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A novel multi‑hybrid 
differential evolution algorithm 
for optimization of frame 
structures
Rohit Salgotra 1,2* & Amir H. Gandomi 3,4*

Differential evolution (DE) is a robust optimizer designed for solving complex domain research 
problems in the computational intelligence community. In the present work, a multi‑hybrid 
DE (MHDE) is proposed for improving the overall working capability of the algorithm without 
compromising the solution quality. Adaptive parameters, enhanced mutation, enhanced crossover, 
reducing population, iterative division and Gaussian random sampling are some of the major 
characteristics of the proposed MHDE algorithm. Firstly, an iterative division for improved exploration 
and exploitation is used, then an adaptive proportional population size reduction mechanism is 
followed for reducing the computational complexity. It also incorporated Weibull distribution and 
Gaussian random sampling to mitigate premature convergence. The proposed framework is validated 
by using IEEE CEC benchmark suites (CEC 2005, CEC 2014 and CEC 2017). The algorithm is applied to 
four engineering design problems and for the weight minimization of three frame design problems. 
Experimental results are analysed and compared with recent hybrid algorithms such as laplacian 
biogeography based optimization, adaptive differential evolution with archive (JADE), success history 
based DE, self adaptive DE, LSHADE, MVMO, fractional‑order calculus‑based flower pollination 
algorithm, sine cosine crow search algorithm and others. Statistically, the Friedman and Wilcoxon 
rank sum tests prove that the proposed algorithm fares better than others.

Keywords Differential evolution, Hybridization, Self-adaptive parameters, Numerical optimization, Frame 
structure design, Swarm intelligence

The field of optimization research has experienced significant growth in recent decades, particularly with the 
widespread utilization of nature-inspired optimization algorithms (NIAs). These algorithms, derived from natural 
phenomena, are now employed across a multitude of research domains, including engineering design, manage-
ment science, medical technology, social science, and others. While genetic algorithms (GA)1, differential evo-
lution (DE)2, and particle swarm optimization (PSO)3 remain influential, the landscape has expanded with the 
introduction of numerous new algorithms inspired by different species and natural processes. This continuous 
innovation and the development of hybrid techniques underscore the dynamic nature of NIAs, showcasing their 
relevance and applicability in diverse problem-solving scenarios.

The fundamental domain is categorized into two main classes: evolutionary algorithms (EAs) and swarm intel-
ligent algorithms (SIAs). EAs are rooted in fundamental natural processes, specifically drawing inspiration from 
Darwinian theory and natural selection. Notable examples include  GA1, memetic algorithm (MA)4, scatter search 
(SS)5, stochastic fractal search (SFS)6, fire-hawk algorithm (FHA)7 among others, as prominent representatives.

On the other hand, SIAs are built upon the collective behavior observed in various species. This category 
encompasses algorithms such as red fox optimization algorithm (RFO)8, mud ring algorithm (MRA)9, sea horse 
optimizer (SHO)10, escaping bird search (EBS)11, golden eagle optimizer (GEO)12, clouded leopard optimization 
(CLO)13, hermit crab shell exchange (HCSE)14, honey badger algorithm (HBA)15, naked mole rat  algorithm16 
cuckoo search algorithm (CS)17, whale optimization algorithm (WOA)18, grey wolf optimization (GWO)19,20, 

OPEN

1Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, 
Poland. 2MEU Research Unit, Middle East University, Amman, Jordan. 3Faculty of Engineering and IT, University 
of Technology Sydney, Ultimo, NSW 2007, Australia. 4University Research and Innovation Center (EKIK), Óbuda 
University, 1034 Budapest, Hungary. *email: r.03dec@gmail.com; rohits@agh.edu.pl; gandomi@uts.edu.au; 
gandomi@uni-obuda.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54384-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4877  | https://doi.org/10.1038/s41598-024-54384-3

www.nature.com/scientificreports/

equilibrium optimizer (EO)21, moth flame optimization (MFO)22 and others. These algorithms leverage the 
swarming behaviour of different species as a basis for their optimization strategies.

In real world, most of the practical engineering design problems are highly challenging and differential evo-
lution (DE) has been applauded as an efficient problem solver by the evolutionary computing community, due 
to its simple linear structure, lesser known tuning parameters and versatile  applicability23. The major reason for 
its popularity is because of its splendid performance and ranking in Congress on Evolutionary Computation 
(CEC) competitions by IEEE for various complex domain research scenarios and benchmark test suites (such 
as multi-modal, composite, single objective, dynamic, constrained, multi-objective, etc). Numerous efforts have 
been employed to improve the working efficiency, scalability, speed, robustness and accuracy of DE. Unlike tradi-
tional evolutionary programming (EP) and evolutionary strategies (ES), DE is based on the population members 
generated in the current generation with respect to randomly different members of the search space. Here, no 
probability based distribution (Gaussian distribution in case of EP and ES, Cauchy distribution in fast EPs) is 
required to generate new offspring. Numerous recent modifications have been added to DE as self-adaptive DE 
(SaDE)24, adaptive differential evolution with optional external archive (JADE)25, success-history based adaptive 
DE (SHADE)26, SHADE with population size reduction hybrid with semi-parameter adaptation of CMA-ES 
(LSHADE-SPACMA)27, hybrid ES-DE28 and others.

In this paper, a hypothesis of using a relatively new concept of iterative division to improve the exploration 
(expl) and exploitation (expt) operation and overcome the local optima stagnation is  used29. Apart from this, 
four new modifications are added in the conventional DE to improve its overall performance. Firstly, an adaptive 
proportional population size reduction mechanism, inspired by  GA30, is followed. Secondly, a reducing Weibull 
 distributed31 crossover rate CR is introduced such that during the initial stages, the algorithm performs extensive 
expl whereas in final stages, expt is followed. The next modification follows the Gaussian sampling mechanism by 
hybridizing basic search equations to mitigate the problem of premature convergence and reinforce complemen-
tary searching  capabilities32. Finally, instead of using a simple crossover and mutation operations, new hybridiza-
tion based on grey wolf optimization (GWO)20 and cuckoo search (CS)29 are incorporated to improve the overall 
all performance of DE. The proposed algorithm has been named as multi-hybrid differential evolution (MHDE) 
algorithm. The resulting framework has been integrated with the basic DE and tested on IEEE CEC  200533, CEC 
 201434 and CEC  201735 test suites, four engineering design problems and three frame design problems. The results 
indicate that adding additional hybridization and self-adaptivity helps in providing reliable results.

The rest of the research article is given as, “Frame design problems” section provide details about the basics 
of frame optimization problems. “The proposed algorithm” section describes the proposed approach, its require-
ment and implementation. In “Numerical examples” section, numerical results on CEC 2005 test suite, CEC 2014 
and CEC 2017 benchmark problems are presented whereas in “Real-world applications I: engineering design 
problems” section, four engineering design problems including pressure vessel design, rolling element bearing 
design, tension/compression spring design and cantilever beam design are discussed. In “Real-world applications 
II: frame design problems” section, design of 1-bay 8-story frame, 3-bay 15-story frame and 3-bay 24 story frames 
are presented. Finally, in “Conclusion” section, insightful conclusions and future recommendations are unearthed.

Frame design problems
Frame design problem is one among the most significant structural engineering design problem and has a diver-
sified design  flexibility36. The generalized equation for optimal frame design is given by

For W sections, X is the cross-sectional areas design vector, f(X) represents merit functions, ng is the number of 
design variables; g(X) is the objective function defined as the volume or weight of the frame structure; gpenalty(X) 
is defined as a penalty function and is a result of constraint violations on structural response.

The frame structure weight in the form of a function g(X) is given by

where mn is the total members making up the frame; Li is the length of the ith member within the frame; and γi 
density of the material in the ith member.

The penalty function, gpenalty(X) is given  by28:

where n is the number of constraints of the design problem, ǫ1 and ǫ2 are constants based on expl and expt, and 
oi is the displacement or stress constraint. If oi has a positive value, the corresponding value is added to the con-
straint functions. These constraints consist of
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Maximum latent displacement

Inter-story displacements

where σi and σ a
i  is the stress and allowable stress in the ith member respectively; �T is the maximum latent 

displacement; ns is the total number of stories; R and dj is the maximum drift index and inter-story drift respec-
tively; H and hj is the height of the frame structure and story height of jth floor; RI represents the inter-story 
drift index allowed by AISC  200128 and is set to 1/300. The constraints as per LRFD interactions formulas o 
AISC 2001 are given by

where Pu and Pn is the required and nominal tension or compression axial strength respectively, φc = 0.9 and 
φc = 0.85 are the resistance factor for tension and compression respectively, φb = 0.90 is the flexural resistance 
reduction factor; Mux and Muy , Mnx and Mny are the flexural’s required strength and flexural nominal strengths 
respectively in the x end y direction. For a two-dimensional structure, the value of Mny = 0.

In order to find the Euler and compression stresses, the effective length factor K is required. For bracing and 
beam members, K = 1 and for the column members, it is calculated by using SAP2000. For a generalized case, 
the approximate effective length within −1.0% and +2.0% accuracy are based on  Dumonteil37 and are given by

where GA and GB at the two end joints A and B of the column section is the stiffness ratio of two columns and 
girders respectively.

The proposed algorithm
It is already known that even though a lot of new DE variants have been proposed, but it still suffers from various 
problems including poor expl, unbalanced expl versus expt operation and premature  convergence23. Therefore, 
it becomes necessary to adopt changes, hybridize and add prospective modifications in the basic algorithm to 
overcome its inherent drawbacks and limitations. In the present work, the structure of DE is changed, and new 
adaptations are added in the crossover and mutation operation of the algorithm. Here GWO based  equations20 
are added in the crossover phase to improve the expl operation whereas mutation operation is enhanced by 
using CS  based29 hybridization to enhance the expt operation. Apart from these modifications, the concept of 
iterative division is added so that considerable expl and exhaustive expt is performed towards the start whereas 
substantial expt and in-depth expl is performed with in certain sections towards the  end29. The proposed MHDE 
is presented in the following steps:

Initialization
The first and the foremost step, like any other algorithm, in the MHDE algorithm is the initialization phase. Here 
new solutions are selected randomly within the search space. The general equation is thus given by

where nmin,j and nmax,j are the lower bounds and upper bounds and xi,j is ith solution of a j dimensional problem 
(D), and U(0, 1) is a uniform random number distributed over [0, 1].

Mutation operation
At each generation, DE employs crossover operation, which is controlled by a scaling factor. The target solution 
is achieved by different mutation strategies. The most popular strategies are given  by23

where xti  and xtj  are the random solutions corresponding to the ith and jth member with D dimension, oti is the 
velocity corresponding to the target solution, F is the scaling factor, xbest is the best solution and t is the current 
iteration. Here the equation derived from DE/rand/1 is more of an exploratory nature with increased diversity 
among the search agents whereas DE/best/1 has intensification properties, which promotes exploitative search 

(6)v� = R −
�T

H
≤ 0

(7)vdj = RI −
dj

hj
≤ 0, j = 1, 2, . . . , ns

(8)oIi =























1− Pu
2φcPn

−

�

Mux

φbMnx+
Muy

φbMny

�

≤ 0; For Pu
φcPn

< 0.2

1− Pu
φcPn

− 8
9

�

Mux

φbMnx+
Muy

φbMny

�

≤ 0; For Pu
φcPn

≥ 0.2

(9)K =

{
√

1.6GAGB+4(GA+GB)+7.5
GA+GB+7.5

; For unbraced members
3GAGB+1.4(GA+GB)+0.64
3GAGB+2(GA+GB)+1.28

; For braced members

(10)xi,j = nmin,j + U(0, 1)× (nmax,j − nmin,j)

(11)oti = xti + F.(xti − xtj ); “DE/rand/1"

(12)oti = xtbest + F.(xti − xtj ); “DE/best/1"



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4877  | https://doi.org/10.1038/s41598-024-54384-3

www.nature.com/scientificreports/

around the best solution. In the proposed MHDE, both these equations are used in an adaptive manner and is 
explained as

For the first half of the iterations, DE/rand/1 equation is used along with GWO based equations to perform 
the global search operation. The scaling factor uses Lévy distribution, as discussed in subsequent subsections. 
Here, GWO based equations are used to perform expt and expl. This is possible because of the presence of better 
expl capabilities of  GWO20. The new solutions generated using modified equations is thus given by

where W1,W2,W3 and H1,H2,H3 are generated randomly from W = 2a.e1 − a and H = 2.e2 , a is a linearly 
decreasing random number ∈ [0, 2] whereas e1 and e2 lies between [0, 1]. The whole search process consists of 
DE/rand/1 equation and the new GWO inspired equations, which helps the algorithm in enhancing its expl 
properties.

