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On uniform stability and numerical
simulations of complex valued
neural networks involving
generalized Caputo fractional order

Sumati Kumari Panda’, Thabet Abdeljawad?**7*! & A. M. Nagy*®’

The dynamics and existence results of generalized Caputo fractional derivatives have been studied by
several authors. Uniform stability and equilibrium in fractional-order neural networks with generalized
Caputo derivatives in real-valued settings, however, have not been extensively studied. In contrast to
earlier studies, we first investigate the uniform stability and equilibrium results for complex-valued
neural networks within the framework of a generalized Caputo fractional derivative. We investigate
the intermittent behavior of complex-valued neural networks in generalized Caputo fractional-order
contexts. Numerical results are supplied to demonstrate the viability and accuracy of the presented
results. At the end of the article, a few open questions are posed.

The history of fractional calculus is actually quite similar to that of classical calculus, hence it is not a novel
subject!. The notions of fractional calculus have developed significantly-even frantically-since the advent of
the fractional derivative, with the majority of the contributions coming from pure mathematicians rather than
applied mathematicians. Consequently, there has been a significant rise in the variety of fractional integral opera-
tors over the past few decades (check?™ for more details). The contributions of the fractional order derivative is
common in both science and engineering fields. Take a look at this, for instance:

e The authors of® have expanded the glucose molecule’s graph representation and taken into consideration
contemporary modeling of the fractional derivatives on each graph edge. By taking multiple constraints on
the existing operators, the authors have provided two different insights in the context of integral boundary
value requirements.

e Inlight of fractional derivatives, the authors of® examined a wide range of physical structures, including
thermal transmission, controllers with PID tuning, and network fabrication via stochastic algorithms.

Caputo fractional-order systems and/or generalized Caputo fractional-order systems are often used in modeling
and computation’"".

A particular class of computations stimulated by data platforms referred to as artificial neural networks
(simply, we called, ANNs) aims to imitate the functions and operations of the human brain. With the advance-
ment of artificial intelligence (AI), in particular deep learning, ANN-based machine intelligence algorithms
have substantial usage in various fields that permeate our everyday lives. Digital devices can now make realistic-
sounding speech and pitches for music for practical purposes by using tools like automated facial recognition.
They can also divide the speech of several speakers into separate waves of sound for each individual speaker
using this tool, as shown in'2. Complex numbers are frequently used in a wide range of practical uses, including
recognition of speech, processing of pictures, automation, and communication systems. This demonstrates the
possibilities for utilizing numbers which are complex-valued to personify parameters like weights in various
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applications for artificial neural networks. Adopting a complex-valued system compared to a real-valued system
makes more sense in light of the crucial nature of amplitude and dimensions in learning theory'>. CVNNs that
process data utilizing multiple variables and parameters'. Evidently, there are facts to suggest that CVNNs can be
helpful in sectors where the data that is being encountered is depicted in a complicated way, either by design or
by nature. Real-valued and/or convolutional neural networks have been the subject of extensive studies since the
mid-1980s. However, compared to neural networks that are real-valued, research on CVNNs has been compara-
tively under-reported during the rise of deep learning. In CVNN analysis, deep neural networks and particular
signal-processing challenges like circuit normalization have gotten the most interest. The reason for this is that
a complex-valued activating term is unable to be both complex-differentiable and bounded. The criteria that a
complex-valued activation be jointly bounded and complex-differentiable might have failed to be gratified, and
stimulation that is distinct with regard to both imaginary and real elements may instead be recommended in
their position, according to'°. The development of this field of study is still in its earliest phases.

Fractional-order neural networks, or FONN for short, have gained prominence in recent years in both sci-
entific and computational research. FONN yields extremely accurate results and noteworthy improvements by
combining neural networks with fractional derivatives. Fractional-order neural network models have drawn
more attention in several fields and are now a significant research area. FONN is well-known for being a practical
modeling, testing, and educational tool for systems with dynamics in a variety of disciplines, including neural
technology, nanophysics, and engineering. New advancements in the field of FONN are driven by challenges and
revelations from scientific and technical research. The FONN framework outperforms the traditional integer-
order neural network framework for evaluating the memory and inheritance components of various protocols
that are in neural systems.

We are aware that the memory and accumulated characteristics of numerous things and activities can be
effectively described by fractional-order derivatives. It’s also important to remember that algorithms with frac-
tional-orders have limitless memory. However, it has also been demonstrated by actual neuron investigations.
On the basis of such attributes, synthetic links to neural networks have been created using nonlinear analysis.
The authors of' recently established the conditions needed for uniform stability as well as the existence of the
uniqueness. Regarding the testing of models, it additionally becomes vital to take into account the possible
importance of neural systems in the setting of fractional order. Consequently, though it may be a fractional
derivative or integral, it is a significant advancement to incorporate a memory concept into neural networks.
Therefore, research on fractional-order neural networks is important. Due to the extensive use of complex signals
in neural network functions, such as those in'’~" and the references therein, understanding CVNNG is crucial for
developing useful tools. However, there are few studies on generalized Caputo fractional-order neural networks
in a real field (see, for example?*-2%).

On the other hand, metric spaces have recently undergone substantial generalizations, and relevant fixed-point
theorems have utilized by many scientific domains, such as mathematical modeling domains, applied physics,
control theory, and nonlinear analysis (see, for example**-?).

Motivated by the above studies, we examine how complex-valued neural networks behave intermittently
under generalized Caputo fractional-order contexts. When working with fractional-order structures, neural
network methods are distinct from those used for traditional integer-order settings. In this article, we first inves-
tigate the uniform stability and equilibrium results for complex-valued neural networks within the framework of
a generalized Caputo fractional derivative. Moreover, it is worth noticing that the contribution of the fractional
order derivative is that, with the help of the fractional derivative order, the neural network can determine its
activation function.

The complex-valued metric space was originally developed by Azam et al.**. Assume that¢,& € Cand that C
is the collection of complex numbers. According to the listed below, define a partial order <X on C.

