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Automatic detection method 
for tobacco beetles combining 
multi‑scale global residual feature 
pyramid network and dual‑path 
deformable attention
Yuling Chen 1,4, Xiaoxia Li 1,2, Nianzu Lv 3, Zhenxiang He 1,5 & Bin Wu 1,2*

Aiming at the problems of identifying storage pest tobacco pest beetles from images that have 
few object pixels and considerable image noise, and therefore suffer from lack of information and 
identifiable features, this paper proposes an automatic monitoring method of tobacco beetle based on 
Multi-scale Global residual Feature Pyramid Network and Dual-path Deformable Attention (MGrFPN-
DDrGAM). Firstly, a Multi-scale Global residual Feature Pyramid Network (MGrFPN) is constructed 
to obtain rich high-level semantic features and more complete information on low-level features to 
reduce missed detection; Then, a Dual-path Deformable receptive field Guided Attention Module 
(DDrGAM) is designed to establish long-range channel dependence, guide the effective fusion of 
features and improve the localization accuracy of tobacco beetles by fitting the spatial geometric 
deformation features of and capturing the spatial information of feature maps with different scales to 
enrich the feature information in the channel and spatial. Finally, to simulate a real scene, a multi-
scene tobacco beetle dataset is created. The dataset includes 28,080 images and manually labeled 
tobacco beetle objects. The experimental results show that under the framework of the Faster R-CNN 
algorithm, the detection precision and recall rate of this method can reach 91.4% and 98.4% when the 
intersection ratio (IoU) is 0.5. Compared with Faster R-CNN and FPN, when the intersection ratio (IoU) 
is 0.7, the detection precision is improved by 32.9% and 6.9%, respectively. The proposed method is 
superior to the current mainstream methods.

Keywords  Tobacco beetle, Small object, Tobacco beetle dataset, Deformable convolutional, Attention 
mechanism, Feature pyramid network

The tobacco beetle is a worldwide storage pest. Their bodies and dung pollute tobacco leaves and products, 
seriously endangering the availability and quality of tobacco leaves. With the continuous expansion of the pro-
duction scale of the cigarette industry around the world, the storage scale of tobacco leaves, the most important 
raw material of cigarettes, has also expanded, and due to the emergence of new tobacco technology, tobacco 
leaves generally need to be alcoholized in the warehouse for 2 to 3 years, which will lead to the expansion of the 
scope and scale of tobacco a hazard. The annual loss of tobacco leaves due to tobacco beetle accounts for 1% 
to 5% of the total number of stored tobacco leaves worldwide, and the loss caused by tobacco beetle accounts 
for more than 98% of the total loss. In the process of tobacco beetle control, pest monitoring is the most basic 
and important part of tobacco beetle control. The traditional detection method for tobacco beetles is mainly to 
arrange tobacco beetle traps at monitoring points in the tobacco-making workshop, and then manually count the 
number of tobacco beetles on each trap regularly. However, the manual counting method has the disadvantages 
of high time cost, low monitoring efficiency, poor real-time performance, inaccurate data, and so on. Therefore, 
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it is of great significance for cigarette production quality control by using computer vision technology to realize 
automatic image acquisition and tobacco beetle detection.

Recently, there are many research results on image processing and analysis technology in crop pest detection 
and recognition1, but the research on storage is less. Typical image analysis techniques for storage pest monitor-
ing focus on pest classification2 rather than pest detection (location and recognition). The purpose of detection 
is to obtain the situation of tobacco beetles by locating and recognizing each pest instance from trapping points 
image data. Then, through the analysis of historical data to guide the selection of monitoring points and accurate 
pest control. It plays an important role in the scientific and effective monitoring and control of storage pests. 
Therefore, for the monitoring of storage pests, it is necessary to establish a new automatic monitoring method by 
deeply mining more valuable information as the recognition features of pest detection, and establish an intelligent 
and efficient storage pest monitoring system. In this context, this paper aims to solve the problems existing in 
the current warehouse pest detection tasks by studying advanced deep learning methods and finding a practical 
and effective pest monitoring solution.

The major contributions of this paper are as follows: (1) A CNN (Convolutional Neural Networks, CNN) 
based two-stage tobacco beetle detection method combining Multi-scale Global residual Feature Pyramid 
Network and dual-path deformable attention (MGrFPN-DDrGAM) are designed; (2) Two new modules are 
designed: Multi-scale Global Residual Feature Pyramid (MGrFPN) and Dual-path Deformable receptive field 
Guided Attention Module (DDrGAM), which are used for the acquisition of rich multi-scale features an auto-
matic fusion of effective features, respectively; (3) A small object detection dataset of tobacco beetles in the 
complex environment was established to simulate the detection of real stored tobacco beetles, including 28,080 
images under various conditions, such as whether it is dense, whether there is shredded tobacco, and whether 
the illumination is uniform. The experimental results show that, under the framework of Faster R-CNN3, our 
approach MGrFPN-DDrGAM achieves over AP and Recall of 90.4% and 96.4% when the IoU is 0.5, which 
outperforms the current mainstream methods under different IoUs.

Related work
Object detection mainly solves the problem of object localization and recognition in images or videos. At present, 
the mainstream object detection methods are mainly divided into two-stage and single-stage detection methods. 
The region-based two-stage detection algorithm is represented by the R-CNN4. The regression-based one-stage 
detection algorithms are represented by YOLO5–7 and SSD8,9. The two-stage algorithm has more advantages in 
detection and location accuracy, while the single-stage algorithm has more advantages in running efficiency. In 
recent years, Transformers have been widely used in the field of computer vision10, particularly demonstrating 
excellent performance in multiple tasks of salient object detection. Its advantage lies in the ability to capture 
global and local contextual information, without being limited by the fixed receptive field size in traditional meth-
ods. In addition, Transformers can also undergo end-to-end training to better learn salient features in images.

