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A novel interpretable deep transfer 
learning combining diverse 
learnable parameters for improved 
T2D prediction based on single‑cell 
gene regulatory networks
Sumaya Alghamdi 1,2 & Turki Turki 1*

Accurate deep learning (DL) models to predict type 2 diabetes (T2D) are concerned not only with 
targeting the discrimination task but also with learning useful feature representation. However, 
existing DL tools are far from perfect and do not provide appropriate interpretation as a guideline to 
explain and promote superior performance in the target task. Therefore, we provide an interpretable 
approach for our presented deep transfer learning (DTL) models to overcome such drawbacks, working 
as follows. We utilize several pre-trained models including SEResNet152, and SEResNeXT101. Then, 
we transfer knowledge from pre-trained models via keeping the weights in the convolutional base 
(i.e., feature extraction part) while modifying the classification part with the use of Adam optimizer to 
deal with classifying healthy controls and T2D based on single-cell gene regulatory network (SCGRN) 
images. Another DTL models work in a similar manner but just with keeping weights of the bottom 
layers in the feature extraction unaltered while updating weights of consecutive layers through 
training from scratch. Experimental results on the whole 224 SCGRN images using five-fold cross-
validation show that our model (TFeSEResNeXT101) achieving the highest average balanced accuracy 
(BAC) of 0.97 and thereby significantly outperforming the baseline that resulted in an average 
BAC of 0.86. Moreover, the simulation study demonstrated that the superiority is attributed to the 
distributional conformance of model weight parameters obtained with Adam optimizer when coupled 
with weights from a pre-trained model.

Keywords  Deep transfer learning, Optimizers, Explainable AI, T2D prediction, Single-cell gene regulatory 
network

Type 2 diabetes (T2D) is a common condition that over time when left untreated can cause damage reaching vari-
ous organs, including kidney, eye, and heart, to just name a few1,2. Patients with diabetes incur an overall average 
medical expenditure more than two times that of those without diabetes. Therefore, diabetes is considered as a 
burden associated with higher medical costs, and increased mortality rates3. Obtaining a highly accurate tool 
to discriminate between healthy and T2D subjects can aid in disease diagnosis, management, prevention and 
understanding4. Therefore, scientific efforts have been made contributing to detect T2D using computational 
methods5–8.

Pyrros et al.9 employed deep learning (DL)-based approach to identify T2D using chest X-ray (CXR) images 
pertaining to healthy and T2D patients working as follows. They employed the ResNet34 DL model incorporat-
ing typical data augmentation with the use of Adam optimizer10. The dataset to develop (i.e., train from scratch 
to induce) the ResNet34 model consisted of 271,065 CXR training images in which 45,961 were designated 
as T2D CXR images and the remaining 225,104 were as CXR images for healthy control subjects. The trained 
model was then applied for a testing set consisting of 9943 CXR images. Results demonstrated that the DL model 
achieved an AUC of 0.84 when compared to an AUC of 0.79 for the baseline linear regression (LR) incorporating 
only clinical information data. An ensemble of both LR and ResNet34 generated an AUC of 0.85, considered 
as a marginal improvement in the prediction performance. These results demonstrate the feasibility of DL in 
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screening T2D patients using CXR images. Wachinger et al.11 presented a DL approach to predict T2D based on 
neck-to-knee MRI images and clinical information. The MRI images dataset consisted of 3406 MRI images in 
which the class distribution is uniformed (i.e., 1703 as T2D and 1703 as MRI images for healthy control subjects). 
The DL approach consists of convolutional layers, maxpooling layers, batch normalization layers, dropout layer 
and incorporation of dynamic affine feature map transform (DAFT) within convolutional layers to concatenate 
features obtained from clinical and MRI image data. Five-fold cross-validation was utilized to assess the per-
formance of the whole data. Results demonstrated the superiority of CNN-DAFT achieving an AUC of 0.871, 
significantly outperforming CNN using only MRI images and linear regression using only clinical information.