{3& & Re(?) <Re() and Im(¢) < Im(§).
It follows that ¢ 3 &, if one of the below mentioned assertions is gratified:
(61  Re(¢) =Re(§)andIm(¢) < Im(§),
(62) Re(?) < Re(§)andIm(¢) = Im(§),

(¢3) Re(f) < Re(§)andIm(;) < Im(§),
(¢4) Re(f) =Re(§)andIm(;) = Im(§).

Particularly, we call { 3 £if¢ # & and among one of (%), (%3) and (%) is gratified and we termed as ¢ < & if
only (%3) is gratified. The below mentioned assertions gratify:

(1) If0 3¢ 7§ then|¢| < |§].

(2) If¢ Z&and& < g, then¢ <.

Definition 1.1 “’Let.# be a nonempty set. The mappingd : .# x # — C, gratifies
1. 023d(xy)andd(x,y) =0& x=yVx,y € .4

2. d(x,y) =d(y,x), Vx,v € M
3. d(x,y) 3d(x,z)+d(=zvy), Vv, F € M.
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Then d is called a complex-valued metric on .#, and (.#, d) is called a complex-valued metric space.

Theorem 1.1 *° Let (.4, d) be a complex-valued metric space and let mappings </ , B : M — M gratify

od(x,. v)d(y, B v)

9 <
Ao %% y) Jvd(xy) + 14+d(x,y)

where x,y € ./ and v, o are nonnegative reals having the condition v + ¢ < 1. Then o/ and % have a unique
common fixed point.

If we take 0 = 0in Theorem.1.1, we get contractive mapping theorem in the setting of complex-valued metric
space.
Theorem 1.2 Let (.4, d) be a complex-valued metric space and let mapping W~ : M — M gratify
d(W'=,Wy) 3 vd(x,y)

wherex,y € M and0 < v < 1. Then W~ has a unique fixed point.

In this study, we take into account the following time-delayed fractional-order CVNNs system:
n n
€ 21 = —crz(t) + ijlsij (z(t) + ijlpqu)j (Z(t—T) + T k=1,23,...n (11
The compatible vector form is as follows:
a0 z(t) = =% z() + Gp(z(V) + Hp(z(t — 1)) + T, (1.2)

for t € [to, t,], where C@J;’“ is the generalized Caputo fractional derivative with parameters 0 < y < 1
and >0 as in*"*2. Moreover, z(t) = (z1(t),22(4), z3(Y), ... z,(1))T € C" is the state vector, and

(1) = (p1(z1(D), P2(22(V),
03(z3(1) . .. 0 (zn(©)T : C" — C"is the neuron activation function. 4 = diag(ci, ¢z, ¢3,. .. cy) € R™"
with ¢y > Owherek = 1,2,3,- - - , nis the self-feedback connection weighted matrix. G = (s4j)uxn € C"*"and

H = (Pkj)nxn € C"" represent the connection between the jth neuron and the k' neuron at time t and constant
time delay t — 7 respectively. T = (Y1, Y2, Y3,... T,)T € C"is the external input vector.
In this instance, the initial conditions connected to (1.1) have the following form:

zk(q) = Wk(q) +10k(a), g € [-7,0], k=1,2,3...1, (1.3)

here Wi (q), ©x(q) € C([—7,0],R"),k =1,2,3...n. Moreover, C([—7, 0], R") refers to the complex-valued
metric space which consists continuous n-real vector functions provided on[—7, 0],

n
WO = supiero ), e * Wk

and

n
10O = supier o), e * 1Ok,

Definition 1.2 The solution of the system (1.2) is considered to be stable if for any € > 0, there isa ¥ (tp,€) > 0
in such a way that t > ¢y > 0,]]22(t) — A(D)|| < ¥ that suggests||x1(t, to, 2) — x (t, tp, A)|| < €. If the aforemen-
tioned ¢ is not dependent on ty, it will become uniformly stable.

We adopt the subsequent assumptions in order to obtain the main results.
Assumption A:
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Nz
—————— max{g};
e’I'(y +1) v

x| n o n n | n , .
ol =) lafl =2 max(ls;cl6ch 1611 =" 6] =2 maxlpyloe}

. . 2
¢ =min(|1 = cmax|, cmin); emin = min{e;}; cmax =
)

* * tyu’ * * v n * *

o + a3l = ey Dy 1+ a5l 16+ 05l = e 3 (6] + b5

* * tyu * * . * * tyﬂ n * *

|la3 + a3l —mzjzl[azj +ayl 116y + byl = mzj=1“’2j + 03]
* * v * * v

llay + a3l = mz [%;"’%;] llaz + a3l = mz [Q2;+q43]
Y e

t * *
16 + ] Zmzjzl[t;j + 51 I+ 8l = [t + &1

e’T(y +1) Zj=1

Assumption B: Let z = x 4 iy where i denotes the imagenary unit, that is i = «/—1. Moreover, ¢;(1) and
@; (u(p — 7)) by separating it into its real as well as imagined portions, it could potentially be demonstrated as

@i (1) =i (x,y) + i) (. v);
9i(u(p — 1)) =@ (x(p — 1), y(p — 7)) +ig{ (x(p — T), y(p — T));

where % R(,.) is maps from R? to R; 59 T(.,.) maps from R? to R; 59 R(.,.) maps from R? to R and % I(.,.) maps

from 1R2 to R. To make formulas simpler, x(p — 7) and y(p — ) despite being stated as x and y, appropriately.

In addition, the partial derivatives of ¢;(.,.) regarded to %, y : 3(pJ /0%, B(pJR /0y, 3(pJ /ox and 3(pJ /0y are exist
and they are continuous.
3‘P5}2/3X, 3<ij/3§/’, 8(;){/3){ and 8<pj1/8y are bounded, i.e.,

o e
).

2] <qn 2] <qp

d

where QRR QRI QIR and 9H are non-negative constant numbers.