For the other iterative half, the DE/best/1 equation along with Gaussian random sampling is  used32. The 
general equation for this phase is the same as DE/best/1 equation with an additional advantage of the Gaussian 
mutation to deal with the local best solution. Here, m new solutions are spawned and compared in accordance 
with xbest . If the new solution m is better than xbest , xbest is replaced by the new solution. Also, it is only followed 
if the local best solution is not improving in a single iteration. For this strategy, the general equation is given by:

where G(0, 1) is a random number. Apart from this modification, the whole search operation is the same as the 
DE/best/1 equation. The main goal is to search for potential global best solution without getting trapped in local 
optimal solution. The search process is followed for consecutive iterations and over the course of time, the final 
best solution is updated. Thus, overall helps in reinforcing complementary searching  capabilities32 to prevent 
the algorithm from local optima stagnation.

Crossover operation
Crossover (can be arithmetic, exponential or binomial) is the next step of DE and is meant for creating the final 
offspring vector xti  . Here, the most commonly used binomial crossover operation is used. In this kind of crossover, 
each component of xti  either comes from the mutated vector oti or xti  itself, and is given as

where randk[0, 1] ∈ [0, 1] and is continuously changed with respect to the jth part of the ith member of the popu-
lation, CR is crossover rate and helps in controlling the extent of oti and Xt

i  . This parameter is really important 
and helps in balancing expl as well as expt operation. In the proposed MHDE algorithm, modification has been 
added in the solution xti  (used in Eq. 18). Here the solution xti  is not the previous solution but is based on the 
local search equation of the CS algorithm and the general equation is given by

Here all the notations are the same as discussed in the mutation operation, apart from ǫ which is a uniformly 
distributed random number generated using an adaptive strategy (discussed in subsequent subsections) and 
lies in the range of [0, 1]. The main aim is to equally balance the local and the global search without losing the 
diversity among the search agents. Here mutation is performed using Eq. (19), which helps the algorithm in 
providing extensive search capabilities and instead of using a previous solution, a new generalized solution is used 
for maintaining diversity among the search agent (intensive expt operation). The next step is selection operation.

Selection operation
For any minimization process, the fitness f (xti ) for the xti  solution is given by Eq. (20)

Here a generalized Roulette wheel selection mechanism is followed to find the final best solution. The next sec-
tion deals with the various parameters of the proposed algorithm.

Parametric adaptation
In DE, a balanced expl and expt operation is achieved by optimizing F and CR. One among the earliest stud-
ies were conducted  by38 where efficient values were 0 < CR < 0.2 and 0.4 < F < 0.95 , while  in39, values of 
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0.1 < CR < 1.0 and 0.15 < F < 0.5 were used and  in24 self-adaptive F and CR provided better results. Overall, 
CR and F ∈ [0, 1] . The parameter F is meant for improving the expl properties of DE and in present work, Lévy 
flights are used to imitate this operation. The Lévy flight mechanism is highly efficient and generates larger step 
sizes, enhancing the expl properties. The step size based on Lévy flights is generated as

where s = U
|V |1/�

U ∼ N(0, σ 2), V ∼ N(0, 1) and σ 2 =

{

Ŵ(1+�)
�Ŵ[(1+�)/2]

.
sin(π�/2)

2(�−1)/2  . Here � = 1.5 and Ŵ is the gamma 

function. The parameter N has mean 0 and variance σ 2 and is taken from a Gaussian distribution.
The second parameter CR is mainly meant for drifting the algorithm from expl to expt. Here based on CR, new 

solutions are kept if it is improved over subsequent iterations and if there is no improvement in the new genera-
tion solutions, the solutions are inspired by CS based hybridization. Though, work has been done for improving 
CR but it has been found that adding adaptive properties can provide more reliable  results24. These conclusions 
pave the way for the requirement of a new distribution, which can help MHDE in a gradual transition from expl 
to expt without losing the global solution. Here, Weibull distribution has been used to overcome this  drawback31. 
The probability distribution function is given by

where f (t) ≥ 0 , β > 0 , t ≥ 0 or γ , η > 0 , −∞ < γ > ∞ . It has three main parameters namely shape ( β ), scale 
( η ) and location ( γ ) parameter. In most of the cases, γ = 0 ; β helps in switching between different distributions 
including L-shaped distribution for β ≤ 1 , normal distribution for β = 3.602 , bell-shaped for β > 1 and others. 
For the present case, the two parameter Weibull distribution is used with η equals to the maximum iterations 
and β = 2 . The values of Weibull distribution are taken from the  literature31.

In the mutation phase, there is a new ǫ parameter, inspired from CS, and is meant for improving the local 
search capabilities of an algorithm. The parameter is adapted in accordance with the scaling factor, as in case 
 of35. The general equation is given by

Here freq, is a fixed function, t and tmax is the current and the maximum iterations. This parameter has been used 
only during the mutation operation and is intended for exploiting. Thus, three parameters are there to improve 
overall stability of the proposed MHDE algorithm.

Population adaptation
Population-based algorithms require an initial set of random solutions to start their search operation. Population 
decides three things, total spawned solutions, maximum function evaluations and complexity of an algorithm. 
A static population keeps the total function evaluations constant, whereas an adaptive decreasing population 
can reduce them significantly. The concept of adaptive population was formulated  in40 and was extended to 
 GA30.  In40 with an increasing solution fitness, the population was decreased whereas for decreasing solution 
fitness, the population was increased. The major drawback of this formulation was the formation of new clones 
of existing solutions, paving the way for reduced performance.  In30, an opposite adaptation was followed by 
reducing the population if the best fitness in increasing. For a multimodal problem, the algorithm should be 
able to optimize large landscapes. Initially, if there is a large population size, the fitness will be very high. The 
algorithm will explore the search space and, over the course of iterations, starts moving toward some random 
direction. Here because of the higher fitness, chances are there that new solutions are in the same direction and 
hence population size can be  reduced30. This new population helps to find potential solutions without losing the 
final best solution. Also, with increase in the iterations, the variation in solution quality is marginal and hence 
using a smaller population provide many reliable results. This is because, each member in a small population 
has a higher probability of becoming the local best and eventually the global best solution. The mathematical 
equation deduced  by30 is given as

Here N is the population for the tth generation, �f bestt  is given by 
(

f bestt−1 −f bestt−2

|f bestt−2 |

)

 is change in the best fitness, �f bestmax 
is the threshold value. It should be noted that a minimum fitness must be defined so that all the negative effects 
of minimal population are minimized.
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Numerical examples
The proposed MHDE algorithm is analysed for numerical benchmark datasets and compared with respect to 
other recent hybrid algorithms. Two benchmark sets have been used, namely classical benchmark problems 
from CE C2005 test  suite33 and CEC2014 test  suite25. For comparison on CEC 2005, the major algorithms used 
are  JADE25, Evolution strategy based on covariance adaptation (CMA-ES)21,  SaDE41, a sine cosine crow search 
algorithm (SCCSA)42, extended GWO (GWO-E)20, fractional-order calculus-based FPA (FA-FPO)43,  SHADE26 
and LSHADE-SPACMA21. On the other hand for CEC 2014 benchmark problems, blended biogeography-based 
optimization (B-BBO)44, laplacian BBO (LX-BBO)44, random walk GWO (RW-GWO)44, population-based incre-
mental learning (PBIL)45, improved symbiotic organisms search (ISOS)46, variable neighbourhood BA (VNBA)45, 
chaotic cuckoo search (CCS)45, and improved elephant herding optimization (IMEHO)45 are used.

For all test categories, the parametric details for all the algorithms under comparison is given in Table 1. 
Apart from the basic parameters, a populationsize = 50 , D = 30 and total of 51 runs is used for evaluation. For 
CEC2005, the total function evaluations are taken as 15, 000 whereas for CEC2014, the maximum function evalu-
ations are  set34 as 104 × D. The results for both the test cases are evaluated as mean error and standard deviation 
(std)34. It must be noted that the bold values in all the tables signifies the best algorithm corresponding to that 
particular problem.

For statistical testing, two statistical tests, namely Friedman rank (f-rank) and Wilcoxon’s rank-sum  tests47 
are used. The results are presented as ranks found by p-values at 5% level of significance. For every test function, 
the statistical results are presented as win(w)/loss(l)/tie(t). Here win(w) is the situation where the test algorithm 
is better than MHDE algorithm, the loss(l) scenario on the other hand, is the situation where the algorithm is 
worse than MHDE algorithm and “-” sign means tie(t) and it denotes that both the algorithms under consid-
eration are either statistically similar or irrelevant in accordance to each  other47. Apart from that, the f-rank is 
calculated for every function and an average of all the ranks is presented. In the next subsections, analysis on 
CEC 2005 benchmark problems is presented.

Classical benchmarks
A comparison of MHDE is performed with respect to the well-known variants of DE including JADE, SaDE, 
SHADE and LSHADE-SPACMA as well as some recently introduced algorithms including GWO-E, SCCSA, 
FA-FPO and CMA-ES as given by Table 2. Here G1 − G7 are unimodal functions (for testing expt capabilities), 
G8 − G12 are multi-modal functions (for a balanced expl and expt operation), and G13 − G15 are fixed dimension 
(convergence analysis), testing the effectiveness and consistency of the MHDE algorithm for finding the optimal 
solution. These test functions are defined  in48 and are not explicitly discussed in the present paper.

The results are presented as mean and std values for 30 dimension size. For G1 , G3 , G4 , G5 , G7 , G11 , G12 and 
G13 functions, the algorithm performs better in comparison to others. For G8 and G10 functions, GWO-E, FA-
FPO and the proposed MHDE performs equivalently whereas for function G9 , SCCSA, FA-FPO have equivalent 
results with respect to MHDE. Apart from that, JADE is found to be better for G14 and SCCSA for G15 function. 
The statistical results show that MHDE converges to better solutions than JADE, SaDE, SHADE and LSHADE-
SPACMA and others, which indicate that MHDE is an excellent algorithm.

Furthermore, the Friedman f-rank test and Wilcoxon rank sum tests are conducted to analyse the results of 
MHDE with respect to other algorithms for 51 individual trials for each function. Taking JADE versus MHDE 
as an example, w/l/t ratio and average f-rank of MHDE is better than JADE, it means that MHDE is significantly 

Table 1.  Parameter settings of different algorithms.