Das12 et al. presented a learning-based approach combining deep and machine learning for the diagnosis 
of T2D based on DNA sequences working as follows. First, they transformed the DNA sequence pertaining to 
healthy and T2D to images, provided as input to ResNet13 and VGG19 DL models to extract features. Then, 
providing the extracted features along with corresponding class labels to machine learning algorithms, namely 
support vector machines(SVM) and KNN. Experimental results using cross-validation on the whole image 
dataset demonstrate the good performance of SVM when coupled with extracted features using ResNet DL 
model. Naveed et al.14 employed DL to predict T2D. The dataset consisted of 19,181 patient records data in 
which 7715 records were for diabetic patients while the remaining 11,466 records were for non-diabetic patients. 
The dataset was divided into training and testing in which training composed of 80% of the dataset while the 
remaining 20% was assigned for testing. DL models included CNN, LSTM, and CNN-LSTM15. Experimental 
results demonstrated the superior performance of CNN-LSTM achieving the highest performance results when 
compared to other models including decision tree and SVM. Specifically, CNN-LSTM generated an accuracy 
of 91.6, and F1-Score of 89.2. These results demonstrate the feasibility of DL in early predicting T2D. Other AI-
driven computational methods have been proposed to aid in predicting T2D8,16.

As inferred single-cell gene regulatory networks (SCGRNs) encode the molecular interactions pertaining to 
components of specific cell types and thereby can aid in characterizing cellular differentiation in healthy and dis-
ease subjects17,18, Turki et al.19 presented a novel DL approach to discriminate between heathy controls and T2D 
based on SCGRN images working as follows. Because rapid progress in single-cell technologies has contributed to 
the availability of biological experiments pertaining to gene regulatory networks (GRNs), single-cell gene expres-
sion data from the ArrayExpress repository was processed with the use of bigSCale and NetBioV packages20–22, 
generating 224 SCGRN images. The class distribution was distributed evenly in terms of healthy controls and 
T2D images. Then, utilizing RMSprop optimizer15 with the following DL models: VGG1623, VGG1923, Xception24, 
ResNet5013, ResNet10113, DenseNet12125, and DenseNet16925 to discriminate between healthy controls and T2D 
SCGRN images. Experimental results demonstrated the VGG19 performed better than studied DL models. 
However, no interpretation was provided to back the prediction performance.

Although these recently developed methods aimed to address the task of prediction T2D, these methods are 
still far from perfect and do not provide interpretation for practical deep transfer learning (DTL) models aid-
ing in the explanation of the performance superiority. Therefore, this study is unique in the following aspects: 
(1) we present highly accurate DTL models working by combining weight parameters from pre-trained models 
and weights obtained with the use of Adam optimizer; (2) we provide, to the best of our knowledge, the first 
interpretation behind DTL models inspecting and quantifying that conformance of pre-trained model weight 
parameters with weight parameters obtained with the incorporation of Adam and RMSprop Optimizers. This 
interpretation framework can guide in the process of designing highly efficient DTL models applicable to wide 
range of problems; and (3) we conduct experimental study to report the prediction performance and computa-
tional running time for the task of predicting single-cell gene regulatory network images pertaining to healthy 
controls and T2D. Experimental results demonstrate the superiority of our DTL model, TFeSEResNeXT101, 
performing better than the baseline with 11% improvements. In terms of the running time, our DL models 
exhibited a significant reduction in training time attributed to transfer learning, which reduced the number 
of trainable weight parameters. In addition, simulation study unveiled the conformance of parameter weights 
of both transfer weights from pre-trained models with weights obtained from Adam optimizer as compared 
to RMSprop that was used by the baseline and resulted in inferior prediction performance, attributed to the 
divergence of its weight parameters from the weight parameters of pre-trained models.

Materials and methods
Biological networks
We provide an illustration in Fig. 1 for the biological network images used in this study, which were downloaded 
from19 and consisted of 224 SCGRN images pertaining to healthy and T2D. The class distribution for these 
biological network images is balanced (i.e., 224 divided evenly into the two classes). These biological network 
images were produced with the help of bigSCale package to process the single-cell gene expression data and 
build regulatory networks, then visualizing networks via the NetBioV package. In terms of the single-cell gene 
expression data pertaining to healthy controls and T2D patients, it was obtained from ArrayExpress repository 
under accession number E-MTAB-506126.

Deep transfer learning
Figure 1 demonstrates how our deep transfer learning (DTL) approach is performed. First, we adapt the following 
pre-trained models: VGG19, DenseNet20125, InceptionV327, ResNet50V228, ResNet101V228, SEResNet15229, and 
SEResNeXT10129. Each pre-trained model has a feature extraction part (i.e., series of convolutional and pool-
ing layers) for feature extraction and a densely connected classifier for classification. Then, we keep the weights 
unchanged for the feature extraction part of a pre-trained model and change the densely connected classifier to 
deal with binary classification instead of 1000 classes. Therefore, when feeding the SCGRN image dataset, we 
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extract features using weights of pre-trained models while training the densely connected classifier from scratch 
and performing prediction. We refer to models using this type of DTL computations as TFeVGG19, TFeD-
enseNet201, TFeInceptionV3, TFeResNet50V2, TFeResNet101V2, TFeSEResNet152, and TFeSEResNeXT101 
(see Fig. 1). For the other DTL computations, we keep weights of the bottom layers unchanged in the feature 
extraction part while performing training from scratch to change weights of top layers in feature extraction part 
and densely connected layers.