However, small objects occupy a small proportion of pixels in the image and have the features such as small 
coverage area and lack of information. Conventional object detection methods are used to detect small objects. 
The main difficulty is that while obtaining high-level semantic information, it will lose low-level detail informa-
tion, which leads to missed detection of small objects. Small object detection has always been a difficult problem 
in the field of object detection. The general effect of using classical detection methods to detect small objects is 
not ideal. Judging from the detection results on PASCAL VOC11,12, MS-COCO12, and other datasets, they have 
poor detection results on small objects such as birds and ships but good on complex but larger objects. This shows 
that on the one hand, the feature network cannot learn specific features and express features, and on the other 
hand, the small object features extracted by the network can provide less information to the model. Therefore, 
Feature Pyramid Network (FPN)13 proposes a network structure that utilizes the inherent multi-scale pyramid 
structure of deep convolutional neural networks to construct feature pyramids. It takes into account features 
with different sizes, resolutions, and receptive fields by introducing a top-down approach with lateral connec-
tions to detect objects of different scales. To further improve the resolution of feature maps while maintaining 
the receptive field, DetNet14 employs dilated convolutionals and adds an extra stage. CARAFE15 uses a new 
upsampling method to replace the traditional upsampling method and integrates it into the feature pyramid 
to obtain a larger receptive field. ASPP16 employs dilated convolutionals with different dilation rates to expand 
the receptive field, which is applied to the input feature map in parallel to capture the contextual information of 
the image at multiple scales. To strengthen the fusion of information, RetinaNet17 is different from FPN in that 
it starts from the third-to-last layer for feature fusion. PANet18 adopts bottom-up secondary fusion to enhance 
the top-down FPN path, shorten the information transmission path, and make better use of the precise location 
information of low-level features. ASFF19 fuses the feature information of each layer feature information and 
adopts an attention mechanism to control different layers’ contributions. NAS_FPN20 aims to use neural archi-
tecture search to automatically learn a better feature pyramid network architecture for object detection. Then, 
BiFPN21 is artificially designed based on a neural architecture search to obtain a better feature pyramid network. 
DetectoRS22 adds additional feedback from FPN to the bottom-up backbone layer. PRB-FPN23 proposes a new 
parallel FP structure that employs bidirectional (top-down and bottom-up) fusion to maintain high-quality 
features for precise localization. A^2-FPN24 proposes a feature pyramid network based on attention aggregation 
to improve multi-scale feature learning through attention-guided feature aggregation.

The above networks do not fully consider the effective fusion of information while increasing the receptive 
field, and most networks continue to add paths after obtaining high- and low-level fusion information, which 
improves the performance of the network at the cost of increasing network complexity. Without expanding the 
receptive field of the high-level network, the semantic information of the high-level feature map is still insuf-
ficient; In addition, the high-level features that have undergone multiple downsampling generally ignore more 
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detailed information, resulting in extremely poor detection of small objects. Take the detection of the storage pest 
tobacco beetle as an example, as shown in Fig. 1 and Table 1. Due to many limiting factors, general deep learning 
methods are difficult to directly apply to tobacco beetle detection: (1) Tobacco beetle objects are much smaller 
than other small objects currently published and representative datasets, such as MS COCO12, small objects in 
public datasets such as Wider Face25 and City Persons26, tobacco beetles have lower resolution, carry less infor-
mation, and are insensitive to features after image translation and rotation, resulting in weak feature expression 
ability. (2) The intuitive features such as texture, shape, or color of the tobacco beetle are easy to be confused with 
the background information (tobacco, dust, etc.), especially in an environment of uneven illumination, which 
leads to the sharp decline of image signal-to-noise ratio and object significance, therefore increases the likelihood 
of false detection. (3) The uneven distribution of size, posture, and density of tobacco beetles, and the diversity 
of collected image data, make detection more difficult. To solve the above problems, this paper aims to solve 
the problem of tobacco beetle detection by studying effective feature enhancement and feature fusion methods.

Materials and methods
Combining multi‑scale global residual feature pyramid network and dual‑path deformable 
receptive field guided attention module methods
Tobacco beetles are very small, and their features are very weak, such as insufficient brightness and lack of edge 
information, so it is difficult to extract discriminating features. Furthermore, as shown in Fig. 1, the intuitive 
features of tobacco beetles, such as texture, shape, or color, can easily be confused with background information 
(such as tobacco, dust, etc.), leading to a complex background in images of tobacco beetles and consequently, a 
higher likelihood of false detections.

To improve the detection accuracy, according to the different sizes, postures, perspective changes, and other 
geometric deformations, distribution, and complex backgrounds of tobacco beetles in the images, we propose 
a Multi-scale Global residual Feature Pyramid Network and Dual-path Deformable Attention (MGrFPN-DDr-
GAM) method for tobacco beetles detection in complex environments. The method mainly consists of four 
parts: feature extraction network-Resnet5027, Multi-scale Global residual Feature Pyramid Network (MGrFPN), 
Dual-path Deformable receptive field Guided Attention Module (DDrGAM), and Object detection head of Faster 
R-CNN3 the network structure is shown in Fig. 2.

This structure of MGrFPN adopts multi-scale feature fusion, it makes full use of the shallow detail information 
and deep semantic information that are beneficial to the feature extraction of small objects. MGrFPN facilitates 
the differentiation between objects and background by analyzing characteristics such as the shape, size, color, 
and texture of the object, as well as the contextual information surrounding the object. To enhance the model’s 
capability in scenarios where the background closely resembles the object, we introduce the DDrGAM. This 
module initiates with a regular sampling of the input feature map, followed by the application of deformable 
convolution kernels on the sampled features of the tobacco beetle to perform a weighted summation for feature 
aggregation. This approach adaptively selects the spatial domain of the tobacco beetle regions, thereby expanding 

Figure 1.   Typical examples of tobacco beetle data. (a) The bright and clean image, (b) the bright with little cut 
tobacco image, and (c) the bright with much cut tobacco image.

Table 1.   Comparison of mall objects in different datasets.

