0), θ
(t)
)

if yij , yik ∈ Y(1).

(10)E
(
l(θ |Y(0),Y(1))

∣∣∣Y(0), θ
(t)
)
= −

1

2

n∑

i=1

(
y
(t+1)
i − µ(xi , θ)

)T
�−1

(
y
(t+1)
i − µ(xi , θ)

)
+ C

yij = µj(xi , θ)+ ǫij , i = 1, 2, · · · , n, j = 1, 2,

µ1(x, θ) = θ1e
−θ2x + (1− θ1)e

−θ3x , µ2(x, θ) = 1− (θ1 + θ4)e
−θ2x + (θ1 + θ4 − 1)e−θ3x ,

θ4 =
(θ3 − θ2)θ1(1− θ1)

(θ3 − θ2)θ1 + θ2
.
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Using the complete observations, we estimated the covariance � to be 
(
0.075 − 0.06
−0.06 0.06

)
 and in the original 

paper, using full data, the authors’ estimated the parameters to be θ̂ = (0.060, 0.007, 0.093)T . For the EM algo-
rithm, we set the initial θ to be (0.381, 0.021, 0.197) and ran CSO-MA for 200 iterations with φ = 0.3 . The whole 
algorithm alternates between computing expression (10) and applying CSO-MA to maximize (10). We ran 10 
iterations in total and the imputed results are given in Table 7. We further perform a simulation study (not 
reported here) with sample size n = 80 and 40 missing values in total. The true parameter θ is (0.4, 0.05, 0.3)T 
and the initial value for the EM algorithm is (0.1, 0.1, 0.1)T . The algorithm terminates after 5 iterations, with the 
estimated parameter value θ̂ = (0.392, 0.056, 0.275)T . This shows that CSO-MA performs well in its role as an 
optimizer.

A variable selection problem in ecology
In addition to numerous applications of metaheuristics in engineering and computer science, metaheuristics has 
also found applications ranging from addressing substantiability issues85 to land use19 and agriculture58. See also86, 
who used metaheuristic algorithms to design placements of the groundwater wells in the Los Angeles Basin.

In this subsection, we apply CSO-MA to a penalized linear regression problem in ecology. Model selection is 
essential in much of ecology because ecological systems are often too large and slow-moving for our hypotheses 
to be tested through manipulative experiments at the relevant temporal and spatial scales87.

The data comes from a plateau lake in Yunnan, China, and was collected by a group of researchers at the 
Department of Environmental Engineering, Tsinghua University in 2019. They took water samples in March 
(Spring), June (Summer), September (Autumn) and December (Winter). At each time, 30 sites were sampled 
from different parts of the waterway. Due to weather issues at the plateau lake in June, data from 6 sites were 
not recorded. Therefore, the total number of samples is 114 ( = 30× 4− 6 records ). The outcome variable is 
CRAP and the goal is to determine if and how 17 key variables affect the outcome. Table 8 lists all the regression 
variables and for space consideration, we only display in the same table, the first two sets of measurements from 
the 114× 18 data matrix.

Cyanobacteria can form dense and sometimes produce algal toxins. In extreme cases, the cyanobacteria 
bloom, with high cyanobacterial density or high proportion of cyanobacteria in phytoplankton, can threaten 
the aquatic ecosystem, fisheries and safety of the water for human drinking. Over the years, the cyanobacterial 
blooms increase in frequency, magnitude and duration globally88. The cyanobacteiral bloom is influenced by the 
surrounding environment. To effectively control and prevent the cyanobacterial bloom, one of the most impor-
tant scientific questions is how other factors affect CRAP (Cyanobacteria relative abundance in Phytoplankton). 

Table 6.   The dataset from Beauchamp and Corenell (1966)84.

i xi (h) yi1 yi2

1 0.33 NA 0.03

2 2 0.84 0.10

3 3 NA 0.14

4 5 0.64 NA

5 8 0.55 NA

6 12 NA 0.40

7 24 0.27 0.54

8 48 0.12 0.66

9 72 0.06 0.71

Table 7.   The imputed dataset.

Imputed data

i xi (h) yi1 yi2

1 0.33 0.75 0.03

2 2 0.84 0.10

3 3 0.65 0.14

4 5 0.64 0.21

5 8 0.55 0.28

6 12 0.39 0.40

7 24 0.27 0.54

8 48 0.12 0.66

9 72 0.06 0.71
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High values of CRAP often indicate cyanobacterial bloom. Therefore, if we can control the key factors that are 
associated with CRAP, we can improve environmental health dramatically.