As in TFe-based models, we modify the densely connected classifier dealing with binary classification problem 
before performing the training phase. As seen in Fig. 2, we refer to models employing this type of deep transfer 
learning as TFtVGG19, TFtDenseNet201, TFtInceptionV3, TFtResNet50V2, TFtResNet101V2, TFtSEResNet152, 
and TFtSEResNeXT101.

When changing weights during training, we employed three optimizers: Adam, RMSprop, and SGD30. When 
weights are kept unchanged referring to the transfer of knowledge from pre-trained models using SGD opti-
mizer. In terms of predictions of unseen SCGRN images, predictions are mapped to healthy control subjects if 
the predicted values are greater than 0.5. Otherwise, predictions are mapped to T2D.

Figure 1.   Flowchart of the deep transfer learning-based approach for the predicting T2D using SCGRNs. 
Biological Networks: To infer single-cell gene regulatory network (SCGRN), gene expression data are provided 
to bigSCale (performing clustering and differential expression analysis) changing measured correlation between 
genes from expression values to Z-score, followed by retaining significant correlations to guide in building a 
regulatory network. A visualization is performed using NetBioV. Deep Transfer Learning: Transfer learning 
applying feature extraction with new classifier (TFe) to distinguish between T2D and healthy control SCGRNs.
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Results
Classification methodology
In this study, we considered seven pre-trained models, namely VGG19, DenseNet201, InceptionV3, ResNet50V2, 
ResNet101V2, SEResNet152, and SEResNeXT101. Each of the pre-trained models was trained on 1.28 million 
images from ImageNet database to classify images into 1000 different categories. In terms of TFe-based models, 
we used the feature extraction part of pre-trained models in which weights were kept unchanged and were used 
to extract feature from SCGRN images. Moreover, the densely connected classifier was trained from scratch to 
handle the binary class classification problem. Regarding the TFt-based models, we trained the top layers and 
densely connected classifier from scratch while retaining the weights of bottom layers unchanged in the feature 
extraction part. For both TFt-based and TFe-based models, we employed Adam optimizer when updating weights 
of layers. Moreover, we compared the performance of our deep transfer learning approaches using different 
optimizers including the baseline (i.e., RMSprop optimizer) as well as against training models from scratch. We 
set optimization parameters as follows: 0.00001 for the learning rate, 10 for the number of epochs, and 32 for 
the batch size. In terms of the loss function, we utilized categorical cross-entropy31.

To assess the performance of studied models, we employed Balanced Accuracy (BAC), Accuracy (ACC), 
Precision (PRE), Recall (REC), and F1 computed as follows:

(1)BAC = 1

2

(

TP

TP + FN
+ TN

TN + FP

)

(2)ACC = TP + TN

TP + TN + FP + FN

(3)PRE = TP

TP + FP

(4)REC = TP

TP + FN

(5)F1 = 2 ∗ PRE ∗ REC
PRE + REC

Figure 2.   Transfer learning applying fine tuning with new classifier (TFt) to distinguish between T2D and 
healthy control SCGRNs.
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where TN designates true negative, corresponding to the number of T2D images that were correctly predicted as 
T2D. FP designates false positive, corresponding to the number of T2D images that were incorrectly predicted as 
healthy controls. TP designates true positive, corresponding to the number of healthy control images that were 
correctly predicted as healthy controls. FN designates false negative, corresponding to the number of healthy 
control images that were incorrectly predicted as T2D.

To evaluate the results on the whole SCGRN image dataset, we employed five-fold cross-validation as follows. 
We partitioned the SCGRN image datasets and randomly assigned images into 5 folds. During the first run of 
five-fold cross-validation, we used 4 of the folds to train our deep learning models and perform predictions to 
the remaining fold for testing and record the performance results. Such a process was repeated for an additional 
4 runs in which performance results were recorded. Finally, we report the average performance results corre-
sponding to the results obtained from five-fold cross-validation.

Implementation details
All experiments were run on a machine equipped with central processing unit (CPU) of Google Colab. The 
specifications of CPU runtime offered by Google Colab were Intel Xeon Processor with two cores with 2.30 GHz 
and 13 GB RAM where the installed version of Python is 3.10.11. For the analysis of models, we used R statistical 
software32 to run the experiments and utilized the optimg package in R to run Adam optimizer33. All plots were 
performed using Matplotlib package in python34.