Data set Absolute size Relative size Aspect ratio

Tobacco beetle (ours) 46.9 ± 30.5 0.033 ± 0.021 1.471 ± 1.355

MS COCO12 99.5 ± 107.5 0.190 ± 0.203 1.214 ± 1.339

Wider face25 32.8 ± 52.7 0.036 ± 0.052 0.801 ± 0.168

City persons26 79.8 ± 67.5 0.055 ± 0.046 0.410 ± 0.008



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4862  | https://doi.org/10.1038/s41598-024-55347-4

www.nature.com/scientificreports/

the effective receptive field of the convolutional neural network. Subsequently, we have developed a feature atten-
tion block that assigns differential weights to various features. Through this mechanism, the network focuses 
more on relevant information while disregarding the irrelevant.

In the detection of tobacco beetles, acquiring detailed feature information of the beetles is critical for accu-
rate localization and recognition of key points. Therefore, we have incorporated a spatial attention module that 
allocates greater weight to the spatial location information of the tobacco beetles within the acquired feature 
maps, thereby directing the network model to focus more on regions with useful information. This enables the 
model to concentrate more on the object areas while ignoring parts that resemble the background. Given that 
the object and background may exhibit similarities across different scales, we employ a multi-scale detection 
approach, conducting object detection across various scales to identify the most appropriate scale. This method 
reduces false detections caused by similarities between the object and the background, effectively enhancing the 
performance of small object detection, which can effectively improve the performance of small object detection.

MGrFPN detection architecture
Therefore, we have improved the output structure of the original FPN and designed a new feature pyramid 
structure-MGrFPN. As shown in Fig. 3, for the bottom-up path, according to the settings in FPN, the outputs 
of the last convolutional layers of the first to fifth convolutional blocks of Resnet5027 are denoted as {C1, C2, C3, 
C4, C5}; top-down paths and lateral connections are denoted as {P2, P3, P4, P5}, respectively.

To increase the amount of information about the tobacco beetle in the image, we add the feature maps of 
the C1 layer to the output of the traditional FPN and use enough shallow information to capture more detailed 
information about the small object and assist the precise location of the objects. The size of the tobacco beetles 
in the image is distributed between 30 px–80 px, and after 5 times downsampling, the feature maps only occupy 
about 0.94 px–2.5 px. Because the receptive field is too small, it is difficult to extract global semantic information. 
If the receptive field is too large, it will pay too much attention to the background information, which will bring 
a large amount of irrelevant noise, resulting in the loss of the features of the tobacco beetle itself. In response to 
this problem, we improve the traditional method: instead of using the P6 layer formed by downsampling the 
feature map of the P5 layer as an output branch of the FPN, we add a module DDrGAM to enhance the salient 
features in the P5 layer, after forming a new M5* feature, 3 × 3 convolutional is performed to obtain a new P5 
layer features as the output of the FPN.

Figure 2.   MGrFPN–DDrGAM network structure.
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Dual‑path deformable receptive field guided attention module (DDrGAM)
To further improve the detection accuracy, we design a DDrGAM module, which consists of two branches in 
parallel: a deformable convolutional28 and a feature attention block29 cascade. As shown in Fig. 4, The module uses 
the deformable convolutional kernel to extract the effective features, guides the feature attention block to focus 
on the effective features, and forms a mode of acquiring effective features-focusing on effective features-fusion 
effective features. Such a combination method can not only extract richer detailed information about tobacco 
beetles but also eliminate redundant features and fuse effective features.

Firstly, the module performs feature enhancement through deformable convolutional, that is, using deform-
able convolutional on the output of the feature extraction network to further obtain effective features.

Acquiring effective features stage: we denote the feature maps generated by C5 ∈ R H×W×C. Due to the small 
size of the tobacco beetle object, we use two different deformable convolutional kernels of 3 × 3/5 × 5 for feature 
enhancement to obtain the detailed features of the objects. As shown in formula (1).

Fdcn represents the feature map after deformable convolutional. The convolutional kernel of deformable con-
volutional adds an offset at the position of each sampling point, which can concentrate more on the effective 
feature region. Moreover, by assigning different weights to the offset modified region, more obvious features are 
obtained. As shown in formula (2).

(1)Fdcn = Defconv(C5)

(2)y(p) =

K
∑

k=1

wk · x(p+ pk +�pk) ·�mk

C1 C2 C3 C4 C5

ResNet

M2 M3 M5*

M4 M4

2×

M4 M4
+

2×
+

2×
+

0.5× 0.5× 0.5× 0.5×

DDrGAM

M4

3×3

image

P1 P2 P3 P4 P5

1×1 1×1 1×1

3×3 3×3 3×3 3×3

MGrFPN

C1 C2 C3 C4 C5

M2 M3 M5M4

P2 P3 P4 P5 P6

Maxpool

FPN

Figure 3.   MGrFPN network structure. The left side of the figure shows the structure of MGrFPN, while the 
upper right part shows the structure of FPN.

Figure 4.   Deformable receptive field guided attention dual-path module (DDrGAM).
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k denotes the sampling point, x(p), y(p) denotes the input feature map x, and output feature map y at the p posi-
tion, respectively. wk, pk denote the weight and predestined offset of the k-th position, and K denotes the size of 
the convolutional kernel at the sampling position. �pk and �mk are the learnable offset and modulation scalar 
at the k-th position, respectively. In this paper, the offset is used to find �pk the regional position of the effective 
information of tobacco beetle, and the adjustment parameters �mk are to give weight to the found position, 
which ensures the accurate extraction of effective information from these two aspects. Deformable convolutional 
is used to extract shape features of tobacco beetles, and the sampling area is no longer the original rectangle but 
changes according to the shape of the object. The shape of the tobacco beetle is an ellipse. By adding an offset 
to the sampling points on the input feature map, the original rectangular sampling area becomes similar to an 
ellipse, and a shape feature that is more in line with the object itself is obtained to achieve the effect of feature 
enhancement. Figure 5. illustrates the fixed receptive field in standard convolution (a) and the adaptive recep-
tive field in deformable convolution (b), using three layers. (a) is a standard 3 × 3 square matrix sampling, and 
(b) is a non-standard shape sampling, but the sampling point is still 3 × 3. The activation is from a 3 × 3 filter. 
Top: Activation cells in tobacco beetles. Middle: To get the sampling process performed by the top activation 
unit. Bottom: 3 × 3 filter sampling area to get the middle layer. The highlighted positions correspond to the cells 
highlighted above. Deformable convolutional can sample more closely to the shape and size of objects, whereas 
standard convolutional cannot.