Linear regression analysis is a default choice for detecting association and outliers. We expect that many 
covariates are correlated. For example, NH4-N and NO3-N are highly correlated with TN. Thus, in reality, 
some measurements are more important than others to ecologists. In statistics, variable selection and penalized 
regression methods are proposed to address this issue. In what is to follow, we use CSO-MA and a penalized 
regression method known as smoothly clipped absolute deviation (SCAD)89 to selected variables into the model.

Let y be the vector of CRAP responses in the linear model, let X be the covariate matrix containing variables 
Depth to F and each column of X is standardize by subtracting its mean and dividing its standard deviation so 
that each column of X has mean 0 and standard deviation 1. This standardization step is crucial because we want 
to analyze the relative influence of the variables on CRAP and having different scales can cause confusion. All 
these variables are listed in Table 8. Let β be the vector of unknown parameters to be estimated by solving the 
following optimization problem:

where ρ is the regularization parameter, a, � are tuning parameters and

is a differentiable and non-convex function and is called the SCAD penalty. The parameter ρ controls the degree 
of shrinkage applied to the coefficients. A larger ρ increases the penalty on the coefficients, driving them toward 
zero, and thus, helps in preventing overfitting by enforcing sparsity in the model. We set a = 2.5 and � = 1 , apply 
SCAD regression to the data (X, y) for different choices of ρ (see formula (11)) and optimize it using CSO-MA 
algorithm. We set 12 different values for ρ , i.e., 10−6, 10−5, 10−4, 10−3 , 0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 10, 100. For 
each ρ , we record the best particle position found by CSO-MA as our estimation for β . The CSO-MA algorithm is 
initialized with 25 particles and iterates 100 times (i.e., 100 function evaluations). We run the algorithm 50 times 
for each ρ to analyze the stability of CSO-MA. For illustration purpose, we demonstrate the average and standard 
deviation of the 50 runs when ρ = 0.025 and the results are shown in Table 9; further, the average minimum of 
(11) when ρ = 0.025 is 0.315 with a standard deviation of 0.0009 (the other ρ ’s have similar standard deviation 
and minimum values), suggesting the stability of CSO-MA algorithm.

Figure 6 illustrates the solution path of SCAD using the CSO-MA algorithm. The x-axis represents the scaled 
ρ values. When ρ decreases from 100, estimation of turbidity (T) deviates from 0 at first. It suggests that turbidity 
is one of the most important measurements associating with the level of DRAP. One possible reason for such 
phenomenon is that the turbid water prevents light from penetrating, which in turn indicates a lower amount 
of the algae carrying out photosynthesis. Further, temperature (T) is another variable deviating from 0 at first. 
The reason is that the optimum temperature for algae growth is 20+ C◦ and the lower the temperature, the 
less active the metabolism of algaeis. In addition, when ρ decreases from 0.05 to 0.01 (x from 7 to 5), parameter 
estimation for chemical elements, such as K, Mg, Na, all deviates from 0, suggesting that the concentration of 
chemical elements has slightly different association of CRAP.

This subsection shows CSO-MA can be usefully applied along with SCAD penalized regression to explore 
association among different components of water quality and how that affect the outcome CRAP. The interpreta-
tion of the solution path is in line with scientific common sense.

(11)min
β

�y − Xβ�22 + ρ

( p∑

i=1

P(βj|�, a)

)
,

P(βj|�, a) =






�|βj| if |βj| ≤ �

a�|βj |−β2
j −�

2

a−1 if � < |βj| ≤ a�
�
2(a+1)
2 if |βj| > a�

Table 8.   Two samples of measurements for the regression variables in the model: Cyanobacteria relative 
abundance in Phytoplankton (CRAP), the sampling depth of water (Depth), Chlorophyll abundance (Chi-a), 
dissolved oxygen (DO), turbidity of water (Turbity), potential of hydrogen (pH), Ammonium Nitrogen (NH4-
N), Nitrate Nitrogen (NO3-N), total concentration of Nitrogen (TN), total Phosphorus (TP), total organic 
Carbon (TOC), total dissolve solid (TDS), water temperature (T), Calcium (Ca), Potassium (K), Magnesium 
(Mg), Sodium (Na) and Fluorine (F).