In addmon the partlal derlvatlves(w1th time delay) agaR/Bx Bgo /9y, 3g0 /dx and 8<p /9y, they’re deemed
as bounded. In other words, additionally, there are some numbers that are con51stently non-negative.

a)JRR, a)fu, a)jIR and a)jH so that

R R
’%' ‘<wRR, ‘%' < ol
ax | =) oy | =)
1 I
’%‘<w.’1‘, )3&‘<w11_
x| — ) oy | =)

We can infer the following from the mean value hypothesis regarding multi-variable features:

R (<, v) — @R (v < ORI — x|+ 6]y — yl;

o1 (X, y') — ol (5, v)| < ORI — x| + 6]y — yl;

RRlX (1.4)

RI .
P <x,,y1)—¢, (0, vl < ORI, — x| + |y, — v ;
IR J1
0] (<, v7) — 0] (2, o)l < 0fR 1], — x| + 'y} — vel,

where x, %', y,y’ € RY.

Assumption C: ¢;(.) gratify the Lipschitz assertions, that is, for any [, k € C, there is non-negative constant 6;
such a way that

oy () — @ (O < 65111 — k. (1.5)

Uniform stability result of generalized Caputo fractional-order complex-valued
neural networks

In the current section, we construct a necessary condition for the generalized Caputo fractional-order complex-
valued neural networks with time delays to be uniformly stable. The existence and uniqueness results are then
obtained through the contraction mapping theorem in complex-valued metric space.

Theorem 2.1 If Assumption A and B hold, then (1.1) is uniformly stable.
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Proof By splitting the real and imaginary components of the generalized Caputo fractional-order complex-valued
neural network, we obtain,

ol xt) = —% x(®) + GRe"(x,v) — o' (x,v)

(2.1)
+ HRR(x(t— 1), y(t— 1) — Hlp (x(t — 1), y(t — 7)) + TR
Cal Myt = —% y() +G'oR (%, v) — GRe! (x,v) o)
+ H R (x(t — 1), y(t— 1)) = HRo (x(t — ), y(t — 7)) + ' '
Equations (2.1) and (2.2) can be rewritten as:
. n n
Ca0 %0 = —ax O+, shel ey =Y, slel(xeve) s
n n .
Y PR e ve) = ), Wi (xer Ver) + Y
n n
D0 = —6yi O+, sk xuy) + Y, shel(xeve) o

n n
+ Zg:1p§€¢5(x‘f’ Ver) + Zézlpfﬁ(pé(xlr: Ver) + T]I

Let us assume z = x + iy and z’ = x’ + iy’ having the conditions y’ # y, ¥’ # x. The two possible solutions
of 1.1 are Z/(t) = (z1(1), 22(1), z3(1) . . . 24 (1)) and 2/ (1) = (2] (1), 25(1), 25 (V) . . . z},(1)) having distinct initial
conditions z;; (q) = W, (q) + i©},(q), where W}, (q), ©%(q) € C([—7,01, R"), zx(q) = Wx(q) + iOp(q), where
U5(q), Or(q) € C([—7,0],R"), h € n. We have

€M) — x5(0)
n

=GO —x0) + >

n
e=15§5 {(ﬂf(ng,y/g) - wf(xmyz)} - Zezlsﬁe {wé(x%,y%) - @é(xg)yE):|

n n
+Y P {wf(xzr, Vie) — wf(xzf,yer)} =P [wé(x}r, Vie) — @ (er, yef)}

(2.5)
The integral equation below is equal to the previous equation (2.5),
Hl—y t 1 1
/ / - —
(8 — xj(t) = W] (0) — W;(0) + T /0 I e L
n
X |:—Cj(X;(q) —xj(9) + Zezlsﬁg {(pf(xz, vp) — oR (=, yg)} (2.6)

n
—D 5 {wé(xz, vy — @p (e, Y()}

n n
+y {wé‘(x&,, Vir) — wé‘(x“,yef)] =, P {wé (%> Yor) — 91 (Rers yez)} } 2.7)

Which implies,
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t
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n t
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1% t
T g — g T ot %) () — xee (@] + 0f [V (@) — ver ()] dg

1—-y t
W (0) — Wi (0)] + ¢ ~ / a“THE — g™ T (@) = %5(q))1dg

Lo
-Y
+3 ) ngeRR‘;( ) T~ g @) — xe@)lda
" R RII’L 7 n—1 e puNy—=1, ./
+ Il T - @ - v @lda

-y
+> 1|s¢|9£‘% I = g @) — xe@lda

n M -V _ —
+> o, Ishelof! i S — g @ — ve@ldg

‘T
noor BTN 1y
+> ., Ibflef ﬁ Q"N — ") N (@) — % (@)ldg
utr - -
+3 0 Iphe R’F( 5 AT = T @) = ver@ldg
IR/’L v’ t 1 1
=l _ gy =1/ _
+3 0 Iblelof Ty o O @) — (@l

1-y t
LN SN -1 1y
+ 5 €:1|Pje|wz Ty ) q“ " =)y (@) — e (9)]dg

310 — 0] + 2 / R — g @) — x5 (@)dg

INCD)
+ZZ,1|5§|95RF( )/ g — ") T xp(a) — xe(@)ldg

wr _ _
+> 0 lsflef! g — g (@) — ve(@)lda

F)
n I IR/’L B t n—1 e uNy—1y.7 d
+Zl71|sjz|®z A " — ) x)(9) — xe(q)]dy
-V
+3 JAeé”l’;( ) S — 7 @ — v @ldy
-y
+30 Iekle RR’;( ) I — g W (@) — Wi ()l
+3 bk i ; HELE = g T g (@) — e (@)1d
= lpjl Wy T(y) q q X (g Xz (q)laq