Algorithm Parameters

CCS45 (pa) = 0.25

JADE25 F = 0.5 ; CR = 0.9 ; 1/c = [5, 20] ; p = [0.05, 0.20]

SaDE25 F, CR = self adaptive

ISOS46 q ∈ [1, 100]% , r ∈ [0, 1]

PBIL45 (LR) = 0.1; (pm) = 0.02

VNBA45 (A) = 0.5; (r) = 0.5

SCCSA42 e1, e2, e3 = [0, 1]

GWO-E20 α = Linearly decreasing from 2 to 0

FA-FPO43 α = [0.1, 1] , S = adaptive

B-BBO44 H = 1 ; I = 1

FO-FPA43 α = [0.1, 1] ; S = adaptive ; r = 2 or 4 or 8

IMEHO45 (w)= Linearly decreasing [0.9,0.2]; α ǫ [0,1]; (pc) = 0.05

SHADE21 Pbest = 0.1 , ARC rate = 2

LX-BBO44 H = 1 ; I = 1

CMA-ES21 n = µ = 10 ; � = 40

RW-GWO44 α = Linearly decreased from 2 to 0

LSHADE-SPACMA21 c=0.8, Pbest = 0.11 , ARC  rate = 1.4, FCP = 0.5

Proposed MHDE All parameters (F, CR and ǫ ) are adaptive



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4877  | https://doi.org/10.1038/s41598-024-54384-3

www.nature.com/scientificreports/

better than JADE at the 5% significance level or 95% level of confidence. Thus overall, ranking analysis results 
between DE variants, MHDE and other algorithms show that the proposed MHDE is significantly better.

Table 2.  Simulation results for CEC 2005 benchmarks.

Function

JADE SaDE GWO-E SCCSA FA-FPO CMA-ES SHADE LSHADE- MHDE
25 25 20 42 43 21 21 SPACMA21

G1

Mean 1.80E−60 4.50E−20 3.92E−67 9.22E−69 1.51E−184 1.42E−18 1.42E−09 2.23E−01 2.93E−254

Std 8.40E−60 6.90E−20 1.11E−66 3.81E−68 0.00E+00 3.13E−18 3.09E−09 1.48E−01 0.00E+00

f-rank 5 6 4 3 2 7 8 9 1

G2

Mean 1.80E−25 1.90E−14 4.31E−36 8.25E−41 5.04E−93 2.98E−07 8.70E−03 2.11E+01 2.78E−18

Std 8..8E−25 1.05E−14 6.57E−36 4.19E−40 3.47E−93 1.78E+00 2.13E−02 9.57E+00 4.76E−18

f-rank 4 6 3 2 1 7 8 9 5

G3

Mean 5.70E−61 9.00E−37 3.75E−37 4.31E−13 1.23E−183 1.59E−05 1.54E+01 8.87E+01 1.07E−255

Std 2.70E−60 5.43E−36 1.36E−36 2.83E−30 0.00E+00 2.21E−05 9.94E+00 4.72E+01 0.00E+00

f-rank 3 5 4 6 2 7 8 9 1

G4

Mean 8.20E−24 7.40E−11 2.39E−25 2.15E−17 9.97E−93 2.01E−06 9.79E−01 2.11E+00 2.07E−147

Std 4.00E−23 1.82E−10 6.80E−25 1.06E−16 7.31E−93 1.25E−06 7.99E−01 4.92E−01 6.93E−147

f-rank 4 6 3 5 2 7 8 9 1

G5

Mean 8.00E−02 2.10E+01 2.65E+01 5.90E+00 2.89E+01 3.67E+01 2.44E+01 2.88E+01 0.00E+00

Std 5.60E−01 7.80E+00 5.19E−01 9.13E−01 1.72E−02 3.34E+01 1.12E+01 8.24E−01 0.00E+00

f-rank 2 4 6 3 8 9 5 7 1

G6

Mean 2.90E+00 9.30E+02 2.65E+01 4.14E−08 5.88E+00 6.83E−19 5.31E−10 2.48E−01 1.20E−21

Std 1.20E+00 1.80E+02 5.19E−01 5.22E−08 5.86E−01 6.71E−19 6.35E−10 1.13E−01 2.68E−21

f-rank 6 9 8 4 7 2 3 5 1

G7

Mean 6.40E−04 4.80E−03 9.90E−04 1.33E−03 1.13E−04 2.75E−02 2.35E−02 4.70E−03 5.54E−06

Std 2.50E−04 1.20E−03 8.37E−04 1.72E−03 8.94E−04 7.90E−03 8.80E−03 1.90E−03 4.47E−06

f-rank 3 7 4 5 2 9 8 6 1

G8

Mean 1.00E−04 1.20E−03 0.00E+00 5.46E+00 0.00E+00 2.53E+01 8.53E+00 6.75E+01 0.00E+00

Std 6.00E−05 6.50E−04 0.00E+00 5.62E+00 0.00E+00 8.55E+00 2.19E+00 1.00E+01 0.00E+00

f-rank 2 3 1 4 1 6 5 7 1

G9

Mean 8.20E−10 2.70E−03 5.58E−15 8.88E−16 8.88E−16 1.55E+01 3.95E−01 3.93E−02 8.88E−16

Std 6.90E−10 5.10E−04 1.67E−15 9.36E−32 0.00E+00 7.92E+00 5.86E−01 1.51E−02 0.00E+00

f-rank 3 4 2 1 1 7 6 5 1

G10

Mean 9.90E−08 7.80E−04 0.00E+00 3.33E−02 0.00E+00 5.76E−15 4.80E−03 8.94E−01 0.00E+00

Std 6.00E−07 1.20E−03 0.00E+00 4.56E−02 0.00E+00 6.18E−15 7.70E−03 1.07E−01 0.00E+00

f-rank 3 4 1 6 1 2 5 7 1

G11

Mean 4.60E−17 1.90E−05 1.98E−02 1.34E−02 8.32E−01 2.87E−16 3.46E−02 8.18E−04 2.74E−18

Std 1.90E−16 9.20E−06 1.01E−02 1.60E−02 1.78E−01 5.64E−16 8.75E−02 1.00E−03 4.76E−18

f-rank 2 4 7 6 9 3 8 5 1

G12

Mean 2.00E−16 6.10E−05 2.50E−01 2.01E−02 2.94E+00 3.66E−04 7.32E−04 1.02E−02 1.35E−20

Std 6.50E−16 2.00E−05 1.63E−01 7.23E−02 1.59E−01 2.00E−03 2.80E−03 1.03E−02 2.51E−20

f-rank 2 3 8 7 9 4 5 6 1

G13

Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 8.40E+00 3.00E+00 3.00E+00 3.00E+00

Std 1.10E−15 3.00E−15 4.96E−04 8.93E−05 3.13E−09 2.05E+01 1.87E−15 1.25E−15 4.57E−16

f-rank 2 5 8 7 6 9 4 3 1

G14

Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.01E−01 −3.86E+00 −3.86E+00 −3.86E+00 −1.89E+00

Std 0.00E+00 3.10E−15 4.16E−06 9.29E−06 2.25E−16 2.70E−15 2.69E−15 2.70E−15 1.56E−15

f-rank 1 5 6 7 2 4 3 4 8

G15

Mean −3.31E+00 −3.31E+00 −3.26E+00 −3.26E+00 −3.29E+00 −3.29E+00 −3.27E+00 −3.28E+00 −1.16E+00

Std 3.60E−02 2.80E−02 7.50E−02 6.00E−02 1.97E−02 5.35E−02 5.99E−02 5.70E−02 6.28E−17

f-rank 7 6 5 1 1 4 2 3 8

w/l/t 3/12/0 2/13/0 3/11/1 3/11/1 3/10/2 2/13/0 2/13/0 2/13/0

Overall f-rank 56 75 70 67 64 67 86 94 33

Average f-rank 3.73 5 4.66 4.46 4.26 4.46 5.73 6.26 2.20

Overall f-rank 2 6 5 4 3 4 7 8 1
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Sensitivity analysis is done to check how the newly introduced parameters affect the performance and effi-
ciency of MHDE. In Table 3, five different adjustments are made in the proposed modifications, and two statistical 
indicators (mean and std) are used to describe it. The same set of parameters and function evaluations are used 
as used for CEC 2005 benchmark testing. The improved crossover operation helps in performance enhancement 
for unimodal functions and hence leading to better expt properties. Addition of adaptive F helps in improving 
the global search capabilities and hence provides better expl. Adding adaptivity in CR and mutation operation 
helps in enhancing the accuracy for multi-modal functions, whereas adaptive population size N helps in reducing 
the function evaluations. Furthermore, the results of MHDE at different parameters are all better than JADE, 
SaDE and other hybrid versions of DE. To sum up, the performance of MHDE is robust and excellent. To further 
validate the superiority of MHDE with respect to some recently introduced algorithms, CEC 2014 benchmark 
test suite is used and has been explained in details in the next subsection.

CEC 2014 benchmarks
For CEC 2014 benchmarks, proposed MHDE algorithm and eight recently introduced hybrid algorithms have 
been selected for comparison. All of these algorithms are enhanced versions of new population-based algorithms 
and are B-BBO44, LX-BBO44, RW-GWO44,  PBIL45,  ISOS46,  VNBA45,  CCS45, and  IMEHO45. The mean error and 
std values of all of these variants on 30 dimension problems are listed in Table 4.

Here, the results by comparing the difference between obtained solution and the desired best solution are 
found. If the difference becomes less than 10−8 , the error is treated as zero. From Table 4, it is found that MHDE 
performs better than all other algorithms under consideration. Here out of three uni-modal functions ( G1 − G3 ), 
MHDE performs better for two among all other algorithms showing superior capability in finding global solu-
tion. This further shows that the algorithm has better expl properties. Among multi-modal function ( G4 − G10 ), 
MHDE performs better for three functions among all the variants and for rest of the functions it is either ranked 
second or third. This again shows the superior performance of MHDE for local optima avoidance. For hybrid 
benchmarks ( G11 − G20 ) and composite benchmarks ( G21 − G30 ), MHDE is found to be the best among all other 
algorithms. This further proves the capability of MHDE in balancing the expl and expt operation to achieve global 
best solution. Overall, MHDE is ranked first, RW-GWO is ranked second and IMEHO is ranked third among 
all the other algorithms under comparison. In the next section, MHDE is used for design of frame structures.

CEC 2017 benchmarks
For a comprehensive evaluation of the proposed MHDE algorithm in comparison to MH algorithms, the  SaDE35, 
 SHADE52,  JADE35, CV1.029, CVnew

53,  MVMO35, and  CS17 algorithms have been utilized with 51 run and 100 
population size. In order to have a fair comparison, a maximum function evaluations as 10, 000× D is used 

Table 3.  Sensitivity analysis of parametric adaptations.