Classification results
Training results
In Fig. 3, we illustrate the training accuracy performance results when running five-fold cross-validation. It 
can be seen that our models outperformed all other models trained from scratch. Specifically, TFeVGG19 and 
TFtVGG19 achieved average accuracies of 0.976 and 0.962, respectively, while VGG19 achieved an average 
accuracy of 0.530. TFeDenseNet201 outperformed DensNet201 via achieving an average accuracy of 0.988 while 
DenseNet201 performed better than TFtDenseNet201 via achieving an average accuracy of 0.982 compared to 
0.946. For TFe- and TFt-based models when coupled with ResNet101V2, SEResNet152 and SEResNetXT101, 
they outperformed their counterparts when not applying deep transfer learning (DTL) models. These superior 
performance results are attributed to the learned representation using transfer learning.

Testing results
Figures 4 and 5 report the generalization (i.e., test) accuracy performance results and combined confusion 
matrices, respectively, when five-fold cross-validation is utilized. TFeSEResNeXT101 achieved the highest aver-
age accuracy of 0.968.

The second-best model is TFeDenseNet201, achieving an average accuracy of 0.958, followed by TFeVGG19, 
TFeResNet50V2, TFeSEResNet152, TFeInceptionV3, and TFeResNet101V2 (generating average accuracies of 
0.946, 0.940, 0.936, 0.930, and 0.918, respectively). TFt-based models also outperformed all models trained from 
scratch (see Fig. 4b,c). Particularly, TFt-based models generated average accuracies lower and upper bounded 
by 0.864 and 0.916, respectively, while models trained from scratch were lower and upper bounded by average 
accuracies of 0.468 and 0.590. These results demonstrate the superior performance of models employing our 
DTL computations.

In terms of reporting testing performance results using different metrics, our model TFeSEResNeXT101 
outperforms all other models (see Table 1) via achieving an average BAC of 0.97, average PRE of 0.97 (tie with 
our model TFeSEResNet152), and average F1 of 0.97. Moreover, TFeVGG19 and TFtVGG19 perform better than 
VGG19. Similarly, TFeDenseNet201, TFeInceptionV3, TFeResNet50V2, TFeResNet101V2, and TFeSEResNet152 
performed better than DenseNet201, InceptionV3, ResNet50V2, ResNet101V2, and SEResNet152, respectively. 
Th same holds true for TFt-based models outperforming their counterparts (i.e., VGG19, DenseNet201, Incep-
tionV3, ResNet50V2, ResNet101V2, SEResNet152, and SEResNetXT101).

Figure 3.   The boxplots presenting the average five-fold cross-validation results using the ACC measure for 
the training folds. (a) Deep transfer learning models using feature extraction (referred with the prefix TFe). (b) 
Deep transfer learning models using fine tuning (referred with the prefix TFt). (c) Deep learning models trained 
from scratch. ACC is accuracy.
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Table 2 reports our best DTL models with different optimizers. It can be shown that TFeSEResNeXT101 
and TFtSEResNeXT101 generate the highest performance results when coupled with Adam optimizer method. 
Specifically, TFeSEResNeXT101 with Adam optimizer generates the highest average BAC (and F1) of 0.97 (and 
0.97). TFtSEResNeXT101 with Adam optimizer archives the highest average BAC of 0.91, highest average F1 
of 0.90 (tie with SGD optimizer). When TFeSEResNeXT101 and TFtSEResNeXT101 are coupled with SGD 
optimizer, they generate inferior performance results.

Figure 4.   The boxplots presenting the average five-fold cross-validation results using the ACC measure for the 
testing folds. (a) Deep transfer learning models using feature extraction (referred with the prefix TFe). (b) Deep 
transfer learning models using fine tuning (referred with the prefix TFt). (c) Deep learning models trained from 
scratch. ACC is accuracy.

Figure 5.   Combined confusion matrices for all methods during the running of five-fold cross-validation.
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In Table 3, we compare our model TFeVGG19 with Adam optimizer against the best performing baseline 
TFeVGG19 with RMSprop optimizer, named VGG19 in19. It is evident that our model TFeVGG19 with Adam 
optimizer achieves the highest average BAC of 0.94 while the baseline obtained an average BAC of 0.86. Moreover, 
when F1 performance measure is considered, TFeVGG19 with Adam optimizer attains the highest average F1 
of 0.94 while the baseline achieved an average F1 of 0.88. The same holds true for TFtVGG19, which achieved 
the highest average BAC of 0.91, highest average F1 of 0.90.