Scientific Reports | (2024) 14:4073 | https://doi.org/10.1038/s41598-024-53670-4 nature portfolio



www.nature.com/scientificreports/

1-y T
" R, RIH -1 -1
+ o, bflof r( y ), @ W= T 0k (@) — O (@ldg

pttrvot -
+3 0 Ibh RIF( ;AT =) e (@) — v (@)dg

u'r - 1y
+> 0 Ille C T q“ LU — ") T W (@) — Wer (@) dg

1—-y t
n 1 IRM -1 -1
2 Pt /0 T = 0 e (@) — %o (@)da

1-y T
n 1, nM -1 -1
+y o, Inflof F( ) MGG i O (@) = Oz (a)]dq

+ 3 et F( ) “—1<t“—q“)y—1|yzf(q>—ye,(q>|dq
Which yields,
V) — x50

. 1-y . t
S sup (e VW () — WO} + ‘lf(—y)supt{e‘“*ln(xg ) — % (t))|}/0 P (R Ve e

t
P — ey ke

* n i(t—
+ [af; + a3i]24=1supt{e T

1 Y

F()

t
K“fl (t* — k™) "Lk

+ a3y + ] supfett R ACER A

n . T _ _
+[03; + 051D sup{e PV W (p) — Pl — ot ldp,
- 0

F()

* * " i(p—1) prort ty—1

+[03; + 651> supfe |xe(5o>—xup>|}r( ) Rl T W - ey e
n : — _

+103 + b1, sup e V0] () — F(y) i el -l
n . pl=r ot _

+[03 + 051D sup e @y () — Ye(KJ)HF( 5] et = ) Mg

1_
3 sup (et VW () — W) + ¢ ) supt{e‘(l D! (t)—x,(t))l}/ P (R Ve e

+ [a;] + a;j]ZZZISupt{e. - r(y) KlL—l(tlL _ KIL)V—ldK
* * n i(t—1) 7 M ¢ -1 -1
+ [a5 + a4j]zezlsupt{e lyy (® } T KM — MY ke
n . l—y
+ 107+ 031) 0 sup e VW) — W) - o ) P — ) Tl
. :
+03; + 651>, supfe TV Ix; () [‘(y) S —
* * n i(t— 1% - K — —
+ 103 + 051D, supfe V10 () — o) & e e
* * n i(t— 122 _ _
+[03 + 051D supfe P lvi(p) — ro ) Nt — ") e

Scientific Reports | (2024) 14:4073 | https://doi.org/10.1038/s41598-024-53670-4 nature portfolio



www.nature.com/scientificreports/

. 1-y . t
S sup (eI () — W (0]} + ’;(—y)supt{e‘“*“uxg ) — x; ()]} / KL — k) ke
JO

1- t
* * n i(t—=1)/ H pn—=1oep _  pu\y—1
+ a5 + as,]zezlsupt{e [ () T kM= — k)Y di
n 1—)/ t
a3y + af 1Y, sup(et l)lw(f)—w(t)l}r( ) Wl(t*‘ — kMY ldk

+ [b]; + b;jl%z;; /_ qu +OM - @+ r)"]y—le“q—“wg(q) — We(q)ldg
+ 163, + b’s‘jl%zzﬂ / T @ o — @4 0P (@) — x0(@)ld
I 0 LS 1/ @+ 0" @+ 0 10D [0)(g) — Ou@ldg
+ (b3 + bZ;l’;Ty)ZZZI /0 Tt o -+ M1tV Iy (@) — ve(@)ldg

17
i(t— 2
jsupt{e‘“ 1>|\yj/(t) G ERG e

t
;supt{ei“‘”ux; () — =01} / L — ) ke
0

t
KL — ey ke

* * n s l’l’
+ [alj + u3j]Z€:1supt{e T

n 1*1’ t B B
+ a3 + a1y, sup(et UlYg(f)—w(f)l}F( g T ey i
n . 1 y t“ B
+ 107, + 051 D) — W ()] el P ldz
—V i
+ 107+ 051> V) — e (O] — O 2 dz
— t;l.
+ b3 + b1 — W PRI CAOENRO] 2" ldz
2 ul(y) ¢ ¢ th—th

1—

H_ 1t
* T Y n i(t=1), ./ /t ' -1
+ (6% + b ] —— et ) — yo(t 2¥"Vdz
(6% 4’]MF(V)§ i lyp(t) w()l.0

wl=r . N2z
2 sup (VW) — Wi (D)) + =— [c-su (D1 () — x5 ()} —
p { | ( ) F( ) ) pt j ) i

. N7z

Loy gl sup etV - x Ol

Y

n - t
Ly + o), supide Vv — vl

S S (t=1) et — )Y
+ [b3; + b3j]2g SuPt{el Wy (1) — ‘I"Z(t)|}(y’u T

* * n i(t— / (UL - TM)V
+03; + 031D, supfe (0 — Xg(t)|}<T)

b e e orn (- =
+[sz+b4j]Z£:13uPt{e 19, (D) Ol(f)|}(yu Vi

* * n i(t— / (tﬂ - tM)y
+[03 + 051> supfe TV lvp ) — ye(t)l}(T>]

. o ,
= EDig/ ) — W (O 4+ ——— cisup, [ V(L () — x: (¢
< sup{e W) — (01} Ty +1)Y up, { 150 — %;(D)1}

Scientific Reports | (2024) 14:4073 | https://doi.org/10.1038/s41598-024-53670-4 nature portfolio



www.nature.com/scientificreports/

e * * U 8 * * /
+m[alj+Cl3j]||Xg(f)—Xl(t)||+m[a2j+u4j]||y ® —v@®|]
o 1B () — W =" o bt v — w
T T 1o T ORIV = YOI+ e b+ B3I = Wl
@~ [b7; + b5 111x" () — x (D] (63 + b5 1110 () — O]
Tt 4 IO == Ol + o 165+ B 116G
(t# — -[#))’ (tﬂ — TH«)V

[b3; + b3 1110°(H) — O] + [b3; + b3 111y () — y (O]

w Ty +1 w'I'(y+1)

Using the equation aforementioned, it is simple to determine that

/0 = x(Ol = 37 sup (el ) — x5(01)
3 [emax + lla} + a1l + 1167 + b3[]]11x'(H) — =(B)]]
+ [llas + aj1] + 1163 + b3 1] 1y () — y (O]
+ [1 421167 + 6311119/ — L O] + [21165 + b511]11©' () — O]
llaj + a3l] + 1163 + B3]
1— [cmax—l— lla} + a3]] + ||b% + b%]]
14 2]]6% + b%]|