CRAP Depth Chi-a DO Turbidity pH

0.6444 0.5 34.29 6.1 4.19 9.36

0.0126 0.5 18.36 6.46 15.4 9.47

NH4-N NO3-N TN TP TOC TDS

0.4 0.38 0.96 0.07 22.61 906.7

0.13 0.33 0.96 0.06 22.15 910.4

T Ca K Mg Na F

17.3 7.26 11 68.08 191.38 2.23

16.1 5.02 9.906 68.88 223.35 2.83
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Design problems
Design problems are important because experimental costs are always increasing and a well designed study can 
provide maximum statistical inference precision at minimal cost. Given a design region, a regression model 
with several factors or independent variables, a design criterion and the total number of observations allowed, 
an optimal design problem involves finding the optimal number of design points, the optimal combination of 
factor levels and the proportions of observations to take at the design points. Sometimes the proportions are 
called weights ( wi ) and they sum to unity. By working with weights and a convex design criterion, the optimal 
design problem can be formulated as a convex optimization problem, where theoretical tools are available to 
confirm whether a solution is optimal. In particular, an equivalence theorem, one for each convex criterion, can 
be derived using convex analysis results. A by-product is also a design efficiency lower bound that assesses the 
proximity of a design to the theoretical optimum without knowing the latter. In general, design efficiency is some 
ratio between 0 and 1 of the criterion value of a design relative to that of the optimum and designs with high 
efficiencies are sought. If a design has an efficiency of 0.5 or 50%, this means that the design has to be replicated 
twice to provide the same level of information as the optimal design90 and91 provide the technical details.

There are algorithms in the statistics literature for finding optimal experimental designs and even though 
some of them can be proven to converge mathematically to the optimum92,93. However, they may not work well 
in practice when the model is nonlinear and has several interacting factors. As some of the references below indi-
cated, metaheuristics can outperform traditional algorithms or solve optimization problems that they cannot94. 
For example,30 solved a standardized maximin optimal design problem and95 found a minimax optimal design 
for a random effects hierarchical linear model. Both involved optimizing a non-differentiable objective function 
and some require multiple nested layers of optimization.

Below is a new application that shows CSO-MA can find a locally D-optimal design to estimate all parameters 
in a logistic model with 10 factors and 3 pairwise interaction terms. D-optimal designs are popular because when 
errors are normally distributed, they minimize the volume of the confidence ellipsoid of the parameters and hence 
the parameters are accurately estimated. Previous attempts using other metaheuristic algorithms to solve this 
design problem were less successful because of the large dimension of the optimization problem. For example,96 
applied GA, PSO, CSO to find locally D-optimal designs for the Poisson model and logistic model with 5 factors 

Table 9.   Average and standard deviation of parameter estimation after 50 times of runs.

Variable Average Standard deviation Variable Average Standard deviation

Depth 0.191 0.012 NO3-N 0.128 0.013

Chl-a − 0.001 0.003 TN 0.000 0.002

DO 0.219 0.015 TP 0.047 0.008

Turbity − 0.195 0.016 TOC − 0.001 0.003

pH − 0.003 0.012 Ca 0.003 0.007

TDS 0.000 0.002 K − 0.002 0.009

T 0.499 0.033 Mg − 0.031 0.027

NH4-N 0.166 0.018 Na − 0.162 0.025

F − 0.016 0.028

Figure 6.   Solution path of SCAD using CSO-MA. Each line represents the trajectory of an estimated 
coefficient for a predictor variable across the ordered values of the regularization parameter ρ . The y-axis 
denotes the estimated coefficient values. The x-axis corresponds to the ordinal position of each ρ value in the set 
10−6, 10−5, . . . , 100 , which have been rescaled to 1, 2, ..., for clarity of presentation.
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and all pairwise interaction terms97 used quantum PSO (QPSO) and modified the codes to also find locally 
D-optimal designs. The modified code d-QPSO found a locally D-optimal design for a 10-factor logistic model 
but interactions were not allowed. Likewise,98 applied differential evolution to find locally D-optimal designs for 
the same model with 5 pairwise interaction terms. However, optimality of their design could not be confirmed but 
its proximity to the optimum (without knowing the optimum) was assessed using a D-efficiency lower bound90. 
The reported design has at least 95% D-efficiency, suggesting they it is close enough to the optimum (without 
knowing what the optimum is) and likely suffice for most practical purposes.

Car refueling experiment
 99 described an experiment, based on the logistic model, for testing a vision-based car refueling system with the 
question that whether a computer-controlled nozzle was able to insert itself into the gas pipe correctly or not97. 
The experiment includes four binary explanatory factors ( x1 ∼ x4 numerically taking -1 or 1): ring type (white 
paper or reflective), lighting (room lighting or 2 flood lights and room lights), sharpening (without or with), 
smoothing (without or with); six continuous factors ( x5 ∼ x10 ): lightning angle (50 to 90 degrees), gas-cap angle 
1 (30 to 55 degrees), gas-cap angle 2 (0 to 10 degrees), can distance (18 to 48 inches), reflective ring thickness 
(0.125 to 0.425 inches) and threshold step value (5 to 15). Experts’ opinions suggest that the model should include 
five specific interaction terms in the model and they are the pairwise interactions terms between ring type and 
reflective ring thickness, interactions between lighting and lighting angle, interaction between smoothing and 
car distance, along with 2 3-order interaction terms. To test CSO-MA’s potential for finding a locally D-optimal 
design for a more likely realistic model, we include selected interaction terms, namely three two-factor interac-
tion terms and two three-factor interaction terms. Table 10 lists all the terms in the model.