Focusing on effective features (semantic information and detail information): Since the deformable convo-
lutional increases the receptive field, while enhancing the shape features of the tobacco beetle, it will generate 
some invalid background information. Therefore, it is necessary to compress the redundant information, reduce 
the noise, and focus on the features with a high correlation with the object. Therefore, we design a feature atten-
tion block connected after the deformable convolutional block, which combines channel attention30 and spatial 
attention31 mechanisms. Channel attention and spatial attention, respectively, contribute to features for object 
classification and localization. By paying attention to the semantic information and detailed information that 
need to be emphasized, irrelevant interference features such as the background can be eliminated.

We input the feature map Fdcn ∈ R H×W×C generated by deformable convolution into the feature attention 
module to obtain the channel attention map Fcaf, which is used to assign the weights of each feature channel. 
Fcaf is a 1 × 1 × C channel attention map. The weight of each dimension on the map represents the importance 
and relevance of the feature layer corresponding to that dimension to key information. The larger the weight, the 
higher the correlation, which guides DDrGAM to pay attention to the channels with high correlation. Finally, 
after the weight of the feature channel is obtained, it is weighted to the original feature by multiplication, channel 
by channel, and the original feature re-calibration in the channel dimension is completed. The whole process 
can be described as(3):

Among them, ⊗ denotes the corresponding element multiplication operation. Channel attention can high-
light interdependent feature maps and improve semantic-specific feature representation by mining the inter-
dependencies between channel graphs.

To better characterize local regions of feature maps, we exploit the relationships between features to generate 
spatial attention maps. We send the feature map F’caf refined by the channel attention map to the spatial attention 
module and obtain the spatial attention feature map Fsaf of size H × W × 1, which encodes detailed information 
such as the color and texture of the object to which attention needs to be paid. At the same time, the noise 
is suppressed, and the important local information of the image is extracted. The spatial attention feature is 
described as:

(3)Fcaf = Sigmoid
(

MLP
(

Avgpool(Fdcn)
)

+MLP
(

Maxpool(Fdcn)
))

(4)F ′caf = Fcaf ⊗ Fdcn

Figure 5.   Deformable convolutional feature extraction process.
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Then the spatial attention feature map Fsaf is multiplied by the refined feature map F’caf of the channel atten-
tion map to obtain the feature block output Fdaf after double attention adjustment, which is described as follows:

Fusion effective features: To enhance the feature expression ability of the network and reduce missed detec-
tion, we propose a Dual-path Deformable receptive field Guided Attention Module method. Considering the 
small object size of tobacco beetles, 3 × 3 and 5 × 5 deformable convolutional kernels are used to cascade feature 
attention blocks to form two channels, respectively. Specifically, the information of the input feature map is aug-
mented with a deformable convolutional structure at two scales. Then, the enhanced features are passed through 
the spatial attention module, which can more precisely focus on the contextual features, thereby extracting the 
location information of the two paths in each channel feature map. Then, the cross-dimensional interaction 
is constructed by extracting the channel attention weight of the feature map, the attention weight of the cor-
responding channel is recalibrated, and the object classification information of the two paths is obtained in the 
feature maps. Finally, the 3 × 3 convolutional kernel is used to integrate the output of the multi-scale feature by 
the two branches to eliminate the aliasing effect generated by the fusion of different receptive field feature maps 
in feature fusion, and obtain the output features Fout of the attention module guided by the dual-path deform-
able receptive field.

The main optimization structures for feature pyramids are shown in Fig. 6a–c. DDrGAM proposed in this 
paper can be integrated into any layer connected by the backbone network and the feature pyramid network, as 
shown in Fig. 6d, which is a plug-and-play module, it can be directly applied to CNN structure. Through ablation 
experiments, it is found that adding the DDrGAM between C5 and P5 has the best effect, so other comparative 
experiments in this paper only add this module between C5 and P5. Compared with PANet18 and NAS_FPN20, 
this method does not add more fusion paths after the traditional prediction output but adds parallel feature 
information based on the feature extraction network, to perform feature enhancement and fusion. It can be 
seen that this method further enhances the feature expression ability without increasing the network complexity.

Tobacco beetle monitoring system
Our method can be seamlessly integrated into existing tobacco beetle monitoring systems, achieving smooth 
integration. By efficiently packaging the developed MGrFPN-DDrGAM algorithm, we can build a powerful 
tobacco beetle detection software system. When combined with dedicated tobacco beetle image acquisition 
devices, this software system will form a comprehensive and efficient tobacco beetle detection system, providing 
strong support for practical applications. This integration not only enhances the overall performance of the sys-
tem but also ensures its accuracy and reliability in real-time monitoring and analysis of tobacco beetle activities.

The tobacco beetle detection system based on convolutional neural networks consists of an image collection 
terminal, image processing algorithm, data analysis, and user display interface, as illustrated in Fig. 7. The image 
collection terminal includes an image sensor (camera), light source, controller, and dustproof trapping device, 
which are used for collecting images of pests. These images are then transmitted via network communication lines 
to the server for detection and identification. The image processing algorithm employs the MGrFPN-DDrGAM 
method for small object detection of pests. After analysis, the detection results are saved to the database and sent 
to the graphical user interface for visualization.

This system uploads the collected data for detection at intervals of one hour. The data display platform 
performs statistical and visual analysis of the information, enabling automatic statistics of the number of saw-
tooth beetles at each monitoring point. It generates data reports, explosion diagrams, and trend charts, as well 

(5)Fsaf = Sigmoid
(

Conv
(

Concat
(

Avgpool
(

F ′caf

)

,Maxpool
(

F ′caf

))))

(6)Fdaf = Fsaf ⊗ Fcaf ′

(7)Fout = Conv3×3

(

Fdaf3×3
+ Fdaf5×5

)

(a) FPN
     

(b) PANet   (c)NAS_FPN (d)Ours(DDrGAM)

DDrGAM

C2

C3

C4

C5

P2

P3

P4

P5

Figure 6.   Feature pyramid network design.
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as providing real-time alerts for the level of insect infestation, thus achieving intelligent monitoring of insect 
conditions.