1%/ (1) — (O 3 ] Iy' () = y(®)]

+ 1) — ol
1= [max + llaf + a3l + 1165 + b31]
21103 -+ b3l
+ i 19 — O
1= [cmax + I1af + 31l + 163 + 31
1 * * * * /
< (183 + 311+ 1163 + B30 ') — vco)l
11— [Comax + 16} + 6311 + 116 + 6311

|1+ 21107 + 6311 19/ — weo 1+ 21163 + B311] 19/ t) - @(t)n)
(2.8)
Now consider,

oL 30 = =y O+ D sl v+ Y sl ve)
+ 3 Pl G v + Y, PRl Gen veo) + 1]
which implies
“CaUM (0 - vi®)
= WO~ v + Y {wf(xz,yz) — o (e, yo} -3 {wé(xz, Vi) = @i (e, Ye)}
+ ZZZIP& [ﬁ(xzp Vi) — @8 (Xers yh)} - Zzzlpﬁz {«)é(xz,, Yor) — @1 (=ers yer)]

(2.9)
The integral equation underneath is equal to Eq. (2.9) :

vi(®) = yj ()

= ©}(0) — ©(0) + b /{q““(w — g7t
: : L) Jo

x (—cj<yg<q) —vi@) + >, sl [wé‘(xz, Vi) = 91 (e, Yz)} =3 sk {gaé (x> v0) = (/)é(xz,w)}

n n ’
+ Zezlpfi |:(,0§(X2,, y%r) - <P§(X(T, YZI)] - Zzzlpﬁ |:(p£(x2‘[2 Yh) - (pé(xlr: YZr):| >dq
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Vi = v;

t
3 105(0) — ML — gyt

n-

()
n n

x (c;|y;(q> —vi@I+ D, lslellof (< vi) = of (ke vl + ), Isfellof (i v) = 0 (6, 70

"nl (R R "Ry T I
+ >, iellef s Vi) = 0f ennve) |+ 11108 (Kfea Vi) = w(er,WrN)dq
1 14

t
316/(0) — ;) + 2E— F() *H(t“—q“)V*‘|y;(q>—yj<q)|dq

n 1=y
+> sl v ) / q”*(tﬂ = a7 R Ixp (@) — xe(@)] + 61y, (@) — ve(@)]dg

+3 0 s ]ur( ) e — g [ ) — @]+ 015 — ve@ ) da

+ Y el @ /0 g — ) T R (@) = xee (@] + 0 10 (@) = ver (@)]]da

n 1—-y t
+ZZ:IIP§I’;( ) / ¢ — ) T 0] 1% (@) = 2o @] + 0 1) = vec @] da
1*1/
L)

n
x (ci v} @ — vy@ + Zklw{gnwé‘(x@ Vo) = 0F eyl + D, 1851190 ve) — 0 (xes v

310](0) — 6;(0)] + & g — gy

"o R R "R T I
), Pellof K ¥ee) = 98 Gern yed) + Y, 05l (K Yer) — 94 (e yml) dg

2 105(0) — ©;(0)| + J() / P = g (@) — vi(@)ldg

v
T s q““(t*‘ — ") (@) — xe(@)ldg

F( )
n 1 RIIU’ - t n—1 e uNy—1 ./
+> 0, Isiele; r( y ) AT = a ) i@ — ve(@)lda
GIR“ y gl — gy TR (q) — d
+3 0 Isk1e} T (t" — ") s (@) — xe(a)ldg

-V
+3 s z’”;( ) ’Ha“—q*‘)V*1|y’e(q)—ye<q)|dq

RR//v ot —1 =1/
+Ze Il r() AT = e (@) — e () g

RIM A A —1,/
+ 30 Iblelof T ¥ a T e @ v @ldg

1-y pt
"Ry IRH -1 -1
+> o, oot Ty /) g — ") T G (@) — xec(@)]dg

1-y t
n R, 1M -1 -1
+ oo} Ty Jo @ a e @ — ve (@)l

31840 — ©;(0)] + J() / AL — ) Y (@) — vy (@)ldg
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prort o Ny
+ 3, lslelof [ - ) @ — xe(@dg

ro.

RIH“ r 't ;L—l A S _ d

+3 0 Ishlef 5 (" —a")" M yi(@) — ve(@)ldg
n /,L v _ —

+Zﬁlsﬁ‘eleﬁm S — g @) — % @ldg

nr _ _
+3 0, Ikl oy @ = i@ — ve@lda

RR/’L 7 -1 -1
+ 30 Ibfelof to) ) I — g W (@) — Wi (@)l

1-y t
n M — —
+ Hm{uwf"—r( )/t @ = ") T G (@) — e (@)]d

RI“ A A -1/
+ 30 Ibfelof T f, @7 W= a0 (@) ~ O (@ldg

1-y t
n M _ —
+Ze:1'”§““’§lﬁ/f ¢ = ") Ty (@) = v (@)da

IR’u A A —1
+ 30 Il Ty f, @ W T @) — Ve @)ldg

1-y t
n 12 _ —
+Zl:1|p§}|w?r(y) / gt — ") G (@) — % (@)]dg

1—y T
no Ry K -1 ~1
+ o, Inhlef r( ) o g — g O}, (@) — O (9)dg

+3 0 Iblelof! F( 5 q“”(t“—q“)V*Hyzr(q)—yez(qndq

Which yields,

eIyl — vy (0]
1

I'(y)
* * n (1), s T A -1
+[Cl1j+l13j]z€_lsupt{e |5} (t) — o) KPTL — ety ke

- JO
lfy

L'(y)