Function Adaptive F and CR Adaptive crossover Adaptive N and mutation Adaptive CR and mutation
Adaptive mutation 
and F & N

G1

Mean 577E−321 9.01E−256 1.19E−249 1.10E−257 3.04E−240

Std 2.94E−319 0.00E+00 0.00E+00 0.00E+00 000E+00

G2

Mean 4.54E−167 1.78E−128 2.57E−125 2.78E−127 2.39E−122

Std 1.25E−165 8.90E−128 6.53E−125 1.93E−126 1.45E−121

G3

Mean 4.26E−314 3.46E−255 4.16E−247 3.64E−256 1.15E−241

Std 217E−312 0.00E+00 0.00E+00 0.00E+00 0.00E+00

G4

Mean 1.61E−163 9.92E−130 2.87E−125 4.61E−128 766E−122

Std 0.00E+00 2.89E−129 1.78E−124 2.27E−128 4.00E−121

G5

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 000E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

G6

Mean 9.06E−12 4.46E−20 9.31E−12 4.93E−20 1.53E−11

Std 1.42E−11 9.86E−20 1.62E−11 1.11E−19 4.38E−11

G7

Mean 1.35E−05 1.76E−05 1.73E−05 1.48E−05 1.68E−05

Std 1.38E−05 1.42E−05 1.48E−05 9.37E−06 1.58E−05

G8

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 0.00E+00 0.00E+00 000E+00 0.00E+00 0.00E+00

F9
Mean 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16

Std 8.81E−16 8.88E−16 888E−16 8.88E−16 8.88E−16

G10

Mean 0.00E+00 0.00E+00 000E+00 0.00E+00 0.00E+00

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

G11

Mean 1.00E−09 7.41E−17 1.11E−09 9.17E−17 6.98E−10

Std 1.70E−09 1.73E−16 2.27E−09 2.10E−16 1.14E−09

G12

Mean 4.08E−10 2.92E−19 1.57E−10 4.44E−19 6.04E−10

Std 9.92E−10 4.22E−19 3.30E−10 1.12E−18 1.60E−09
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Functions Error

LX-BBO B-BBO RW-GWO ISOS PBIL VNBA IMEHO CCS MHDE
49 49 44 46 45 50 45 51

G1

Mean 1.01E+07 6.50E+06 8.02E+06 9.82E+05 3.42E+08 2.43E+08 2.37E+06 1.46E+08 7.06E+05

Std 1.01E+07 1.30E+06 3.31E+06 7.05E+05 1.09E+08 5.93E+07 4.32E+06 3.27E+07 2.73E+05

f-rank 6 4 5 2 9 8 3 7 1

G2

Mean 5.34E+04 2.35E+04 2.23E+05 5.27E+00 4.08E+10 1.92E+10 5.49E+03 2.60E+09 1.00E+10

Std 2.14E+04 9.99E+03 5.51E+05 1.72E+01 3.39E+09 4.23E+09 4.87E+03 5.22E+08 0.00E+00

f-rank 4 3 5 1 9 8 2 6 7

G3

Mean 1.63E+04 6.03E+03 3.16E+02 4.79E+02 9.19E+04 2.93E+04 1.41E+02 2.70E+03 2.65E−01

Std 1.70E+04 3.15E+03 4.34E+02 6.24E+02 1.75E+04 1.39E+04 1.58E+02 7.74E+04 2.10E−01

f-rank 7 6 3 4 9 8 2 5 1

G4

Mean 9.99E+01 1.02E+02 3.41E+01 5.98E+01 3.43E+03 1.60E+03 1.24E+02 3.22E+02 2.87E+01

Std 2.84E+01 3.13E+01 1.80E+01 3.57E+01 7.56E+02 3.63E+02 4.77E+01 4.09E+01 3.34E+01

f-rank 4 5 2 3 9 8 6 7 1

G5

Mean 3.06E+00 3.74E+00 2.05E+01 2.03E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.04E+01

Std 7.86E−01 4.91E−01 7.46E−02 6.67E−02 5.56E−02 5.43E−02 5.99E−02 8.81E−02 7.11E−02

f-rank 1 2 5 3 9 8 7 6 4

G6

Mean 1.70E+01 1.99E+01 9.84E+00 1.05E+01 3.80E+01 3.30E+01 1.20E+01 2.50E+01 8.66E+00

Std 3.12E+00 2.70E+00 3.49E+00 2.39E+00 1.16E+00 2.58E+00 2.72E+00 2.00E+00 1.64E+00

f-rank 5 6 2 3 9 8 4 7 1

G7

Mean 1.75E−01 7.81E−02 2.53E−01 1.56E−02 3.40E+02 1.11E+02 0.00E+00 2.30E+01 9.31E−04

Std 8.56E−02 4.44E−02 1.43E−01 1.83E−02 2.74E+01 1.81E+01 1.19E−01 3.52E+00 3.29E−04

f-rank 5 4 6 3 9 8 1 7 2

G8

Mean 5.53E+01 4.71E−01 4.38E+01 1.47E+01 3.00E+02 1.74E+02 3.30E+01 2.90E+02 5.73E+00

Std 3.78E+02 6.79E−01 8.48E+00 3.34E+00 1.03E+01 1.61E+01 9.19E+00 2.23E+01 2.90E+00

f-rank 6 1 5 3 9 7 4 8 2

G9

Mean 7.66E+01 9.11E+01 6.33E+01 2.56E+02 3.70E+02 2.50E+02 3.20E+01 2.90E+02 1.44E+02

Std 1.61E+01 1.54E+01 1.30E+01 1.34E+01 1.69E+01 2.03E+01 1.15E+01 2.38E+01 1.23E+01

f-rank 3 4 1 7 9 6 2 8 5

G10

Mean 1.25E+04 6.68E+03 9.61E+02 1.78E+03 6.26E+03 3.50E+03 2.26E+03 8.55E+03 1.82E+01

Std 1.16E+02 4.58E+02 2.72E+02 4.09E+01 3.05E+02 3.47E+02 5.72E+02 4.91E+02 2.47E+01

f-rank 9 7 2 3 6 5 4 8 1

G11

Mean 1.23E+04 6.71E+03 2.68E+03 1.48E+03 7.10E+03 6.80E+03 2.86E+03 8.83E+03 1.97E+03

Std 3.41E+02 5.17E+02 3.68E+02 4.54E+02 2.97E+02 3.79E+02 5.38E+02 5.50E+02 3.40E+02

f-rank 9 5 3 1 7 6 4 8 2

G12

Mean 1.11E−02 1.11E−02 5.45E−01 3.55E−01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 2.48E−01

Std 1.75E−18 1.75E−18 1.66E−01 5.73E−02 3.38E−01 3.51E−01 5.26E−01 1.09E+00 1.01E−01

f-rank 1 1 4 3 7 6 8 5 2

G13

Mean 6.55E−01 6.78E−01 2.80E−01 3.77E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.34E−01

Std 1.56E−01 7.98E−02 6.30E−02 7.10E−02 2.56E−01 3.64E−01 6.25E−02 1.76E−01 5.01E−02

f-rank 8 9 6 7 2 3 4 1 5

G14

Mean 6.20E−01 3.93E−01 4.23E−01 2.71E−01 1.00E+02 6.00E+01 0.00E+00 1.00E+01 1.77E−01

Std 2.96E−01 1.55E−01 2.15E−01 5.12E−02 1.16E+01 1.22E+01 9.85E−02 1.88E+00 2.16E−02

f-rank 6 4 5 3 9 8 1 7 2

G15

Mean 1.55E+01 1.88E+01 8.81E+00 1.06E+01 6.84E+05 2.39E+03 0.00E+00 8.00E+01 6.64E+00

Std 5.49E+00 5.64E+00 1.51E+00 3.71E+00 2.85E+05 1.22E+03 1.35E+00 3.03E+01 1.75E+00

f-rank 5 6 3 4 9 8 1 7 2

w/l/t 6/24/0 5/25/0 2/28/0 3/27/0 1/29/0 1/29/0 8/22/0 3/27/0

Overall f-rank 173 164 107 119 221 193 112 188 63

Average f-rank 5.76 5.46 3.56 3.96 7.36 6.43 3.73 6.26 2.10

f-rank 6 5 2 4 9 8 3 7 1

Functions Error

LX-BBO B-BBO RW-GWO ISOS PBIL VNBA IMEHO CCS MHDE
49 49 44 46 45 50 45 51

G16

Mean 1.08E+01 1.06E+01 1.03E+01 9.21E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01 9.89E+00

Std 5.84E−01 6.25E−01 6.11E−01 7.31E−01 2.12E−01 3.66E−01 7.64E−01 1.75E−01 0.4827E−01

f-rank 4 3 2 9 6 7 8 5 1

Continued
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where D = 30 is the dimension size. The algorithms used for comparison are highly competitive and have proved 
their worthiness for various CEC competitions. A rank-sum test (in terms of w/l/t) and f-test at 0.05 level of 
 significance47 is done to evaluate the performance of MHDE, along with experimental mean error and standard 
deviation. The mean error is evaluated by calculating the difference between the obtained values and the global 
optimum of that problem. From the results in Table 5, the following observations are made. For the first case of 
unimodal problems, H1 , H2 and H3 , SHADE, JADE, SaDE, MVMO, and LSHADE give highly efficient results; 
CVnew , CV1.0, CS and MHDE have similar performance and SHADE performed the best for these problems. For 

Functions Error

LX-BBO B-BBO RW-GWO ISOS PBIL VNBA IMEHO CCS MHDE
49 49 44 46 45 50 45 51

G17

Mean 1.49E+06 1.27E+06 5.71E+05 1.75E+05 9.74E+06 2.53E+06 7.69E+04 1.15E+07 9.66E+04

Std 9.34E+05 5.46E+05 4.10E+05 1.64E+05 2.79E+06 3.34E+06 8.38E+04 4.59E+06 5.16E+04

f-rank 6 5 4 3 8 7 1 9 2

G18

Mean 2.89E+03 8.22E+02 6.52E+03 3.89E+03 6.16E+08 1.66E+08 3.30E+03 1.10E+08 2.15E+02

Std 4.27E+03 1.00E+03 4.63E+02 5.15E+03 1.68E+08 1.03E+08 3.52E+03 4.66E+07 6.38E+01

f-rank 3 2 6 5 9 8 4 7 1

G19

Mean 5.19E+03 7.81E+03 1.14E+01 7.79E+01 1.90E+02 1.20E+02 1.05E+01 4.00E+01 6.01E+00

Std 5.67E+03 4.67E+03 2.03E+00 1.78E+00 3.42E+01 3.82E+01 1.74E+00 5.91E+00 5.40E−01

f-rank 8 9 3 5 7 6 2 4 1

G20

Mean 2.61E+04 1.62E+04 6.27E+02 4.98E+03 3.59E+04 1.69E+04 2.10E+02 1.03E+06 9.12E+01

Std 1.57E+04 4.11E+03 1.12E+03 3.40E+03 1.77E+04 6.57E+03 8.17E+01 9.05E+05 2.83E+01

f-rank 7 5 3 4 8 6 2 9 1

G21

Mean 1.11E+06 1.22E+06 2.58E+05 8.90E+04 2.52E+06 2.30E+06 2.72E+04 5.66E+06 1.75E+04

Std 7.95E+05 7.96E+05 1.76E+05 1.07E+05 1.19E+06 1.35E+06 1.83E+04 2.73E+06 1.06E+04

f-rank 5 6 4 3 8 7 2 9 1

G22

Mean 1.88E+03 1.68E+02 2.08E+02 2.75E+02 1.02E+03 8.40E+02 2.10E+02 1.34E+03 1.26E+02

Std 2.03E+02 2.47E+02 2.08E+02 1.45E+02 1.88E+02 1.28E+02 1.01E+02 1.88E+02 5.60E+01

f-rank 9 2 3 5 7 6 4 8 1

G23

Mean 4.11E+02 3.43E+02 3.15E+02 3.15E+02 6.00E+02 3.90E+02 3.20E+02 3.50E+02 2.00E+02

Std 6.43E+01 2.84E+01 2.77E−01 1.60E+01 6.70E+01 2.47E+01 4.78E−01 7.66E+00 0.00E+00

f-rank 8 5 2 3 9 7 4 6 1

G24

Mean 1.47E+04 3.41E+04 2.00E+02 2.00E+02 4.00E+02 2.30E+02 2.40E+02 2.20E+02 2.00E+02

Std 8.37E+03 2.35E+04 3.04E−03 1.50E−03 1.42E+01 2.53E+01 6.46E+00 2.51E+00 8.21E−04

f-rank 8 9 2 3 7 5 6 4 1

G25

Mean 5.29E+02 6.53E+02 2.04E+02 2.00E+02 2.40E+02 2.10E+02 2.10E+02 2.20E+02 2.00E+02