In Fig. 6, we report the running time in seconds for the process of running five-fold cross-validation when 
utilizing our best model (TFeSEResNeXT101) and TFtSEResNeXT101 compared to their peer SEResNeXT101. 

Table 1.   Reported average performance results during the running of five-fold cross-validation on testing 
using studied models. BAC is balanced accuracy. PRE is precision. REC is recall. The best overall result is 
underlined and is shown in bold. The method outperforming its counterparts is just underlined.

Model Optimizer BAC PRE REC F1

TFeVGG19 Adam 0.94 0.95 0.94 0.94

TFtVGG19 Adam 0.90 0.82 0.97 0.89

VGG19 Adam 0.50 0.37 0.46 0.41

TFeDenseNet201 Adam 0.96 0.95 0.95 0.96

TFtDenseNet201 Adam 0.90 0.91 0.90 0.90

DenseNet201 Adam 0.50 0.20 0.51 0.29

TFeInceptionV3 Adam 0.93 0.95 0.91 0.92

TFtInceptionV3 Adam 0.87 0.76 0.92 0.83

InceptionV3 Adam 0.50 0.91 0.50 0.64

TFeResNet50V2 Adam 0.93 0.93 0.92 0.93

TFtResNet50V2 Adam 0.87 0.95 0.81 0.87

ResNet50V2 Adam 0.50 – – –

TFeResNet101V2 Adam 0.92 0.92 0.91 0.92

TFtResNet101V2 Adam 0.89 0.90 0.86 0.88

ResNet101V2 Adam 0.52 0.75 0.49 0.59

TFeSEResNet152 Adam 0.94 0.97 0.90 0.93

TFtSEResNet152 Adam 0.88 0.96 0.81 0.88

SEResNet152 Adam 0.55 0.67 0.50 0.57

TFeSEResNeXT101 Adam 0.97 0.97 0.96 0.97

TFtSEResNeXT101 Adam 0.90 0.96 0.90 0.91

SEResNeXT101 Adam 0.60 0.56 0.60 0.58

Table 2.   Performance comparison of our best deep transfer learning model under different optimizers during 
the five-fold cross-validation. BAC is balanced accuracy. Best performance result is shown in bold.

Model Optimizer BAC F1

TFeSEResNeXT101

Adam 0.97 0.97

RMSprop 0.92 0.92

SGD 0.77 0.77

TFtSEResNeXT101

Adam 0.91 0.90

RMSprop 0.90 0.89

SGD 0.90 0.90

Table 3.   Performance comparison of our deep transfer learning model against recent baseline methods when 
five-fold cross-validation is employed. BAC is balanced accuracy. Best performance result is shown in bold.

Model Optimizer BAC F1

TFeVGG19
Adam (ours) 0.94 0.94

RMSprop (baseline) 0.86 0.88

TFtVGG19
Adam (ours) 0.91 0.90

RMSprop (baseline) 0.89 0.89
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Our model TFeSEResNeXT101 is 208.45 × faster than SEResNeXT101. Also, our model TFtSEResNeXT101 is 
3.82 × faster than SEResNeXT101. Moreover, TFeVGG19 and TFtVGG19 are 802.67 × and 2.53 ×, respectively, 
faster than VGG19. These results demonstrate the computational efficiency of the DTL models, in addition to 
the highly achieved performance results.

Models introspection
Stochastic gradient descent (SGD)
To minimize the objective function Q(θ0, θ1) for parameters θ0 and θ1 of model H(xi) , we employ gradient descent 
optimization algorithms to find θ0 and θ1 minimizing the objective function. The optimization problem can be 
formulated as follows:

We utilize SGD, RMSprop, and Adam optimization algorithm to minimize the objective function and estimate 
the model parameters. For SGD, we initialize the parameters  θ0 and θ1 according to the uniform distribution 
U(0, 1) and setting the learning rate η = 0.001 , maximum number of iterations to 3000. Then, in each time, shuf-
fling the data of m examples followed by looping m times over the following to update model parameters After 
the end of looping, the algorithm stops if the maximum number of iterations is reached or �∇Q(θ0, θ1)� ≤ 0.001:

Root mean square propagation (RMSprop)
For RMSprop, we initialize model parameters according to uniform distribution U(0, 1) , set the learning rate 
η = 0.001 , maximum number of iterations to 3000, β = 0.9 , ǫ = 10−6 , BatchSize = 16, referred in the following 
as |S|. Then, looping to update model parameters according to each selected batch. After ending of looping over 
all selected batches, the algorithm terminates when  �∇Q(θ0, θ1)� ≤ 0.001 or the maximum number of itera-
tions is reached:

(6)

min
θ0,θ1

Q(θ0, θ1) =
1

m

m
∑

i=1

Qi(θ0, θ1)

= 1

m

m
∑

i=1

(H(xi)− yi)
2

= 1

m

m
∑

i=1

(θ0 + θ1xi − yi)
2

(7)

θ0 := θ0 − η · ∂Qi

∂θ0

:= θ0 − η · 2(θ0 + θ1xi − yi)

θ1 := θ1 − η · ∂Qi

∂θ1

:= θ1 − η · 2xi(θ0 + θ1xi − yi)

Figure 6.   Running time comparisons in seconds for selected models when running five-fold cross-validation.
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Adaptive moment estimation (Adam)
In terms of Adam, mθ 0,mθ 1, vθ 0, vθ 1,β1,β2, ǫ, and η are initialized as in35. Then, looping to update model param-
eters according to all selected batches of examples. After ending of looping over all selected batches, the algorithm 
stops if the maximum number of iterations (i.e., 3000) is reached or �∇Q(θ0, θ1)� ≤ 0.001:

(8)

vθ0 := β · vθ0 + (1− β)

(

∂Q

∂θ0

)2

:= β · vθ0 + (1− β)

(

2

|S|
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i
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)2
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Simulated data
To demonstrate the efficiency of the proposed deep transfer learning (DTL) models incorporation mixed param-
eters derived from both SGD and Adam, we conducted simulation studies to explain the superiority behind 
the proposed models as well as imitate the numerical behavior. Particularly, we consider the following four 
predictive models:

where X ∼ U(0, 1) and ǫ ∼ N(0, 0.2) in which U() and N() are uniform and normal distributions, respectively. 
For F1, when we have X and Y = F1(X), we perform the following steps. Let HSGD(xi) = θ0 + θ1xi (for i = 1..m) 
be the model in which we want to estimate parameters using (X,Y) data from F1 coupled with Eq. (7). Similarly, 
let HRMSprop(xi)and HAdam(xi) be models in which we want to estimate their parameters using Eqs. (8) and (9), 
respectively, coupled with (X,Y) data from F1. Then, we provide each xi ∈ X to perform predictions correspond-
ing to y′i . In Fig. 7, we report 2D plots for X and predicted Y ′ = {y′1, . . . , y′m} via each model using data generated 
according to Eq. (10), where SGD refers to plotting (xi ,HSGD(xi)) while Adam and RMSprop refer to plotting 
results obtained via (xi ,HAdam(xi)) and (xi ,HRMSprop(xi)) , respectively, and i = 1..m. We then repeat this process 
for an additional 8 runs. Therefore, we have 9 runs in total.

(10)F1(x) = 0.5+ 0.79x + ǫ

(11)F2(x) = 1− exp

(−1

2x

)

(12)F3(x) = 0.7+ 3x2 + ǫ

(13)F4(x) = (6x − 2)2 + sin(12x − 4)

Figure 7.   Plots for the three models as (xi ,HSGD(xi)) , (xi ,HAdam(xi)), and (xi ,HRMSprop(xi))  for i = 1..m 
according to  xi generated using F1.
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It can be seen from Fig. 7 that model induced via RMSprop has more distributional differences compared to 
those obtained via SGD and Adam. To quantify distributional differences between SGD and Adam against SGD 
and RMSprop, we perform the following computations:

where dSA measuring the distance between data associated with SGD and Adam. Similarly, dSR measures the 
distance between data associated with SGD and RMSprop. The lower the distance value, the less the distribu-
tion difference is. Figure 11a plots dSA and dSR for the 9 runs. It can be seen that HAdam(xi) is closer to HSGD(xi) 
than HRMSprop(xi) to HSGD(xi) in most runs. Moreover, the distributional differences are statistically significant 
(P-value = 7.28× 10−14 from t-test).

These results demonstrate conformance of the weight parameters of models utilizing Adam and SGD optimiz-
ers. Figure 8 reports the 2D plots of three induced models as (xi ,HSGD(xi)), (xi ,HAdam(xi)) , and (xi ,HRMSprop(xi))  
for i = 1..m using data generated according to Eq. (11) (i.e., F2)36. It can be clearly seen that the data distributional 
difference of results via SGD is closer to that of Adam when compared to results obtained with the help of 
RMSprop. In Fig. 11b, we quantify distributional differences using Eqs. (14) and (15). It can be shown that Adam 
is closer to SGD as shown from AdamSGD when compared to that of RMSprop to SGD (i.e., RMSpropSGD) 
over the 9 runs. The quantification of AdamSGD is attributed to dSA while RMSpropSGD is attributed to dSR. 