. t
=< sup {e' V1@ (6 — O (D)) + ¢ sup&e‘<t DI = vy ()1} / K — k)Y i
0

t
K“_l(t“ — kMYl

+[q2,+q4,]zé [supfe’” Diyy(H) — ve(l} e

1 Yy )
SACTER) BN i) p““(t“ —p“)y*e“@*”wz(@) — Wi(p)ldp

1 Yy t .
A CTERE) S IT() PN — M) TPV (p) — xe(9)ldg

1 Yy .
SACER) BN - (y) gﬂ*l(t’* — "7y (p) — velp)lde

n 2
AR ) D= ) / e R U A BRI

3 sup{e'V0) (1) — O<t>|}+c,  supy el ‘>|(y,<t)—yj<t>>|} / T — ey e

L(y)

K’“l(t“ — kM7l

n s
+[a7; + qgj]zezlsupt{e F()/)
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1-y t
* « n soe % _ B
+ a5 + 031D, sup (' ‘>|yz<t)—y@(t>|}r(y) / KM — ey i
- 0

1—y T

H =1 n Yy —1
P =) de

L'(y) Jo

n .
+ I+ 1Y, sup (e VW) — W)

1-y t
* * n i(t— 12 _ _
H I+ 1) sup eV =)0 — xe (D)) / Pt — MY ldp
=1 Iy Je
+ 18+ 1Y, sup (e - 0uon [T pr i — oy g
P = ‘ L) Jo
utv

t
n : _
+ 16+ 1Y, sup (e Vv — ve®]) / P — o e
- T

I'(y)
I-y

. t
3 sup (e 101 — ©5(01} + cj’;(—y)supt{e‘“ﬂ(yg (O — vy} /0 T — iy e

1-y t
x4 gr " W=D o — o / H=logh _ emyr=lg
+ L3 +Cl3,]§ o Supile [ (1) — x¢( )I}F(y) ; KH( Kt) K
wr

I'(y) Jo

1-y n 0 .
+ 1t +f§jl’;(7)25=1 / @+ D" — @+ "D W () — We(a))ldg

t
K — Yk

n .
+lay +a31)_,_ sup(e TV Iv0 — ve®l)

1-y n t—1 .
+ 14 +t§jllﬁ(—y)zle /0 @+ 0" = @+ "7V (@) — xe(@))]dg

W
L)

1-y n t—t .
+ [t +t;j]‘;(7y)zl=1 /0 @+ 0" = @+ 0"V (v (@) — ve(@)lda

n 0 :
SR E=re s S / @+ DFIE = @+ 0" 71TV (a) — ©c(@)lda

) I-y . t
< sup e V105t — O (1)} +cj’lf(y)supt{e‘“ﬁ(yg(t) — v} / kPN — k)Y ke
0
n i(t—1),./ Mliy ¢ ~1 1
+[qﬁ+q;jlz€_lsupt{e‘<—>|xe<t)—xz<t>|}r(y) / KT — ey e
- 0
* * n i(t—1)./ /’Ll_y ¢ n—1 cp uyy—1
+ 05 + a1y, supfe 96 = ve® s [ =i
TR o T ¢ 1
*‘ *- ~- ut— ! _ y—
14+ 615 PG ACER O [ 7
e v
* * i(t— / _ y—
RS P CACEE O /0 2" ldz
ley n i(t—1) , Sz -
* * 1 —_ _ —
+[t2j+t4j]ﬁy)ze=1e @ =) | 27
1-y T
Y "D [ () — y—1
+[t2j+t4,-]r(y)zl=1e‘ [(ACESAC) /0 o lde
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(=1 | o/ pv i(t=1) |, s e
< supgfe 1) — 85D} + o) cisup{e [(vi(®) — v; (f))l}ﬁ

" ) nZz . . n e
+ a5 + a3l ,_ supee V() — O+l + a31)_,_ supcle T PIvi® — ve o))

) - or oy
+ [ + ] sup ("W () — ‘Pe(f)l}(* - 7)
1T Zl:l Pt t Y Y

T (D) (W — oy
+ I8+ 1), sup (e V() — xe(B)]) (T)

; o E (= i)Y
T8 4] sup {10 () — @z(f)l}(* - 7)
2i T b ZH Pt ¢ Y Vi

* * n i(t— ’ (tﬂ - T“)y
165+ 51y, sup eV vp (0 — ve®) (T)}

o trr S
S sup e NIOGO = O30 + T rasup VIO - vy 01)
o £ a1 (O — (O] + g3+ Tl © — v (O]
T W TSI O ROl R T ey (O =y

2 (tF — thyY

+ 71171“()/4-1)“15 + 51V — VOl +7Myr(y+1)[tlj + G111 () — Wl
=D s+ 110 — <0
PETESTELR

r (th — gy

o1 IO = Ol + ST + 1100 — o)
o e ey o — vl
WT(y +1) 2 Ty

’ _ n i(t—1), ./ )
1) =yl =3 supde ™ 1yj®) — v; O}
3 [emax + 1183 + ail1 + 116 + 1111y ® = vl
+ [11at + 14311+ 11 + 11120 = xcol
+ [1+ 16+ 6+ 16+ g1 10’0 - e
+ 16+ 61+ 116 + 1] 1w o - wall
From Eq. (2.10), one can easily obtain that
5 + 19311 + 116 + &1
1= [emax + 1185 + a1l + 115 + 1
I11+2118 + 1
1= [emax + 11a3 + 0311 + 116 + 1]
1211¢ + &1
1= [Cmax + llag + a1l + 116 + 11

Ily'® —y(®Il 3 } 1%/ (6) — x(b)]|

+ 1o’ — el

+ [ (6) — W (bl

From (2.8) and (2.11), the following can be expressed in the formulation:

1
1% () — x(®O]] 3 %{%Ily’(f) = yOIl + 231V () — W O] + %] 10" () — O]}

1 . , . ’
IIy'® —v(®I 3 071{“//‘2||X'(f) —xO[ 4+ 73]10°(1) — OM| + 74|V () — YOI}

where,

ru
14

(2.10)

(2.11)

(2.12)