Std 4.36E+01 6.01E+01 1.18E+00 8.07E−01 6.00E+00 1.07E+01 2.08E+00 4.44E+00 0.00E+00

f-rank 8 9 3 2 7 5 4 6 1

G26

Mean 2.12E+00 3.64E+01 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.31E+02

Std 3.46E+00 5.62E+01 7.36E−02 9.55E−02 2.09E−01 4.30E−01 6.00E−02 2.06E−01 4.66E+01

f-rank 1 2 8 7 5 6 3 4 9

G27

Mean 1.95E+02 3.04E+02 4.09E+02 5.43E+02 1.08E+03 1.29E+03 5.80E+02 5.30E+02 2.00E+02

Std 1.04E+02 1.60E+02 6.09E+00 1.36E+02 2.80E+02 3.30E+01 1.41E+02 7.92E+01 0.00E+00

f-rank 1 3 4 6 7 8 9 5 2

G28

Mean 1.94E+03 2.12E+03 4.34E+02 9.68E+02 1.39E+03 1.68E+03 9.70E+02 1.44E+03 2.00E+02

Std 1.04E+02 4.44E+02 8.45E+00 4.12E+01 1.33E+02 2.33E+02 2.44E+02 9.46E+02 0.00E+00

f-rank 8 9 2 3 5 7 4 6 1

G29

Mean 1.98E+07 3.09E+07 2.14E+02 5.70E+05 5.70E+06 7.47E+06 1.21E+03 1.20E+06 2.00E+02

Std 3.95E+06 6.91E+06 2.37E+00 2.14E+06 3.33E+06 1.20E+06 2.16E+02 7.03E+05 0.00E+00

f-rank 8 9 2 4 7 6 3 5 1

G30

Mean 6.95E+06 1.38E+07 6.69E+02 2.38E+05 1.49E+05 1.89E+05 4.08E+03 7.67E+04 2.00E+02

Std 1.03E+07 1.08E+07 2.14E+02 1.10E+03 5.55E+04 1.03E+05 1.44E+03 3.37E+04 3.44E−05

f-rank 8 9 2 7 5 6 3 4 1

w/l/t 6/24/0 5/25/0 2/28/0 3/27/0 1/29/0 1/29/0 8/22/0 3/27/0

Overall f-rank 173 164 107 119 221 193 112 188 63

Average f-rank 5.76 5.46 3.56 3.96 7.36 6.43 3.73 6.26 2.10

f-rank 6 5 2 4 9 8 3 7 1

Table 4.  Statistical results for CEC 2014 benchmark functions.
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the multimodal problems, H4 to H10 , SHADE, MVMO, JADE and SaDE have similar performance and LSHADE 
gave the best results. For hybrid problems, H11 to H20 , CS, CVnew , CV1.0, were better than the DE variants, and 
MHDE was found to be the best among others. For H21 to H30 composite problems, MHDE gives the best per-
formance and is the most significant algorithm among all others under comparison. The results in the last line 
of Table 5, provides statistical p-values and f-rank, and it is found that with respect to MHDE, LSHADE gives 
better performance for 16 problems, SHADE for 14 problems, SaDE for 10 problems, JADE for 12 problems, 
MVMO for 15 problems, CVnew for 6 problems.

Overall comparison shows that MHDE is better than other algorithms for most of the hybrid and composite 
problems and has poor performance over unimodal and multimodal problems. This further proves the signifi-
cance of MHDE over statistical and experimental results, for challenging optimization problems.

Real‑world applications I: engineering design problems
Here, the effectiveness of the MHDE algorithm is assessed across a range of real-world optimization problems 
with diverse constraints. To handle constraints, a variety of techniques including decoder functions, repair 
algorithms, feasibility preservation and penalty functions are employed, as outlined  in55. In this study, the focus 
is to opt for penalty functions due to their simplicity of implementation and widespread adoption. A common 
method for constraint management through penalty functions is detailed through a specific implementation, 
as illustrated in the equation below.

The equalities are described by gi(x) and the inequalities by hj(x) . p and q count the number of equality and 
inequality constraints. Constants ai and bj are positive. n and � are set as 1 or 2. Utilizing a penalty function 
results in an elevation of the objective function value when constraints are breached. This creates an incentive 
for the algorithm to steer clear of infeasible areas and prioritize the exploration of feasible regions within the 
search space.

For performance evaluation, four engineering design problems including, (1) pressure vessel design, (2) roll-
ing element bearing design, (3) tension/compression spring design, and (4) cantilever beam design, are used. 
The MHDE algorithm is compared with respect to some of the well-known algorithms including, artificial rabbit 
optimization (ARO)55, taguchi search algorithm (TSA)56, multi-strategy chameleon algorithm (MCSA)56, hybrid 
particle swarm optimization (HPSO)57, equilibrium optimizer (EO)21, evolution strategies (ES)58, grasshopper 
optimization algorithm (GOA)59, ( µ+ � ) evolutionary search (ES)60, harris hawk optimizer (HHO)56, cuckoo 
search (CS)55,  GCAII55, ant colony optimization (ACO)55, co-evolutionary DE (CDE)60, bacterial foraging opti-
mization algorithm (BFOA)61, symbiotic optimization search (SOS)62, passing vehicle search (PVS)63, meerkat 
optimization algorithm (MOA)64, red panda optimizer (RPO)65, mine blast algorithm (MBA)66, moth flame opti-
mizer (MFO)56, thermal exchange optimization (TEO)67,  GCAI55, co-evolutionary differential evolution (CDE)60, 
seagull optimization algorithm (SOA)68, co-evolutionary particle swarm optimization approach (CPSO)57, and 
dynamic opposition strategy taylor-based optimal neighbourhood strategy and crossover operator (DTCSMO)69.

Pressure vessel design
The optimization problem related to pressure vessels design is a widely acknowledged challenge in engineering. 
The fundamental objective is to minimize costs linked to material acquisition, welding, and the overall fabrication 
of pressure vessels, as discussed  in57. This problem revolves around four key design variables: the thickness of 
the cylindrical shell represented as Ts , the inside radius of the cylindrical shell denoted as R, the head thickness 
of the cylindrical shell indicated by Th , and the length of the cylindrical segment denoted as L. This problem has 
four constraints, as given by (29) and (30), as shown in Fig. 1.

Consider, P = [L1L2L3L4] = [TsThRL]

Varying range, 0 ≤ L1 ≤ 99, 0 ≤ L2 ≤ 99, 10 ≤ L3 ≤ 200, 10 ≤ L4 ≤ 200

The outcomes pertaining to this design problem are presented in Table 6, where the results are evaluated using 
different algorithms for comparative analysis. These algorithms encompass  MCSA56,  ARO55,  CPSO75,  HPSO57, 

(26)Minimize f (x) = f (x)±





p
�

i=1

aiGi(x)+

q
�

j=1

bjHj(x)





(27)Gi(x) = max(0, gi(x))
n

(28)Hj(x) = |hj(x)|
�

(29)Optimize, f (P) = 0.6224L1L2L3 + 1.778L2L
2
3 + 3.1661L21L4 + 19.84L21L3

(30)

Subjected to, g1(P) = −L1 + 0.0193L3 ≤ 0

P2(P) = L2 + 0.00954L3 ≤ 0

L3(P) = πL23L4 −
4

3
πL23 + 1296000 ≤ 0

P4(P) = L4 − 240 ≤ 0



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4877  | https://doi.org/10.1038/s41598-024-54384-3

www.nature.com/scientificreports/

Function SaDE35 JADE35 SHADE52 LSHADE54 MVMO35 CV1.029 CVnew
53 CS MHDE

H1

Mean 1.212E+03 5.231E−14 0.000E+00 0.000E+00 1.331E−05 1.000E+10 1.000E+10 1.000E+10 1.000E+10

Std (1.972E+03) (2.512E−14) (0.000E+00) (0.000E+00) (5.602E−06) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00)

rank + + + + + = = =

f-rank 4 2 1 1 3 5 5 5 5

H3

Mean 2.711E+02 1.774E+04  0.000E+00 0.000E+00 5.303E−07 1.954E+04 8.713E+03 2.525E+05 4.093E+03

Std (8.282E+02) (3.701E+04) (0.000E+00) (0.000E+00) (1.094E−07) (6.273E+03) (4.083E+03) (3.024E+04) (1.504E+03)

rank + − + + + − − −

f-rank 5 4 3 2 1 8 7 9 6

H4

Mean 8.923E+01 4.962E+01 5.683E+01 8.184E+01 3.583E+01 1.163E+02 2.673E+01 1.285E+02 4.344E+01

Std (4.211E+01) (4.713E+01) (8.801E+00) (4.083E+01)) (3.662E+01) (6.273E+03) (5.924E+00) (2.444E+01) (2.713E+01)

rank − − − − + − + −

f-rank 6 5 4 7 3 8 1 9 2

H5

Mean 9.232E+01 5.422E+01 3.284E+01 1.223E+01 8.074E+01 3.412E+02 2.394E+02 4.864E+02 2.133E+02

Std (1.863E+01) (8.804E+00) (5.033E+00) (2.042E+00) (1.643E+01) (8.023E+01) (3.803E+01) (4.665E+01) (2.344E+01)

rank + + + + + − − −

f-rank 2 5 6 1 4 8 7 9 3

H6

Mean 7.431E−03 1.442E−13 8.382E−04 5.693E−05 5.434E−03 4.852E+01 4.075E+01 4.133E+01 4.424E−01

Std (2.352E−02) (9.112E−14) (1.013E−03) (3.712E−04) (3.302E−03) 4.853E+01 (8.144E+00) (6.325E+00) (3.413E−01)

rank + + + + + − − −

f-rank 2 4 3 1 5 8 7 9 6

H7

Mean 1.801E+02 1.011E+02 8.094E+01 6.323E+01 1.233E+02 2.744E+02 2.223E+02 5.513E+02 1.430E+02

Std (1.972E+01) (6.482E+00) (3.783E+00) (1.702E+00) (1.274E+01) (7.292E+01) (3.495E+01) (4.084E+01) (2.024E+01)

rank − + + + + − − −

f-rank 4 5 2 1 6 8 7 9 3

H8

Mean 9.422E+01 5.524E+01 3.232E+01 1.192E+01 7.594E+01 3.294E+02 2.594E+02 4.825E+02 2.334E+02

Std (1.773E+01) (7.763E+00) (3.824E+00) (2.272E+00) (1.612E+01) (7.293E+01) (4.515E+01) (4.673E+01) (3.054E+01)

rank + + + + + − − −

f-rank 5 3 2 1 4 8 7 9 6

H9

Mean 4.832E+01 1.174E+00 1.112E+00 0.000E+00 7.384E+00 1.000E+04 1.062E+04 3.533E+04 9.325E+03

Std (6.293E+01) (1.312E+00) (9.371E−01) (0.000E+00) (5.773E+00) (2.905E+03) (3.103E+03) (4.823E+03) (1.254E+03)

rank + + + + + − − −

f-rank 4 3 2 1 6 8 7 9 5

H10

Mean 6.602E+03 3.754E+03 3.344E+03 3.172E+03 3.494E+03 7.103E+03 6.094E+03 7.394E+03 4.202E+03

Std (1.633E+03) (2.542E+02) (2.943E+02) (2.543E+02) (4.313E+02) (5.343E+02) (3.553E+02) (3.261E+02) (6.122E+02)

rank − + + + + − − −

f-rank 6 3 2 1 5 8 7 9 4

H11

Mean 1.092E+02 1.364E+02 1.202E+02 6.863E+01 6.744E+01 1.665E+02 1.183E+02 3.454E+02 6.582E+01