(14)dSA =
√

∑

i

(

(

xSGDi − xAdami

)2 +
(

zSGDi − zAdami

)2
)

(15)dSR =
√

∑

i

(

(

xSGDi − x
RMSprop
i

)2

+
(

zSGDi − z
RMSprop
i

)2
)

Figure 8.   Plots for the three models as (xi ,HSGD(xi)) , (xi ,HAdam(xi)) , and (xi ,HRMSprop(xi))  for i = 1..m 
according to  xi generated using F2.
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In addition, the distributional differences between AdamSGD and RMSpropSGD are statistically significant 
(P-value = 7.01× 10−7 from t-test).

Figures 9 and 10 report 2D plots of (xi ,HSGD(xi)), (xi ,HAdam(xi)) , and (xi ,HRMSprop(xi))  for i = 1..m using 
generated data of Eqs. (12) (F3) and (13) (F4)37, where models were induced with SGD, Adam, and RMSprop 
optimizers. It can be seen from the alignment of Adam with SGD that Adam has a closer data representation 
to SGD compared to RMSprop to SGD. When quantifying the data distributional differences in Fig. 11c and d, 
it can be clearly shown that the distributional differences of SGD and Adam (referred to AdamSGD) are closer 
than SGD to RMSprop over the 9 runs.

These quantified results for AdamSGD and RMSprop are attributed to dSA and dSR, respectively. Addition-
ally, the distributional differences of between AdamSGD and RMSprop were statistically significant (P-value = 
3.48× 10−12 from t-test when F3 is used while P-value = 1.49× 10−3 from t-test when F4 is used). These results 
demonstrate the stable performance when SGD is coupled with Adam.

Discussion
Our deep transfer learning (DTL) models work as follows. In the TFe-based models, the convolutional base 
(also called the feature extraction part) in the pre-trained model is left unchanged while the densely connected 
classifier is modified to deal with the binary class classification at hand. Therefore, we applied the features 
extraction part of pre-trained models to the SCGRN images to extract features followed by a flattening step to 
train densely connected classifier from scratch. It can be noted that only weights of densely connected classifier 
are changed according to Adam optimizer while we transferred knowledge (i.e., weights) of the feature extrac-
tion part from pre-trained models. In terms of the TFt-based models, we keep weights of the bottom layers in 
the feature extraction part of pre-trained models unchanged while modifying weights in the proceeding layers 
including the densely connected classifier according to the Adam optimizer. Moreover, the densely connected 

Figure 9.   Plots for the three models as (xi ,HSGD(xi)) , (xi ,HAdam(xi)) , and (xi ,HRMSprop(xi))  for i = 1..m 
according to  xi generated using F3.
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classifier was altered to deal with the binary class classification problem pertaining to distinguishing between 
healthy controls and T2D SCGRN images. It can be seen that updating model weight parameters is done through 
the training with the use of Adam optimizer.

When conducting experimental study to assess deep transfer learning models, we used different optimizers, 
including SGD, RMSprop, and Adam. For SGD optimizer used in our DTL models, the model weight parameters 
were different than DTL models coupled with RMSprop and Adam optimizers. Therefore, we induced three sets 
of different models attributed to the three optimizers. Experimental results demonstrate the superiority of DTL 
models utilizing SGD and Adam optimizers when compared to that using SGD and RMSprop optimizers. We 
reported training loss for epochs pertaining to TFe-based and TFt-based models when running five-fold cross-
validation in Supplementary Fig. S1. For each DTL model, the number of layers including frozen and unfrozen 
layers is reported in Supplementary Table S1.

In our study, mitigation of overfitting is attributed to (1) transfer learning in which many layers in DTL 
models are freezed and thereby reducing the number of trainable parameters; and (2) applying the dropout to 
the last fully-connected layer in which we set the dropout rate to 0.538. It is worth mentioning that we assessed 
the performance of other deep learning (DL) models such as ConvNeXtTiny and ConvNeXtLarge39. Although 
ConvNeXtLarge outperformed ConvNeXtTiny, they didn’t exhibit superior performance when compared to 
TFeSEResNeXT101. Therefore, we include their performance results in Supplementary Tables S2 and S3 (and 
Supplementary Fig. S2). In terms of the running time, TFeSEResNeXT101was 1.54 × faster than TFeConvNeXt-
Large. We report running time for ConvNeXtTiny-based and ConvNeXtLarge-based models in Supplementary 
Fig. S3.