(2.13)
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U1 =1~ [cmax + I + 3] + 167 + 6311
Uy = lla + al| + 1163 + b5

Uz =1+ 2||b] + b3

4= 21163 + B3]l

U1 =1~ [cmax + 1105 + 511+ 116+ 1]

Uy = Ila7 + a3l + 115 + 51I:
Us =142/ + Gl
Uy = 2|1t + 8],

Equations (2.12) and (2.13) can be written in the following form:

1= () — x| 3 *Ily

GG (2.14)

Iy =yl 3 =

v
—X(f)||+7?||®/(t) O(f)||+ II‘I’ ® —v®ll (2.15)
By substituting (2.15) in (2.14), we get,

U
1% () — x(®] 3 2( I (t)—x(t)||+—||®/(t)—®(t)|\+ II‘I’(t)—\P(t)H>

— Wl + %n@/(o - ol

3 ;ZVZII ) - <1l + {%33 4 —}no ® — 0] + {”2“; ‘1, —}nw O — (]|
This gives,
Uy 3 U 4 WUy 4 U
1% () — x(O]] 3 (”1’72””) 16/ () — O] + (21’7””) /) - WOl (216)
UV U171

Similarly, by substituting (2.14) in (2.15), we get,

Vo (U U U
Iy ® =y Oll 3 = (W—Zny/(o — vyl + y—3||\v’(t> — WOl + 2 10/ - <~><t)|\>
1 /1 1

Vs ,
+ 2200 - —w)|
< o 21150 = y(oll + V2”3+—4 W) — W) + | 22 +— 10/(H) — O]
VU ¥ ¥ RGAREE UV
This gives,
VU3 N V2 Uy 3
’ 71U VU 71
') — y(Oll < W)wa Wb + (17,)”@(0—@(0” (217)
Y VUN - VU

If we consider

IRECERIOIIN

o' —emll 3

where,
Uyt 4 U Uy V'3 N
19 _ (/]/1 /-//'1 + % and ﬁ B (/Z/l nt/"l + %
1 — 1 _ y]/z /.t/,,.z 2 = _ JZ/Z /'f/‘z .
UV UV

Therefore, Eq. (2.16) becomes
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[1x' () — x® 2 m. (2.18)

Similarly, if we consider

72
U (t) — W) 3 —
RZCER IO 2,
10/ () — O] 3 B
~ 204
where,
o v o Vs
(PR (PRt
3= I—W anc vy = W )
VU VU
Therefore, Eq. (2.17) becomes
[y () —y®Il 2 2 (2.19)
From Egs. (2.18) and (2.19), we say that for ally = max{n;, 72} > 0then there existsa® = m, where

ns = max{ny, N3}, N6 = max{nz, N4}, such that||z'(t) — z(t)|| 3 nwhen||s(t) — A(t)|| < 9. It demonstrates the
uniform stability of the solution z(t). O

Existence of unique equilibrium point
Let .# = C([—1,0],C"), where C is the set of all continuous functions defined on[—1, 0].
Define the mappingd : # x .4 — Cas
d(z(t),z' (1) = |z(t) — 2/ ()] +ilz(H) — 2/ (V).

Clearly (.#, d) is a complete complex-valued metric space. Define W' : .4 — . as follows:

n Kj n Kj

Wpk) = 24715pj¢j — |+ Z; Poi9i| — | + Vos

= Cj j=1 o]
where p = 1,2,3...nand, for k = (k1,k2,K3, ... kn)".
Theorem 2.2 There exist a unique equilibrium point for the system (1.1) if the following conditions satisfied, which
is uniformly stable.
(1). Assumption (A), (B), and (C);
2. 1la*[| 4+ 116*]] < cmin-

Proof Consider the two vectorsk = (k1, k2,3, . . . kn) Landv = (Uy, Vs, U3, . . . Un) T, where k. # v. Now consider,
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W'k — Wol+i Wk — Wl
=D ) = W@ +Y W) = W ()

- Zl=1 ZT 156]%( ) +ZJ 1%%( ) Z;%‘"i (%) a Z;lp“% (%)’
(2 5 () (2) S (2)
b () (] k() +(2)]
+izzzl 2;15“ {fﬂj (%) —cﬁ;( )} +Z] P4 {(ﬂj(%) —w;(%)”
3 ZZ:I {Z;ls%jejliq -y + Zj:l%"ﬁ - vj|_
+ izzzl {2;1%% —vj|+ Zj":l Wcij@j licj — 'Uj|:|
N Zzzl (Z;Mlm - Uj|) + izzzl (Z;Mm - uj|)
y (M {Z;M, - m]) +i(w [Z;l'ﬁ - Uj@)

Cmin Cmin
* *
I+ 116
~
Cmin

= dd(k,v),

[l — vl +ilk —vl]

which yields d(# 'k, # v) 3 8d(k, v), where § = %

Hence #" is a contractive mapping on C”. Hence by using Theorem.1.2, there will be a unique fixed point
k* € C"in such a way that ¥/ («*) = «*. Therefore,

n
=X e (5 )+ X e (£ ) #7128

Considercjzj* = /0*, j=1,2,3...nthen

—chJ—|—Z squ)g z; —|—Z pﬂq)g Zz +71;=0)=123...n

Thus (1.1) has a unique equillibrium point z*. Moreover z* is uniformly stable followed by using above Theo-
rem.2.1. O

Numerical simulations
In this part, two numerical examples are provided to illustrate and validate the presented theoretical results.