Std (3.542E+01) (3.394E+01) (2.933E+01) (7.913E+00) (8.724E+00) (3.385E+01) (1.915E+01) (4.163E+01) (1.063E+01)

rank − − − − − − − −

f-rank 4 6 5 3 2 8 7 9 1

H12

Mean 1.112E+05 5.143E+03 5.131E+03 2.163E+03 1.293E+03 1.000E+10 1.000E+10 1.000E+10 1.000E+10

Std (6.202E+04) (3.324E+03) (2.874E+03) (4.512E+02) (2.792E+02) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00)

rank + + + + + = = =

f-rank 5 4 3 2 1 6 6 6 6

H13

Mean 1.212E+03 3.033E+02 2.652E+02 6.622E+01 4.373E+01 1.000E+10 9.803E+09 1.00E+10 9.213E+09

Std (1.451E+03) (2.694E+02) (1.494E+02) (2.833E+01) (1.762E+01) (0.000E+00) (1.404E+09) (0.000E+00) (2.793E+09)

rank + + + + + − − −

f-rank 5 4 3 2 1 7 7 7 6

H14

Mean 2.884E+03 1.054E+04 2.152E+02 2.764E+03 4.852E+01 2.051E+02 3.984E+01 3.264E+05 2.514E+03

Std (2.202E+03) (3.112E+04) (7.293E+01) (4.511E+02) (1.212E+01) (2.135E+01) (1.623E+01) (1.603E+05) (1.583E+02)

rank − − − − + − − −

f-rank 7 8 5 6 2 4 1 9 3

H15

Mean 3.352E+03 3.493E+02 3.224E+02 4.073E+01 4.464E+01 1.372E+09 2.853E+02 7.853E+09 2.402E+01

Std (2.793E+03) (4.424E+02) (1.423E+02) (9.912E+00) (1.123E+01) (3.474E+09) (3.544E+02) (4.123E+09) (5.992E+03)

rank − − − − − − − −

f-rank 7 4 5 2 3 8 6 9 1

Continued
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SaDE35 JADE35 SHADE52 LSHADE54 MVMO35 CV1.029 CVnew
53 CS MHDE

H16

Mean 8.172E+02 8.563E+02 7.333E+02 6.262E+01 8.402E+02 1.535E+03 1.443E+03 1.763E+03 7.421E+02

Std (2.343E+02) (1.754E+02) (1.884E+02) (2.833E+01) (1.933E+02) (2.744E+02) (2.104E+02) (2.372E+02) (1.344E+02)

rank − − − − − − − −

f-rank 5 6 4 1 3 8 7 9 2

H17

Mean 5.483E+02 6.001E+02 5.164E+02 5.542E+02 5.192E+02 1.252E+03 1.133E+02 1.183E+03 4.032E+02

Std (1.533E+02) (1.212E+02) (1.112E+02) (7.454E+01) (1.333E+02) (1.855E+02) (1.924E+02) (1.783E+02) (1.183E+02)

rank − − − − − − − −

f-rank 5 7 4 6 3 8 1 9 2

H18

Mean 3.243E+04 1.893E+02 1.893E+02 3.923E+01 4.173E+01 5.212E+02  1.512E+02 1.433E+06 5.903E+05

Std (1.682E+04) (1.254E+02) (1.034E+02) (1.102E+01) (1.944E+01) (1.193E+02) (4.434E+01) (5.893E+05) (6.123E+04)

rank + + + + + + + −

f-rank 7 6 5 3 4 2 1 9 8

H19

Mean 1.131E+04 3.241E+02 1.593E+02 2.454E+01 1.733E+01 1.734E+02 5.573E+01 1.99E+08 1.194E+02

Std (1.683E+04) (1.252E+03) (5.684E+01) (8.814E+00) (5.134E+00) (4.173E+02) (1.103E+01) (1.393E+09) (1.131E+03)

rank − − − + + − + −

f-rank 7 5 6 2 1 8 3 9 4

H20

Mean 3.523E+02 4.383E+02 3.332E+02  1.733E+02 3.494E+02 1.054E+03 2.813E+02 1.043E+03 3.143E+02

Std (1.501E+02) (1.332E+02) (1.203E+02) (7.923E+01) (1.473E+02) (2.143E+02) (1.652E+02) (1.673E+02) (7.463E+01)

rank − − − + − − − −

f-rank 5 6 4 1 7 8 2 9 3

H21

Mean 2.873E+02 2.592E+02 2.334E+02 2.622E+02 2.772E+02 5.414E+02 1.184E+02 6.554E+02 2.264E+02

Std (1.362E+01) (9.633E+00) (5.113E+00) (1.942E+01) (1.605E+01) (6.273E+01) (8.773E+01) (7.933E+01) (1.143E+02)

rank − − + − − − − −

f-rank 3 7 4 5 6 8 2 9 1

H22

Mean 2.923E+03 3.332E+03 3.174E+03 2.49E+03 3.263E+03 7.333E+03 5.772E+03 8.193E+03 1.000E+02

Std (3.242E+03) (1.802E+03) (1.552E+03) 1.604E+03 (1.714E+03) (1.993E+03) (3.642E+02) (4.083E+02) (6.103E−03)

rank − − − − − − − −

f-rank 2 3 4 5 6 8 7 9 1

H23

Mean 5.222E+02 4.793E+02 4.593E+02 4.304E+02 5.044E+02 7.743E+02 1.873E+02 9.142E+02 6.144E+02

Std (2.053E+01) (1.172E+01) (8.754E+00) (5.072E+02) (1.715E+03) (8.063E+01) (5.113E+01) (4.592E+01) (4.764E+01)

rank − + + + + − + −

f-rank 7 6 5 4 3 8 1 9 2

SaDE35 JADE35 SHADE52 LSHADE54 MVMO35 CV1.029 CVnew
53 CS MHDE

H24

Mean 5.893E+02 5.313E+02 5.313E+02 5.62E+02 5.833E+02 8.322E+02 3.252E+02 1.012E+03 5.333E+02

Std (1.862E+01) (7.622E+00) (7.455E+00) (2.334E+02) (1.693E+01) (1.213E+01) (8.954E+01) (6.383E+01) (2.634E+01)

rank − = = − − − + −

f-rank 7 5 4 6 3 8 2 9 1

H25

Mean 5.713E+02 5.193E+02 5.063E+02 4.85E+02 5.093E+02 5.434E+02 4.702E+02 5.334E+02 4.312E+02

Std (3.052E+01) (3.483E+01) (3.644E+01) (1.634E+01) (3.123E+01) (1.512E+01) (2.264E+01) (1.665E+01) (8.654E+00)

rank − − − − − − + −

f-rank 3 5 7 6 4 8 2 9 1

H26

Mean 2.523E+03 1.612E+03 1.412E+03 1.14E+03 1.932E+03 2.484E+03 1.163E+03 4.574E+03 3.215E+02

Std (3.373E+02) (1.213E+02) (9.783E+01) (4.493E+01) (2.865E+02) (1.884E+03) (1.565E+03) (1.823E+03) (2.412E−04)

rank − − − − − − − −

f-rank 8 4 5 6 7 3 2 9 1

H27

Mean 7.101E+02 5.501E+02 5.494E+02 5.33E+02 5.434E+02 7.384E+02 4.533E+02 8.173E+02 5.000E+02

Std (6.653E+01) (2.343E+01) (2.782E+01) (1.913E+01) (1.753E+01) (8.212E+01) (7.174E+01) (5.684E+01) (2.802E−01)

rank − − − − − − + −

f-rank 3 6 5 7 8 4 2 9 1

H28

Mean 4.993E+02 4.912E+02 4.794E+02 4.733E+02 4.64E+02 4.944E+02 4.583E+02 5.125E+02 4.002E+02

Std (1.532E+01) (2.083E+01) (2.413E+01) (2.243E+01) (1.505E+01) (1.932E+01) (2.334E−01) (1.882E+01) (7.563E−04)

rank − − − − − − − −

f-rank 6 3 4 2 5 8 7 9 1

Continued
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( µ+ �)ES60,  ACO55,  CDE60,  HHO56,  MOA64,  RPO65,  MFO56,  TSA55,  MVO56, and others. The convergence pat-
terns are shown in Fig. 2.

After optimization, the values of the variables obtained through MHDE are given by 
x = (0.7781695, 0.3846499, 40.32966, 199.9994) . The corresponding optimal cost for this design problem is 
f = 5885.3353 . This result significantly outperforms the outcomes achieved by all other algorithms examined 
in our comparative analysis. The demonstration of such competitive performance serves to affirm the effective-
ness of the proposed MHDE algorithm in comparison to the alternative algorithms that were evaluated.

Rolling elemet bearing design
This optimization problem is associated with the load-bearing capacity of rolling  elements56, and is represented 
in Fig. 3. This design problem has ten variables and many constraints. It is mathematically given by

Consider P = [Jm, Jb,Z, fi , fo,KDmin,KDmax , ǫ, e, ζ ]

where

T = J − j − 2Jb , J = 160 , j = 90 , Bw = 30 , ri = ro = 11.033

Variable range
0.5(J + j) ≤ Jm ≤ 0.6(J + j), 0.15(J − j) ≤ Jb ≤ 0.45(J − j), 4 ≤ Z ≤ 50,

0.515 ≤ fi ≤ 0.6, 0.515 ≤ fo ≤ 0.6, 0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ ǫ ≤ 0.4,

0.02 ≤ e ≤ 0.1, 0.6ζ0.85

In this design example, the algorithms used for comaprion are  ARO55,  GA263,  MBA66, 
 PVS63,  TLBO76,  SOA68, DTCSMO, PSO, and DE, and results are given in Table  7. The 
design variables obtained by MHDE for this  part icular scenario are determined as 
x = (125.7191, 21.2716, 11, 0.5150, 0.5150, 0.4195017, 0.6430438, 0.3000, 0.0310311, 0.6963122) , and optimized 
cost is given as f = 85549.2391 . From the results in Table 7, it can be seen that the proposed algorithm is highly 
competitive with respect to other algorithms.

(31)Maximise

{

f2(P) = fcP
2/3J1.8b if Jb ≤ 25.4mm

fz(P) = 3.647fcP
2/3J1.4b if Jb > 25.4mm

(32)

Subject to

g1(P) =
φ0

2sin−1(Jb/Jm)
− P + 1 ≥ 0, g2(P) = 2Jb − KDmin(J − d) ≥ 0,

g3(P) = KDmax(J − j)− 2Jb ≥ 0, g4(P) = Jm − (0.5− e)(J + j) ≥ 0,

g5(P) = (0.5+ e)(J + j)− Jm ≥ 0, g6(P) = Jm − 0.5(J + j) ≥ 0,

g7(P) = 0.5(J − Jm − Jb)− ǫJb ≥ 0, g8(P) = ζBw − Jb ≤ 0,

g9(P) = fi ≥ 0.515, g10(P) = fo ≥ 0.515

(33)

fc = 37.91[1+

{

1.04

(

1− γ

1+ γ

)1.72( fi(2fo − 1)

fo(2fi − 1)

)0.4
}1

0/3]−0.3 ×

(

γ 0.3(1− γ )1.39

fo(1+ γ
1
3 )

)

(

2fi

2fi − 1

)0.41

(34)γ =
Jb

Jm
, fi =

ri

Jb
, fo =

ro

Jb
,

(35)φo = 2π − 2cos−1

{

(J − j)/2− 3(T/4)2
}2

+ {J/2− (T/4)− Jb}
2 −

{

j/2+ (T/4)
}2

2
{

(J − j)/2− 3(T/4)
}

{J/2− (T/4− Jb)}

SaDE35 JADE35 SHADE52 LSHADE54 MVMO35 CV1.029 CVnew
53 CS MHDE

H29

Mean 5.111E+02 4.773E+02 4.874E+02 3.512E+02 4.894E+02 1.694E+03 1.453E+03 1.575E+03 7.282E+02

Std (1.373E+02) (8.062E+01) (1.052E+02) (1.043E+01) (1.403E+01) (2.292E+02) (1.684E+02) (1.794E+02) (1.503E+02)

rank + + + + + − − −

f-rank 5 2 3 1 6 8 7 9 4

H30

Mean 8.074E+05 6.683E+05 6.821E+05 6.534E+05 5.81E+05 4.642E+06 6.024E+05 2.952E+09 3.972E+04

Std (8.333E+04) (9.252E+04) (8.514E+04) (7.323E+04) (1.023E+04) (8.593E+06) (2.994E+04) (4.593E+09) (5.242E+03)

rank − − − − − − − −

f-rank 8 4 5 6 7 2 3 9 1

w/l/t 9/20/0 11/17/1 13/16/0 15/14/0 14/15/0 1/26/2 7/20/2 0/27/2

Average f-rank 4.821 4.653 3.962 3.173 4.241 7.203 4.513 9 3.101

Overall f-rank 7 6 3 2 4 8 5 9 1

Table 5.  Statistical results for CEC 2017 benchmark problems.
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Tension/compression spring design
For a compression spring, there are three design variables, including the wire diameter (d), mean coil diameter 
(D), and the number of active coils (N). The design is given in Fig. 4. The mathematical formulation is as:

Consider, P = [L1L2L3] = [dDN].