In our DTL models, we have transferred weights from pre-trained models coupled with weights obtained with 
the help of Adam optimizer. If weight parameters obtained using two optimizers are close, then the two models 
almost behave the same. On the other hand, when the weight parameters resulted from two optimizers are not 
close, then the two models behave differently. To mimic the real scenario and investigate the effects of coupling 

Figure 10.   Plots for the three models as (xi ,HSGD(xi)) , (xi ,HAdam(xi)) , and (xi ,HRMSprop(xi))  for i = 1..m 
according to  xi generated using F4.
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different model weight parameters, we performed a simulated study. In Figs. 7, 8, 9, 10 and 11, we showed that 
a model induced with the help of SGD optimizer is closer to a model induced with Adam optimizer when com-
pared to a model induced with the help of RMSprop optimizer. It can be evident from visualized results in our 
study that SGD and Adam had less distributional differences than that of SGD and RMSprop. That resembles 
the case of having two related datasets for SGD and Adam against unrelated datasets for SGD and RMSprop. 
As a result, inferior performance results for models utilizing RMSprop are attributed to the high distributional 
differences in model weight parameters.

It is worth noting that our DTL models keep weights of many layers unchanged. Therefore, when we trained 
our models, we had fewer number of updated weights compared to updated weights in models trained from 
scratch. It can be seen from Fig. 6 that our DTL models are fast and can be adopted into mobile applications. It 
can be noticed from Tables 2 and 3 that leveraging source task knowledge contributed to improved prediction 
performance when coupled with updated weight parameters in the target task using Adam optimizer. On the 
other hand, the transferred knowledge from the source task contributed to degraded performance when coupled 
with updated weight parameters in the target task using RMSprop and SGD optimizers. Also, when we assessed 
additional DL models such as ConvNeXtLarge and ConvNeXtTiny, the knowledge transfer contributed to main-
tain the same performance behavior in which leveraging source domain knowledge when coupled with updated 
weights in the target task remained to be the best (see Supplementary Tables S2 and S3).

Conclusions and future work
In this paper, we present and analyze deep transfer learning (DTL) models for the task of classifying 224 SCGRN 
images pertaining to healthy controls and T2D patients. First, we utilized seven pre-trained models (including 
SEResNet152 and SEResNeXT101) already trained on more than million images from the ImageNet dataset. 
Then, we left weights in the convolutional base (i.e., feature extraction part) unchanged and thereby transfer-
ring knowledge from pre-trained models while modifying the densely connected classifier with the use of Adam 
optimizer to discriminate heathy and T2D SCGRN images. Another presented DTL models work as follows. 

Figure 11.   Boxplots of the four studied models, F1-F4, showing the distance distribution over nine runs for 
AdamSGD and RMSpropSGD. (a) results for F1. (b) results for F2. (c) results for F3. (d) results for F4.
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We kept weights of bottom layers in the feature extraction part of pre-trained model unchanged while modify-
ing consequent layers including the densely connected classifier with the use of Adam optimizer. Experimental 
results on the whole 224 SCGRN image dataset using five-fold cross-validation demonstrate the superiority of 
TFeSEResNeXT101, achieving the highest average BAC of 0.97 and therefore significantly surpassing the per-
formance of the baseline resulted in an average BAC of 0.86. Furthermore, our simulation study showed that the 
highly accurate performance in our models is attributed to the distributional conformance of weights obtained 
with the use of Adam optimizer when coupled with weights of pre-trained models.

Future work includes (1) adopting our computational framework to analyze DTL models with different 
network topologies and thereby identifying the best practice for DTL; (2) incorporating multi-omics datasets 
with images to improve the prediction performance using DTL models; (3) developing a boosting mechanism 
to improve the performance of DTL models in different biological problems40,41; (4) incorporating feature repre-
sentation obtained via our DTL models with machine learning algorithms for the task of inferring SCGRNs; and 
(5) utilizing our framework to speed up the learning process, e.g., TFeVGG19 was 802.67 × faster than VGG19, 
trained from scratch.

Data availability
The dataset analyzed during the current study is available in the dataset folder within supplementary material 
at https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​2020.​08.​30.​27383​9v1.​suppl​ement​ary-​mater​ial. The single-cell gene 
expression data is available in the ArrayExpress repository under accession number E-MTAB-5061 (https://​www.​
ebi.​ac.​uk/​biost​udies/​array​expre​ss/​studi​es/E-​MTAB-​5061).
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