During the deployment of the algorithm, it is advisable to first test the performance of the detection system 
on the PC end. Once it meets the established requirements, implementation can proceed on the embedded end, 
in conjunction with the pest image collection device, to form a complete pest detection system. By testing its 
effectiveness, reliability, and user experience within a local area, and ensuring that all metrics meet the established 
requirements, the system can then be promoted and applied more widely.

Experiments and analysis
Establishment of the dataset
Aiming at the task of tobacco beetle detection, we construct a dataset according to the real scene of a tobacco 
factory. A total of 28,080 images are collected, including whether the tobacco beetles are densely distributed, 
whether the pasteboard has shredded tobacco and whether the light is uniform, etc. The images include two 
kinds of environments: the real environment (taken from the smoke factory) and the simulated environment. 
Shooting with a white light camera, the size of the image is 1080 × 1920 pixels.

Real-world tobacco beetle data collection. According to the living habits of tobacco beetles and the historical 
record data of silk-making workshops, the dataset of the real environment mainly considers the influence of 
various environmental factors such as light intensity, temperature, humidity, dust concentration, etc. We captured 
tobacco beetle images in a variety of conditions.

Simulated environmental tobacco beetle data collection. To simulate the real environment of a tobacco factory, 
about 500 live adult tobacco beetles were manually placed on the trap pasteboard in the tobacco beetle image 
acquisition device in the laboratory for shooting.

The details of the tobacco beetle dataset are shown in Table 2 and Fig. 8. The width and height distribution 
of the tobacco beetle frame is approximately normal distribution, mainly concentrated between 30 and 50 px, 
of which 40 px is the most. The aspect ratio distribution of tobacco beetles is largely concentrated at 1.0, and the 
detection object is mainly 40 px × 40 px. This paper utilizes the Pascal VOC format and employs LabelImg as the 
annotation tool to create a custom dataset of small tobacco beetle objects.

Hyperparameter settings and training methods
All experiments in this paper are carried out in the hardware environment of the GPU model of NVIDIA 
GTX1080Ti, and the deep learning framework used is Pytorch1.2.0. There are a total of 28,080 images in the 
self-built dataset, which are used for training, validation, and testing in a ratio of 3:1:1, of which 16,848 images are 

Figure 7.   Schematic diagram of MGrFPN DDrGAM algorithm embedded in tobacco beetle detection system.

Table 2.   The distribution and complex background statistics of tobacco beetles in the data set.

Item

Sparse or dense With or without cut tobacco Light conditions

sparse dense Without Little Much Even Uneven

Number (pcs) 16,093 11,987 9971 8910 9199 16,509 11,571

Scale (%) 57.312 42.688 35.510 31.731 32.759 58.794 41.206
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used for training, 5616 images are used for validation, and 5616 images are used for the test. Images are resized 
to 1344 × 768 pixels according to the image aspect ratio. During the training process, the ImageNet pre-trained 
model is used as the initial weight of the backbone. The learning rate was initialized to 0.001, the batch size was 
set to 4, and a total of 70 epochs were trained. To fine-tune the model, experiments are set to reduce the learn-
ing rate to 1/3 of the original after training for 16 epochs and reduce it to 1/3 of the previous learning rate after 
training for 30 epochs. The Stochastic Gradient Descent (SGD) optimizer is applied to the network parameters, 
and default values are applied to other parameters.

To evaluate the detection performance, the experiments in this paper use common evaluation indicators in 
the object detection field, including Recall and Average-Precision (AP). The Recall is the proportion of all posi-
tive samples in the test set that are correctly identified as positive samples. Since this paper only involves one 
kind of object, Recall is the Accuracy, and AP is the Precision-Recall (PR) curve for the lower area of P(R), the 
calculation formulas of Recall and AP are shown in formula (8) and formula (9).

Formula (8), TP denotes the number of correctly identified examples of tobacco beetles, and FN denotes the 
number of incorrectly identified examples of tobacco beetles.

Ablation experiments
The ablation experiments shown in Table 3 are designed to verify the effect of the DDrGAM. We denote the 
outputs of the last convolutional layers of the second to fifth convolutional blocks of Resnet5027 as {C2, C3, 
C4, C5}, DDrGAM is added between C2 and P3, C3 and P3, C4 and P4, C5 and P5, and all layers respectively 
to verify its function. The results show that the module works better at high levels. The main reasons are: (1) 
the object location of the lower layer is relatively accurate, but the noise is large. Since the size and color of the 
cut tobacco are similar to the tobacco beetle, which has a particularly large impact on the detection of tobacco 
beetles, so when the module is added to the bottom layer the performance is not very good; (2) The high-level 
feature semantic information is rich, but the object location is relatively rough. Therefore, we added the DDrGAM 
module at a high level, which can not only enhance the object features but also capture the regional location of 
the tobacco beetle.

(8)Recall =
TP

TP + FN

(9)AP =

∫ 1

0

P(R)dR

Figure 8.   Statistical histogram of bbox width (w)/height (h)/aspect ratio (w/h) of tobacco beetle annotation 
boxes in all images in the self-built dataset.

Table 3.   Ablation experiments on position setting of DDrGAM module. Significant values are in bold. For 
example, DDrGAM + FPN@C2 ~ P2 means adding DDrGAM between the C2 lay-er and P2 layer of FPN; 
DDrGAM + FPN@C2 ~ P2@C3 ~ P3@C4 ~ P4@C5 ~ P5 means adding DDrGAM between all the C2 layer and 
P2, C3 and P3, C4 and P4, C5 and P5 layers.