Limits, 0.005 ≤ L1 ≤ 2.0, 0.25 ≤ L2 ≤ 1.30, 2.0 ≤ L3 ≤ 15.0

In this scenario, a comprehensive comparison is conducted, with respect to RPO, CDE,  GCAII55,  MMA79, 
CPSO, SI,  ARO55,  SOS62,  CS55,  MFO56,  GCAI55, MFO, BFOA, HHO,  GOA59, and others, as outlined in Table 9. 

(36)Minimize, f (P) = (L1 + 2)L2L
2
1

(37)

Subjected to, g1(P) = 1−
L32L3

71875L41
≤ 0

g2(P) =
4L22 − L1L2

12566
(

L2L
3
1 − L41

) +
1

5108L21
≤ 0

g3(P) = 1−
140.45L1

L3L
2
2

≤ 0

g4(P) =
L1 + L2

1.5
− 1 ≤ 0

Figure 1.  Pressure vessel design problem.

Table 6.  Statistical outcomes for Pressure vessel design challenge.

Algorithms

Optimal variables

Optimal costL1 L2 L3 L4

MHDE 0.7781695 0.3846499 40.32966 199.9994 5885.3353

CPSO57 0.8125 0.4375 42.091266 176.746500 6061.0777

HPSO57 0.8125 0.4375 42.098400 176.6366 6059.7143

ACO70 0.8125 0.4375 42.103624 176.572656 6059.0888

CDE60 0.8125 0.4375 42.098411 176.637690 6059.734

HHO56 0.810634392 0.395351718 41.43705230 185.0083559 6000.709575

MCSA56 0.778219825 0.384673362 40.32227070 199.9630859 5885.420268

LX-TLA71 0.7940 0.3930 41.1000 191.010 5960.010

EO21 0.8125 0.4375 42.0984456 176.6365958 6059.7143

HAIS-GA72 0.8125 0.4375 42.0931 176.7031 6060.367

HGA(2)73 1.1250 0.5625 58.1267 44.5941 6832.583

RPO65 0.778027 0.384579 40.31228 200 5882.8950

ES58 0.8125 0.4375 42.098087 176.640518 6059.745

BFOA61 0.8125 0.4375 42.096394 176.683231 6060.460

CDE60 0.8125 0.4375 42.098411 176.6377 6059.7340

TSA56 0.7783575016 0.385020966 40.32843029 199.8835841 5886.704101

MFO56 0.8125 0.4375 42.0984 176.6365 6059.7143

MVO56 0.789362835 0.392994906 40.94616932 191.5105526 5917.132761

MOA64 0.797811 0.390422 40.9048 192.016 5965.22494

ARO55 0.77824311 0.38475065 40.32338898 199.94794222 5885.667948

(µ+ � )  ES74 0.8125 0.4375 42.098411 176.6366 6059.7340
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For this particular case, the optimal design variables derived using the MHDE algorithm are given in Table 8 and 
Fig. 5, are specified as x = (0.0526768, 0.380935, 10) . The resulting optimized cost is calculated as f = 0.012684 . 
These results prove the significance of the proposed algorithm for tension spring design problem.

Cantilever beam design
This problem is meant for reducing the weight of a cantilever beam, having one constraint and five distinct blocks, 
representing several design variables, and is given by Fig. 6.

The design problem is mathematically given by Consider variable P = [L1, L2, L3, L4, L5]

Minimize f4(P = 0/0624(L1 + L2 + L3 + L4 + L5))

Subject to g1(T) = 61

L31
+ 37

L32
+ 19

L33
+ 7

L34
+ 1

L35
− 1 ≤ 0

Variable range 0.01 ≤ Pi ≤ 100, i = 1, . . . , 5.

Figure 2.  Convergence of pressure vessel design.

Figure 3.  Rolling element bearing design challenges.
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A comparison is performed with respect to  MFO56,  ARO55,  SOS62,  CS55,  GCAII55,  GCAI55,  MMA79, and  GOA59. 
The results, in Table 9, show that design variables for this problem are x = (6.0140, 5.3128, 4.4914, 3.4993, 2.1563) 
and the optimized cost is f = 1.34000 . The convergence patterns are given in Fig. 7. Here also, the proposed 
algorithm is significant with respect to others.

Real‑world applications II: frame design problems
Here, MHDE algorithm is used for weight minimization of 1-bay 8-story, 3-bay 15-story and 3-bay 24-story 
structures, respectively. The optimization results are compared with recently introduced hybrid algorithms to 
prove the significance of MHDE. Also, the frame structure benchmark problems are highly challenging to design 
due to higher level of difficulty in their  implementation80. The figures of the three frames are taken  from81.

Meta-heuristic algorithms (MHAs) have emerged as the core of modern optimization research and have set 
the trend for its use in almost every research domain. MHAs have been found to provide good solutions for 
frame design problems, and various algorithms have been presented in literature for optimal frame structure 
 designing28,36,82. In the present work, the proposed MHDE is tested for optimizing weights in the frame struc-
tures. The termination criteria are based on maximum function evaluation and is inspired  from36. The objective 
function is analysed 20,000 times for 1-bay 8-story frame and 30,000 for 3-bay 15-story frame whereas for 3-bay 
24-story frame it is 50,000 respectively. For each problem, the population size used is 50 and a total of 20 inde-
pendent runs have been performed. Apart from that, it has been kept in mind that there are no violations for a 
fair comparison among the algorithms. Here, a randomly generated initial population containing both feasible 
and infeasible solutions has been used to obtain statistically significant results.

Designing 1‑bay 8‑story frame
For this case, fabrication conditions from the initial foundation steps are achieved by using the same beam 
section and same column section for every two successive stories. The modulus of elasticity for the material is 
E = 200 GPa (29000 ksi) and 267 W-shaped sections must be used for choosing cross-sectional areas of all the 
elements. The only constraint is that the latent drift must be less than 5.08 cm. The design is shown in Fig. 8.

The comparison has been performed with respect to some of  GA28,  ACO28,  DE28, ES-DE28,  PSOACO82, 
 HGAPSO82,  PSOPC82 and  SFLAIWO82. From the experimental results in Table 10, it has been found that MHDE 
has the minimum weight of 30.70 kN for the frame structure. The other best algorithms, ACO and SFLAIWO 
having 31.05 kN and 31.08 kN optimized weights respectively, are second and third best. Overall, MHDE provides 
more reliable results than most of the well-known algorithms reported in literature.

Designing 3‑bay 15‑story frame
For a 3-bay 15-story frame design, the ASIC combined strength constraint and displacement constraint is 
included as an optimization constraint. The material properties of the frame include: E = 200 GPa (29000 ksi), 
yield stress Fy = 248.2 MPa and sway length on the top must be less than 23.5 cm. The length factor is calculated 
as kx ≥ 0 for sway permitted frame and the length factor out-of-plane is ky = 1.0 . The length of each beam is 1/5 
span length and the design structure is given in Fig. 9.

Here, nine improved algorithms are used for comparison including  HPSACO82, HBB-BC82, ICA-ACO36, 
 DE28, ES-DE28,  AWEO36,  EVPS36,  FHO7,  SDE36 and  SFLAIWO82. From the optimization results in Table 11, it is 
evident that the minimum weight is obtained by MHDE and is equal to 360.22 kN. The second-best algorithm is 

Table 7.  Statistical outcomes for Rolling element bearing design challenges.

Algorithms

Optimal variables

Optimal load carrying capacityJm Jb Z fi fo KDmin KDmax ǫ e ζ

MHDE 125.7191 21.2716 11 0.5150 0.5150 0.4195017 0.6430438 0.3000 0.0310311 0.6963122 85549.2391

GA263 125.7171 21.4231 11 0.5150 0.5150 0.4159 0.6510 0.3000 0.0223 0.7510 81843.3000

PVS63 125.7191 21.4256 11 0.5150 0.5150 0.4004 0.6802 0.3000 0.0800 0.7000 81859.74121

MBA66 125.7153 21.4233 11 0.5150 0.5150 0.4888 0.6278 0.3002 0.0946 0.6461 85535.9611

ARO55 125.7189 21 10.5403 0.5150 0.5150 0.4459 0.672132 0.3000 0.0825 0.6317 85548.5106

SOA68 125 21.4189 11 0.5150 0.5150 0.4000 0.7000 0.3000 0.0200 0.6000 85068.0520

DE 125.7192 21.2508 10.8654 0.5153 0.56021 0.4199 0.6197 0.3012 0.0472 0.6740 83629.26366

PSO 125.7251 21 11.2924 0.5153 0.5816 0.4569 0.6540 0.3092 0.0256 0.6128 81534.2759

TLBO76 125.7191 21.4256 11 0.5150 0.5150 0.4242 0.6339 0.3000 0.0689 0.7995 81859.7400

DTCSMO69 130.7576 18.0019 5.0265 0.6000 0.5954 0.4475 0.6458 0.3110 0.0554 0.6001 17021.1528
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Table 8.  Statistical outcomes for compression spring design challenges.

Algorithms

Optimal variables

Optimal costL1 L2 L3

MHDE 0.0526768 0.380935 10  0.012684

SCA56 0.051953681 0.363127167 11.92432679 0.012667794

TSA55 0.051849883 0.360542299 11.06962524 0.012668486

HPSO57 0.051706 0.357126 11.265083 0.0126652

LX-TLA71 0.0550 0.3600 1.0310 0.011

CPSO57 0.051728 0.357644 11.244543 0.012674

MFO55 0.05180485 0.359563992 11.12150367 0.012663719

SI77 0.050417 0.321532 13.97991 0.013060

BFOA61 0.051825 0.359935 11.107103 0.012671

CSA56 0.051552422 0.35349137 11.47804737 0.012663785

EO21 0.0516199100 0.355054381 11.38796759 0.012666

ARO55 0.05189732 0.36174867 11 0.01266602

RPO65 0.051689 0.356718 11.28897 0.012602

CDE60 0.051609 0.354714 11.410831 0.0126702

GWO19 0.051210248 0.345337024 11.98548282 0.012669398

HGA78 0.051302 0.347475 11.852177 0.012668

HHO56 0.053405295 0.342869942 12.14673591 0.012669676

MCSA56 0.05174419 0.358099507 11.20587013 0.012663522

(µ+ �)ES74 0.052836 0.384942 9.807729 0.012689

CDE60 0.051609 0.354714 11.410831 0.012670

Figure 4.  Tension compression spring design challenge.
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SFLAIWO having an optimized weight of 379.21 kN whereas for the third best SDE it is 387.89 kN. In comparison 
to second best and third-best algorithm, MHDE has a reduced weight of 18.99 kN and 27.67 kN respectively. The 
optimized average of 20 runs for this frame using MHDE is 364.73 kN with a 2.16 kN std. This further proves 
the superiority of MHDE algorithm in comparison to others.