The full model has 10 factors and 16 parameters97. Assumed a set of nominal parameter values and found a 
locally D-optimal design using a swarm-based algorithm called Quantum-Behaved PSO (d-QPSO). On average, 
the runtime for finding the optimal design for the additive linear part of the model without interaction terms, 
was 140 seconds. They did not report the locally D-optimal design for the full model.

We applied CSO-MA to search for locally D-optimal designs for both models with and without interaction 
terms. Since not all factors are likely to interact, we choose to include, as an example, 3 two-factor interaction 
terms and 2 three-factor interaction terms. We set k = 20 , which is the initial guess of the number of design 
points required of the optimal design. We set the number of particles in the algorithm to be n = 200 and the stop-
ping criterion is whether the fitness value change is within the pre-specified tolerance value of 10−5 . We ran the 
algorithm 10 times independently and on average, CSO-MA took 24 seconds to find the same locally D-optimal 
design for the no-interaction model, which is significantly shorter than that required by the d-QPSO employed 
in97. For the model with the interaction terms, CSO-MA was also able to find a locally D-optimal design shown 
in Table 11 with 17 design points and the corresponding weights are in the last column. It has 17 design points, 
the criterion value is 7.256 and a direct calculation shows its D-efficiency lower bound is 97%. It is not possible to 
easily confirm optimality of a design for a multi-factor model because it is difficult to visually appreciate the fine 
features in a high dimensional plot; see97,98. Additional numerical checks similar to that described in96 support 
that the design found by CSO-MA has all the required features in the equivalence theorem.

Conclusions
Nature-inspired metaheuristic algorithms are general-purpose optimization tools and they require virtually no 
assumption for them to work reasonably well. While they are typically used when all other known optimization 
methods fail, we note that

Table 10.   All the model terms in the car refueling study.

Variable Notation Type Range

Ring type x1 Binary − 1 or − 1

Lightning x2 Binary − 1 or − 1

Sharpening x3 Binary − 1 or − 1

Smoothing x4 Binary − 1 or − 1

Lightning Angle x5 Continuous [50, 90]

Gas− cap Angle 1 x6 Continuous [30, 55]

Gas-cap Angle 2 x7 Continuous [0, 10]

Can Distance x8 Continuous [18, 48]

Reflective Ring Thickness x9 Continuous [0.125, 0.425]

Threshold Step Value x10 Continuous [5, 15]

P-Interaction 1 x1x9 – –

P-Interaction 2 x2x5 – –

P-Interaction 3 x4x8 – –

T-Interaction 1 x6x7x8 – –

T-Interaction 2 x3x4x10 – –
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•	 improved metaheuristics, such as CSO-MA, can outperform earlier metaheuristic algorithms; this was the 
case for optimizing parameter estimation in the single-cell generalized trend model, where CSO-MA pro-
duced significantly more optimal values than those from two recently proposed metaheuristics;

•	 they can also produce better quality solutions than those obtained from traditional methods or via commer-
cial statistical packages; this was the case in Table 2 where we observe that the negative likelihood function 
from the deterministic Bock-Aitkin’s algorithm has a larger value than that from PSO and CSO-MA, sug-
gesting metaheuristics outperformed the Bock-Aitkin’s procedure;

•	 the ecological application also demonstrated that results from CSO-MA can have smaller deviations than 
other estimates, suggesting more stable results from the CSO-MA algorithm compared with standard meth-
ods like using CRAP or SCAD;

•	 improved metaheuristics, such as CSO-MA, can solve optimization problems that were deemed problematic 
before; such is the case for the car design problem where this paper considers several interacting factors more 
than earlier papers with a handful of factors in interaction terms.

We close by returning to the question posed in the title of the paper. Based on the current work and other 
optimization work we have done using metaheuristics, our cumulative experience suggests that they are able to 
explore and exploit complex optimization problems in statistics and arrive at an optimal solution, or close to the 
optimum100. More interestingly, there are increasing examples that show metaheuristics can outperform statisti-
cal optimization methods with theoretical convergence properties in terms of speed or quality of the solution. 
An example is the frequently used Fedorov’s type of algorithms commonly used to generate an optimal design 
by adding one design point at each iteration, and then periodically collapsing nearby points to a single point 
heuristically. For this reason, we believe that metaheuristics offers exciting and fertile ground for theoretical and 
applied researchers and can potentially revolutionize the world of optimization.
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