Methods Setting

Faster R-CNN4 Cascade R-CNN32

AP0.5 AP0.6 AP0.7 AP0.5 AP0.6 AP0.7

DDrGAM + FPN

@C2 ~ P2 89.9 87.3 59.0 87.5 74.2 48.0

@C3 ~ P3 90.0 87.2 59.2 88.4 75.4 47.8

@C4 ~ P4 90.1 87.1 58.8 87.8 74.8 48.4

@C5 ~ P5 89.7 88.1 61.3 89.8 87.7 60.4

@C2 ~ P2 @C3 ~ P3
@C4 ~ P4 @C5 ~ P5 90.2 87.4 57.7 88.9 76.5 48.8
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In the DDrGAM module, we conduct an in-depth experimental study on the selection of convolutional kernel 
sizes. To comprehensively assess the impact of different kernel sizes, we test with three common sizes: 3 × 3, 5 × 5, 
and 7 × 7. It is clearly observed from Table 4 that when using these three convolutional kernel sizes individually, 
the 3 × 3 and 5 × 5 kernels exhibit superior performance.This result indicates that when dealing with high-level 
features, due to multiple downsampling, the pixel ratio of small targets in the feature map is already very limited. 
In such cases, using large convolutional kernels makes it challenging to effectively capture the features of these 
small targets. In contrast, the combination of 3 × 3 and 5 × 5 convolutional kernels not only captures detailed 
features highly relevant to the targets in the feature map but also improves the learning of multi-scale features 
through attention-guided feature aggregation.

To assess the impact of DDrGAM and the multi-feature fusion approach in our framework, we conduct 
ablation experiments. A meticulous comparison is made between object detection results with and without the 
DDrGAM module. From Table 5, it is evident that the introduction of DDrGAM produces varying effects under 
different feature fusion methods. The improvement in AP0.5 is relatively modest, while AP0.6 and AP0.7 show 
substantial enhancements. This suggests that, in more complex detection tasks, the superiority of the DDrGAM 
module becomes more pronounced. This may be attributed to DDrGAM’s ability to enhance contextual infor-
mation while exhibiting advantages in handling localization tasks. Furthermore, the experimental results also 
indicate that adopting the {P1, P2, P3, P4, P5} multi-feature fusion approach confers significant advantages in 
detecting small targets. This is primarily because this fusion method effectively leverages lower-level information, 
enhancing the model’s ability to capture details.

DDrGAM performance
Based on using Faster R-CNN3 and Cascade R-CNN32 as the detection network and, Resnet5027 as the back-
bone network, we compare methods whether embedding the DDrGAM in the FPN. As shown in Table 6, the 
proposed DDrGAM module achieves better performance. With the methods of embedding the FPN with the 
DDrGAM module, the detection precision is improved significantly. In the framework of the Faster R-CNN3 
algorithm, when the IoU is 0.5, the AP is improved from 89.5 to 89.7% (+ 0.2), and when the IoU is 0.6, the AP is 
improved from 85.0 to 88.1% (+ 3.1), and when the IoU is 0.7, the AP is improved from 55.3 to 61.3% (+ 6.0). In 
the framework of the Cascade R-CNN32 algorithm, when the IoU is 0.5, the AP is improved from 88.4 to 89.8% 
(+ 1.4), and when the IoU is 0.6, the AP is improved from 75.4 to 87.7% (+ 2.3), and when the IoU is 0.7, the 

Table 4.   Ablation experiments on deformable convolutional attention paths and Kernel size of DDrGAM 
Module. Significant values are in bold.

Module Path Deformable convolutional size

Faster R-CNN4 Cascade R-CNN32

AP0.5 AP0.6 AP0.7 AP0.5 AP0.6 AP0.7

DDrGAM

1 3 × 3 88.2 87.3 60.9 89.0 86.8 59.4

1 5 × 5 87.9 87.0 60.5 88.3 86.0 58.7

1 7 × 7 85.4 85.1 57.9 87.1 84.6 56.4

2 3 × 3, 5 × 5 89.7 88.1 61.3 89.8 87.7 60.4

3 3 × 3, 5 × 5, 7 × 7 88.0 86.7 60.3 88.0 85.7 58.0

Table 5.   Ablation experiments oni scale feature fusion method. Significant values are in bold.

DDrGAM Multiscale features

Faster R-CNN4 Cascade R-CNN32

AP0.5 AP0.6 AP0.7 AP0.5 AP0.6 AP0.7

{P2, P3, P4, P5,P6} 89.5 85.0 55.3 88.4 75.4 49.1

√ {P2, P3, P4, P5,P6} 89.7 88.1 61.3 89.8 87.7 60.4

√ {P1,P2, P3, P4, P5} 91.4 88.9 62.2 90.8 88.1 61.8

Table 6.   Performance (%) for different methods. Significant values are in bold.

Methods

IoU = 0.5 IoU = 0.6 IoU = 0.7

Recall0.5 AP0.5 Recall0.6 AP0.6 Recall0.7 AP0.7

Faster R-CNN + FPN 96.1 89.5 90.6 85.0 69.8 55.3

Faster R-CNN + DDrGAM + FPN 97.4 89.7 93.4 88.1 77.2 61.3

Cascade R-CNN + FPN 92.5 88.4 85.8 75.4 66.9 49.1

Cascade R-CNN + DDrGAM + FPN 96.4 89.8 92.2 87.7 74.0 60.4
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AP is improved from 49.1 to 60.4% (+ 11.3). The comparative experiments under the framework of both Faster 
R-CNN3 and Cascade R-CNN32 show that the proposed algorithm is an effective and certain generalization.

We show the Precision/Recall curves of two state-of-the-art network models (Faster R-CNN3 and Cascade 
R-CNN32) after adding the DDrGAM module in Fig. 9. Obviously, higher Precision and Recall can be obtained 
after adding the DDrGAM module, and with the increase in Recall, the Precision can maintain a high value, 
which shows that our method can effectively reduce the false rate.