Designing 3‑bay 24‑story frame
This frame consists of 168  members28 and must be designed in accordance with LRFD specifications. This frame 
has a displacement constraint and properties of its material includes, E = 205 GPa and Fy = 230.3 MPa. The 
effective length is, Kx ≥ 0 and the out-of-plane length is Ky = 1.0 . Here it should be noted that all the beams 
and columns are unbraced along the lengths and the design structure is shown in Fig. 10.

For fabrication, the first and third bay of each floor uses the same beam section except the roof beam, and 
hence there are only 4 groups of beams. The initial stages of foundation, interior columns are grouped together 
over three consecutive stories. Overall, this frame consists of 4 groups of beams and 16 groups of columns, 

Figure 5.  Convergence of tension/compression spring design.

Table 9.  Statistical outcomes for cantilever beam design challenges.

Algorithms

Optimal variables

Optimal costL1 L2 L3 L4 L5

MHDE 6.0140 5.3128 4.4914 3.4993 2.1563 1.34000

MFO22 5.984871 5.316726 4.497332 3.513616 2.16162 1.339988

GCAI55 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

SOS62 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

MMA79 6.01000 5.30000 4.49000 3.49000 2.150000 1.340000

GCAII55 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

CS55 6.00890 5.30490 4.50230 3.50770 2.15040 1.39999

ARO55 6.00682 5.31143 4.493524 3.50289 2.15904 1.33996

GOA59 5.984871 5.31297 4.48307 3.50279 2.16333 1.33996
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Figure 6.  Cantilever beam design challenge.

Figure 7.  Convergence of cantilever beam design.
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making the total number of design variables 20. The beam elements are chosen from 267 W-shapes, whereas 
column sections are restricted to W14 (37 W-shapes).

The optimized weights for this example are presented in Table 12. Here MHDE is compared with HBB-BC82, 
 HS37,  ICO28  ICA84,  HBBPSO82, ES-DE28,  AWEO36,  FHA7,  EVPS36 and  SFLAIWO82. Here it has been found that 
among all the algorithms, MHDE achieved the minimum weight of 904.91 kN. The second and third best are 
EVPS and SFLAIWO algorithm and here the optimized weight is 905.67 kN and 911.78 kN respectively. The 
mean weight for 20 independent runs for MHDE is 910.23 kN with 3.78 kN deviation. The best values of results 
further prove the superiority of MHDE in contrast to other algorithms. Also, the function evaluations used for 
MHDE is much less than compared to other algorithms. For example, only, 50000 function evaluations are used 
for MHDE in contrast to SFLAIWO where 168,000 function evaluations have been utilized for weight optimiza-
tion. Overall, it can be said that in this case also MHDE has superior performance and is easily able to enter the 
neighbourhood space of the global optimal solution.

Conclusion
This article presented a multi-hybrid algorithm by combing the concepts of iterative division along with adaptive 
mutation for improved expl, adaptive parameter for a balanced expl and exploitation, population size reduc-
tion, and Gaussian random sampling for mitigating the local optima stagnation problem. The new optimization 
strategy helps to carry out global search in a more efficient way by using GWO based equations. All the above-
discussed features ensure good performance of MHDE.

MHDE was evaluated using CEC 2005 classical benchmarks, CEC 2014 and CEC 2017 benchmark datasets. 
The experimental and statistical results prove that MHDE is superior with respect to DE variants such as JADE, 
SaDE, SHADE and others. The algorithm was then applied for weight minimization of three frames design 
problems with discrete variables. Optimization results prove the superior performance and competitiveness of 
MHDE over other algorithms for frame design also. To summarize, it is concluded that MHDE is reliable and 
an efficient algorithm for solving complex structural design problems.

Table 10.  Optimization results for the 1-bay 8-story frame.

Element group

Optimal W-shaped sections

GA DE ES-DE PSOACO HGAPSO PSOPC SFLAIWO ACO

MHDE28 80 28 82 82 83 82 28

1 W18X35 W16X36 W18X40 W18X35 W18X35 W18X35 W18X40 W21X44 W14X38

2 W18X35 W16X36 W18X35 W16X32 W18X35 W14X26 W18X35 W18X35 W16X31

3 W18X35 W14X22 W14X22 W14X22 W14X22 W16X26 W14X22 W18X35 W8X28

4 W18X26 W12X22 W12X14 W12X16 W12X16 W14X16 W12X14 W12X22 W14X22

5 W18X46 W18X35 W18X46 W21X48 W16X31 W24X62 W18X35 W18X40 W10X33

6 W16X31 W16X31 W18X35 W18X40 W21X44 W18X35 W18X35 W16X26 W16X36

7 W16X26 W18X40 W18X35 W16X31 W18X35 W16X31 W18X35 W16X26 W16X31

8 W12X16 W14X30 W12X19 W16X36 W16X26 W12X30 W14X22 W12X14 W14X26

Weight (kN) 32.83 32.76 31.77 32.29 31.24 34.21 31.08 31.05 30.70
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Figure 8.  Design of 1-bay 8-story  frame81.
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Table 11.  Optimization results for the 3-bay 15-story frame.

Element

Optimal W-shaped sections

HPSACO ICA-ACO HBB-BC DE AWEO ES-DE EVPS SDE SFLAIWO FHO

MHDE80 36 82 28 36 28 36 36 7 82

1 W21X111 W24X117 W24X117 W21X122 W18X143 W18X106 W14X99 W14X90 W14X90 W24X104 W10X54

2 W18X158 W21X147 W21X132 W33X141 W24X162 W36X150 W27X161 W36X170 W26X146 W33X152 W30X99

3 W10X88 W27X84 W12X95 W14X82 W24X84 W12X79 W24X84 W27X84 W18X76 W16X77 W14X53

4 W30X116 W27X114 W18X119 W30X108 W33X118 W27X114 W24X104 W24X104 W24X104 24X104 W24X68

5 W21X83 W14X74 W21X93 W30X108 W12X65 W30X90 W14X61 W14X61 W12X72 W14X74 W12X45

6 W24X103 W18X86 W18X97 W12X79 W18X97 W10X88 W30X90 W30X90 W18X86 W14X90 W16X57

7 W21X55 W12X96 W18X76 W14X61 W12X50 W18X71 W14X48 W14X48 W12X58 W14X61 W16X36

8 W27X114 W24X68 W18X65 W18X71 W21X68 W18X65 W12X65 W12X65 W14X61 W18X65 W12X40

9 W10X33 W10X39 W18X60 W6X25 W8X28 W8X28 W6X25 W6X25 W6X25 W6X20 W4X13

10 W18X46 W12X40 W10X39 W24X62 W16X40 W12X40 W12X40 W12X40 W16X36 W14X43 W10X26

11 W21X44 W21X44 W21X48 W21X48 W21X44 W21X48 W21X44 21X44 W21X44 21X44 W18X35

Weight(kN) 426.36 417.47 434.54 423.83 429.46 415.06 389.77 387.89 379.21 390.87 360.22

Figure 9.  Design of 3-bay 15-story  frame81.
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Further studies should aim at providing theoretical analysis of the sensitivity and performance of MHDE. 
More work can be done to find a suitable combination of adaptive parameters to make the algorithm suitable for 
most of the domain research problems. Another possibility is to introduce some of the recent algorithms instead 
of GWO or CS for equation modifications, in order to control the search operation for better accuracy. Apart from 
that, combination of multiple strategies might lead to negative interference in algorithm’s behavior. For example, 
changing F factor will lead to different expt/expl performance, however if a good step size is achieved, it might not 
be carried out due to lack of a changed crossover permission. In this sense, a careful sensitivity analysis should be 
performed in order to verify interference of the proposed strategies combined. Finally, work on the convergence 
analysis can be performed to provide more insights into the working capabilities of the proposed algorithm.

Table 12.  Optimization results for the 3-bay 24-story frame.

Element

Optimal W-shaped sections

HS HBB-BC ICA ICO HBBPSO ES-DE AWEO EVPS SFLAIWO FHO

MHDE37 82 84 28 82 28 67 36 82 7

1 W30X90 W30X90 W30X90 W30X99 W30X90 W30X90 W30X90 W30X90 W30X90 W30X90 W30X90

2 W10X22 W21X18 W21X50 W16X26 W21X55 W21X55 W8X18 W6X15 W21X48 W21X48 W21X48

3 W18X40 W18X46 W24X55 W18X35 W21X48 W21X48 W24X55 W24X55 W21X48 21X48 W24X55

4 W12X16 W8X21 W8X28 W14X22 W27X24 W10X45 W26X8.5 W6X8.5 W21X48 W18X46 W14X43

5 W14X176 W14X176 W14X109 W14X145 W14X176 W14X145 W14X193 W14x159 W12X19 W14X159 W14X145

6 W14X176 W14X159 W14X159 W14X132 W14X90 W14X109 W14X120 W14X145 W14X176 W14X120 W14X132

7 W14X132 W14X109 W14X120 W14X120 W14X99 W14X99 W14X132 W14X90 W14X109 W14X109 W14X99

8 W14X109 W14X90 W14X90 W14X109 W14X99 W14X145 W14X82 W14X74 W14X109 W14X74 W14X90

9 W14X82 W14X82 W14X74 W14X48 W14X74 W14X109 W14X61 W14X74 W14X90 W14X68 W14X61

10 W14X74 W14X74 W14X68 W14X48 W14X74 W14X48 W14X38 W14X38 W14X48 W14X43 W14X48

11 W14X34 W14X38 W14X30 W14X34 W14X38 W14X38 W14X34 W14X30 W14X30 W14X30 W14X30

12 W14X22 W14X30 W14X38 W14X30 W14X34 W14X30 W14X22 W14X22 W14X34 W14X34 W14X38

13 W14X145 W14X159 W14X159 W14X159 W14X145 W14X99 W14X82 W14X99 W14X90 W14X99 W14X99

14 W14X132 W14X132 W14X132 W14X120 W14X132 W14X132 W14X109 W14X90 W14X120 W14X109 W14X99

15 W14X109 W14X109 W14X99 W14X109 W14X109 W14X109 W14X82 W14X99 W14X99 W14X99 W14X99

16 W14X82 W14X82 W14X82 W14X99 W14X90 W14X68 W14X82 W14X90 W14X90 W14X109 W14X82

17 W14X61 W14X68 W14X68 W14X82 W14X74 W14X68 W14X68 W14X68 W14X61 W14X74 W14X74

18 W14X48 W14X48 W14X48 W14X53 W14X48 W14X68 W14X68 W14X61 W14X53 W14X61 W14X53

19 W14X30 W14X34 W14X34 W14X38 W14X38 W14X61 W14X43 W14X43 W14X34 W14X38 W14X38

20 W14X22 W14X26 W14X22 W14X26 W14X22 W14X22 W14X34 W14X22 W14X22 W14X22 W14X22

Weight(kN) 956.13 960.90 946.25 967.33 941.55 945.15 927.59 905.67 911.78 910.72 904.91
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Figure 10.  Design of 3-bay 24-story  frame81.
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