MGrFPN–DDrGAM performance
To verify the performance of the network based on MGrFPN, the method of this paper is compared with the 
current mainstream detection network and feature pyramid network. The compared networks include Faster 
R-CNN3, SSD9, and YOLOv37, and feature pyramid Networks include NAS_FPN20. In addition, it also includes 
CARAFE_FPN formed by embedding CARAFE15 into traditional FPN and the feature pyramid network of 
ASPP16 is fused to form ASPP_FPN. The experimental results are shown in Table 7. The Average Precision of 
the algorithm proposed in this paper is: 91.4% (IoU = 0.5), 88.9% (IoU = 0.6), 62.2% (IoU = 0.7). Moreover, the 
Average Precision and Recall of the algorithm designed in this paper are both the highest. When the IoU is 0.5 
and 0.6, compared with CARAFE_FPN, the Average Precision is improved by 1.6%; when the IoU is 0.6 and 
0.7, compared with ASPP_FPN, the Average Precision is improved by 2.0% and 3.5% respectively, our method 
is better than the current mainstream algorithm.

Figure 10 shows the Precision/Recall curves of the detection performance of our proposed method and several 
other embedded feature pyramid network models. It can be seen from the figure that the detection performance 
based on the MGrFPN network is better than other methods. The classification and location accuracy of tobacco 
beetles have been greatly improved. There are two main reasons for this improvement: One is the design of the 

Figure 9.   Precision-recall curve for DDrGAM performance.

Table 7.   Recall rates (%) and average precision (%) for different networks.

Methods

IoU = 0.5 IoU = 0.6 IoU = 0.7

Recall0.5 AP0.5 Recall0.6 AP0.6 Recall0.7 AP0.7

Faster R-CNN3 84.50 77.60 69.80 55.00 44.10 29.30

Faster R-CNN + FPN13 96.10 89.50 90.60 85.00 69.80 55.30

EfficientDet33 72.32 67.85 51.73 42.80 35.00 17.85

SSD9 72.34 68.45 52.17 43.26 35.17 19.17

YOLOv37 77.53 70.36 56.48 47.67 37.23 25.48

YOLOv8l34 81.37 77.41 61.20 53.00 42.35 29.13

NAS_FPN20 95.0 89.50 89.40 77.0 70.20 49.80

CARAFE15_FPN 95.10 89.80 90.40 86.3 71.10 56.70

ASPP16_FPN 95.20 89.60 90.41 86.9 72.00 57.70

MGrFPN–DDrGAM 98.40 (+ 3.2) 91.40 (+ 1.6) 93.80 (+ 3.39) 88.90 (+ 2.0) 78.60 (+ 6.5) 62.20 (+ 3.5)
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combination of two-path deformable convolution and attention in DDrGAM, which can meet the detection of 
scale-changing tobacco beetles. While learning the shape features of tobacco beetles, it can use attention to guide 
the fusion of position information, so that it can be easier to locate the object. The second is that the improved 
MGrFPN network increases the multi-scale features of small objects similar to tobacco beetles, reducing missed 
and false detection.

Although our method has demonstrated outstanding performance compared to mainstream algorithms, we 
have observed a phenomenon: there is a significant decrease in performance as the IoU increases. This phenom-
enon is not unique to our method but is commonly observed in various approaches. After thorough analysis, we 
believe there may be several reasons for this: Firstly, an increase in IoU implies increasingly precise localization 
of object bounding boxes. This not only requires our method to accurately detect the objects but also demands 
high precision in predicting the object bounding boxes. However, in practical applications, due to the diversity 
and complexity of objects in images, as well as background interference and other factors, accurately predicting 
object bounding boxes is a highly challenging task. Therefore, when the IoU threshold is raised, our method may 
face greater challenges, leading to performance degradation. Secondly, our method may have shortcomings in 
detecting occluded objects. These challenges may become more apparent as the IoU threshold increases, thereby 
affecting the overall performance of the method. To address these issues, we plan to take the following meas-
ures to improve our method in future work: Introduce more advanced feature extraction networks to enhance 
the representation capability of target features, thus more accurately predicting object bounding boxes. Adopt 
more refined object localization strategies, such as using methods like multiscale feature fusion or bounding 
box regression refinement, to improve the precision of predicting object bounding boxes. Strengthen the ability 
to handle small and occluded objects, for example, through improvements in loss functions, to better cope with 
these challenging scenarios.

To fully demonstrate the generalization performance of the proposed method in this paper and to conduct 
a fair comparison with existing methods, we choose to perform experimental validation on the COCO dataset. 
During this process, we will compare our results with the detection results of some existing methods on the 
COCO dataset to ensure the objectivity and reliability of the experimental results. The experimental data of these 
comparative methods are all from relevant literature.

The MS COCO dataset can be utilized for multiple tasks and features a rich diversity of data samples extracted 
from complex daily scenes. The dataset comprises 328,000 images and 2,500,000 labels, with over 1.5 million 
individual objects across a total of 91 object categories. Over half of the annotated images in the MS COCO 
dataset adhere to the definition of small objects.

Table 8 presents a comparison of the detection performance of mainstream small object detection methods 
on the COCO test-dev dataset with the method proposed in this paper. It can be observed that YOLOv5 achieves 
the highest scores in terms of AP. Compared to ResNet, YOLOv5 utilizes a more powerful backbone network, 
known as Modified CSP v5. However, its performance in terms of APs cannot surpass our method based on 
ResNet-101, MGrFPN-DDrGAM. Therefore, it can be inferred that even though the backbone networks of 
YOLOv4 and v5 possess higher feature extraction capabilities, our proposed method enhances the richness of 
features and the fusion of semantic information through design, thereby enhancing the ability to extract stronger 
semantic and contextual information. This further strengthens the feature representation capability, indicating 
that the improvements made by the proposed method are still relatively significant.

Figure 10.   The precision-Recall curve for MGrFPN-DDrGAM performance.
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Table 8.   Performance validation experiments on the COCO test-dev dataset with mainstream algorithms (%). 
Significant values are in bold.

Method Backbone AP(%) AP50 AP75 APS APM APL

YOLOv37 Darknet-53 42.4 63.0 47.4 25.5 45.7 52.3

EfficientDet33 Efficient-B0 33.8 52.2 35.8 12.0 38.3 51.2

PP-YOLOv235 ResNet50-vd-dcn 49.5 68.2 54.4 30.7 52.9 61.2

YOLOv436 CSPDarknet-53 43.5 65.7 47.3 26.7 46.7 53.3

YOLOv537 Modified CSP v5 50.4 68.8 – – – –

YOLOX38 Darknet-53 47.4 67.3 52.1 27.5 51.5 60.9

MGrFPN–DDrGAM ResNet-50 48.9 69.2 53.3 30.7 51.4 59.1

MGrFPN–DDrGAM ResNet-101 50.1 69.7 53.9 31.5 52.7 59.5

Figure 11.   The detection results of different methods on the self-built dataset. A total of 5 scenes are included, 
and the green, red and blue rectangles represent true positives, false positives, and false negatives, respectively. 
The green number represents the confidence level.
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Result visualization
Figure 11 shows the visualization results of five scenarios when the IoU is 0.6 under the Faster R-CNN3 frame-
work. Each row shows the results of the base model (left) and our method (right). The experiment also shows 
the number of detected tobacco beetles and the degree of insect severity. The basic model has missed or false 
detection in various scenarios especially missed detection is very serious, which is very unfavorable for the 
control of tobacco beetles. Compared to the base model, our method can better detect small objects like the 
tobacco beetle with higher confidence and performs better when there is more noise (for example, tobacco 
leaves), darker light, and a higher IoU.

Our method exhibits robustness when facing challenges such as lighting variations, complex backgrounds, 
and beetle pose changes. Specifically:

Lighting variations: Regardless of whether the environment is bright or dark, our method accurately identifies 
and locates tobacco beetles, thus handling image inputs under different lighting conditions effectively.

Background complexity: Even in environments with much cut tobacco, our method can effectively extract 
beetle features, enabling precise detection and classification. Our model is capable of disregarding interference 
from the background and focusing on the beetle’s characteristics.

Beetle pose changes: Our method maintains stable performance whether beetles are in clustered states or 
facing up, tilted sideways, or facing down. This is attributed to the model’s robust adaptability to pose changes, 
allowing it to capture key features of beetles in different poses and achieve accurate recognition.

In summary, our method demonstrates good robustness in handling lighting variations, background complex-
ity, and beetle pose changes, enhancing its versatility and reliability in practical applications.

Conclusion
Aiming at the disadvantages of high time cost, low monitoring efficiency, poor real-time performance, and 
inaccurate data for manual insect statistics, we propose an automatic detection method for tobacco beetles as 
small objects in complex scenarios-MGrFPN-DDrGAM. The method uses a camera to capture insect images on 
the trap at a set acquisition frame rate, uses computer vision technology to perform intelligent object detection 
and recognition on tobacco beetle images, and automatically counts the number of tobacco beetles, which is a 
follow-up process for tobacco beetle control. Provide accurate and reliable insect monitoring data, and carry out 
insect warnings. In this paper, we build a multi-scene tobacco beetle dataset containing 28,080 images and use 
the Multi-scale Global residual Feature Pyramid Network (MGrFPN) for automatic extraction of multi-scale 
features and the Dual-path Deformable receptive field Guided Attention Module (DDrGAM) for effective feature 
automatic fusion to achieve the object classification, location and quantitative statistics of tobacco beetles. The 
MGrFPN network constructed in this paper can effectively fuse multi-scale features and enhance the expres-
siveness of features. At the same time, the DDrGAM module is designed. After the feature extraction network, 
deformable convolution is used to obtain effective features, which can better fit the shape and posture of tobacco 
beetles, reduce the interference of the background, and improve the classification performance of object detec-
tion. Then, the features are selectively fused through the feature attention block to enhance the generalization 
ability of semantic features and improve the location accuracy of object detection. at last. A large number of 
comparative experiments are carried out on the self-built dataset. Under different algorithm frameworks, the 
Average Precision of the method in this paper is superior to the compared advanced algorithms, which verifies 
the effectiveness of the method. The experimental results show that our method can recognize and accurately 
locate small objects, and can adapt to various morphological changes of small objects in complex environments 
and similar backgrounds, which is helpful for the precise detection of small objects such as tobacco beetles in 
complex environments.

Our method adopts advanced deep learning and computer vision techniques, which provide powerful feature 
extraction and classification capabilities. This enables our method to maintain stable performance in various 
complex and changing environments. Additionally, our method exhibits good scalability and customizability, 
allowing flexible adjustment and optimization according to specific application scenarios and requirements.

Although the method proposed in the paper demonstrates good performance in tobacco beetle detection, 
except for some issues discussed in the experimental section, there are still several limitations. Currently, our 
method relies primarily on a limited dataset for training and validation, which may restrict its ability to cover 
all potential tobacco beetle species and environmental conditions, thus affecting the model’s performance in 
specific contexts. Additionally, despite achieving a balance between detection speed and accuracy, real-time 
application remains a challenge for devices with limited resources. Furthermore, although we validated the 
model’s generalization ability on different datasets, in practical applications, the model may still face unknown 
challenges such as the emergence of new tobacco beetle species or environmental changes.

To overcome these limitations and further improve the method’s performance, we plan to take the following 
measures in future research: Firstly, we will focus on expanding the dataset by collecting more types of tobacco 
beetle images and data under different environmental conditions to enhance the model’s generality and robust-
ness. Secondly, to reduce the demand for computational resources, we will explore model compression and 
acceleration techniques to enable real-time detection on resource-constrained devices. As new tobacco beetle 
species emerge and environmental changes occur, we will continuously update and optimize the model to ensure 
it maintains optimal performance. Additionally, we will consider integrating multimodal data such as sound and 
temperature sensor data to enhance the model’s perceptual capabilities and further improve detection accuracy. 
Through these efforts, we hope to make greater contributions to the field of tobacco beetle monitoring.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. Currently, our entire project is expected to conclude around June 2024. Upon the 
successful completion of the project, we will publicly release our complete code and dataset for other researchers 
to use, reference, and further expand upon. Before the project concludes, if any researchers are interested in our 
dataset and code and wish to gain access, we warmly welcome them to contact the corresponding author via 
email. We will strive to provide necessary assistance and support to meet their research needs.
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