Example 3.1 Consider a fractional-order CVNN with time delays is presented as follows:
Cgy 7> 2 2 :
3" 7 () = —crz(t) + Zj:15kj¢j (z; () + ijlpkj% (z(t =) + T k=1,2. (3.1)

Let us assume that the parameters of the given system are chosen ast = 1, ¢; = 0.15, ¢; = 0.14, 5117 = —0.03
—0.04i, 512 = 0.05 — 0.04i, 537 = 0.04 + 0.007i, s, = —0.006 + 0.02i, p;; = 0.03 — 0.08i, p;, = 0.2 — 0.02i,
par = 0.02 + 0.03i, pay = —0.02 + 0.06i, T} = 0.002 — 0.003i, Y = —0.001 + 0.002i, z¢ () = Wi (t) + iOk(t),

¢k (zx) = 0.2 tanh(Wy) + 0.2 tanh(®y)i, and the function in terms of the delay term is defined as
¢k (zx) = 0.1 tanh (W) + 0.1 tanh(©y)i, k = 1, 2. The presented system was solved using various values for y, u
—0.005 + 0.0021} 49, — [0.003 + 0.004i

as well as two initial conditions ¥ = [ 0.001 0.003 — 0.005i

} .Figure 1, shows the time
trajectories of system (3.1) with various values of y and  at the initial condition 9. It is evident that the solu-
tions, for all given values of y and i, converge to an equilibrium point that is consistent with the obtained theo-
retical results. Table 1, displays the equilibrium points at different values of y and p for zx (t), k = 1, 2. Moreover,
Fig. 2 exhibits the time trajectories for the components of zi(t), k = 1, 2, with two initial conditions ©#; and 9,
aty = n = 0.95.

Example 3.2 Let the fractional-order CVNNs is described as follows:
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3 3
12 2102 1 g0 ; ;
v = 0.95, 11 = 0.95.
10 v =0.9,1=0.85.
0 = 0.85, 1 = 0.65. | -
v =0.8,u=0.55.
8
6
— 4
=
> 2
0
-2
v =0.95, 1= 0.95.
7 =09, =0.85.
-4 7 =0.85, 1 = 0.65.
v =0.8, 1 =0.55.
_6 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45
t t
5 %107 ‘ ‘ ‘ 0.012 T
v =0.95, 1 = 0.95.
v =0.9,=0.85.
v = 0.85, u = 0.65. 0.01
0 v=0.8,p=055 ||
0.008
0.006
0.004
v =095, 1 = 0.95.
0.002 7 =09,1=085. ||
v = 0.85, 11 = 0.65.
v =0.8, = 0.55.
-20 L L L L L L L L L 0 I I I I I L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t
Figure 1. The trajectories of the real and imaginary parts of zx, k = 1, 2 for Example 3.1 with the initial
condition % and various values of y and ..
y " Equilibrium points as real and imaginary parts for z; and z,, respectively.
0.95 |0.95 |(0.0120, - 0.0172) and (- 0.0059, 0.0117)
09 |0.85 |(0.0113,-0.0165) and (- 0.0056, 0.0112)
0.85 |0.65 |(0.0077, - 0.0124) and (- 0.0043, 0.0088)
08 |0.55 |(0.0077, - 0.0122) and (- 0.0042, 0.0085)
Table 1. The equilibrium points for system (3.1) at various values of y and ..
Cqg M z(t) = =% z2(t) + Gop(z() + He(t — 1)) + T, (3.2)

where 7 = 1,z (t) = Wi (t) +iOk(1), @(zr) = &

T k=1, 2,3, and

100 2—5i24i2+1
¢ =020, G=| 3 1+i
002 1—i 0 1+i
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x103
T

T T T T
W, (t) with the initial condition 9,
o W, (t) with the initial condition 9, | |

W, (t) with the initial condition ¥; | -
W, (t) with the initial condition ¥,

30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

©;(t) with the initial condition 9,
O, (t) with the initial condition ¥,

-4 ©,(t) with the initial condition ¢, | 7
©,(t) with the initial condition 9,
20 | | | | | | | | 6 | | | | | | | | |
0 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t

Figure 2. The trajectories of the real and imaginary parts of zx, k = 1, 2 for Example 3.1 with the initial
conditions ¢y and 9, aty = p = 0.95..

1.64+05 —14051 240.1i
H=|1-05 —05+15 1+05i |,Y=[000]".
—3405i 35+i 02+0.li
The initial condition is given by
1+0.3i
9 = | 0.5+04i
0.15 +0.31

Figures 3, 4 and 5 represent the time trajectory for the components of zx, k = 1,2,3 at y = 0.95, u = 0.9,
y =08, u =0.75andy = 0.65, u = 0.5, respectively. The numerical simulations of the real against imaginary
parts are shown in Figs. 6 and 7. It is clear from these results that the system (3.2) displays chaotic behavior.

Example 3.3 Let the fractional-order CVNNS is described as follows:
€T 2() = =6 2(0) + Gp(z() + HP(t— ) + T,
where 7 = 0.5, zx (t) = W (1) + 1Ok (V),

(3.3)
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Figure 3. The trajectories of the real and imaginary parts of zx, k = 1, 2, 3 for Example 3.2 at
y =095, u =09.
2 2
151 q 151 q
1} 1 1
< 05 { = ost |
= @ r N f
= 0 1= 0
) v/ o
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Figure 4. The trajectories of the real and imaginary
y =0.8, u =0.75.

1 —exp(—Wg)

t

parts of zx, k = 1, 2, 3 for Example 3.2 at

1

zZK) = +1 Jk=1,2,
) (W) T 1+ exp(—0p)
1 — exp(—© 1
pla) =L PEOW k=12,
1 4 exp(—©y) 14 exp(—Wg)
and
80 C[243i3—i] ., [-1+2i 2+i B ‘ -
¢ _{06}’ g_{4—211+21}’H_{3—4i —3+2i}’T_[_3+12+41]'

Figures 8 and 9 show the time trajectory for the real and imaginary components of zx, k = 1,2aty = 0.98, u =1,
and the following two initial conditions

_ [45-2i _[-7+405i
b = {4.5—61] ,and 9 = {2.5—41}'

It is evident that the solutions converge to an equilibrium point that is consistent with the obtained theoretical
results. Table 2, shows the equilibrium points at various values of y and p for z (t), k = 1, 2. Moreover, we com-
pared the values for the obtained equilibrium points for our results at y = 0.98 and u = 1 with those obtained
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Figure 5. The trajectories of the real and imaginary parts of zx, k = 1, 2, 3 for Example 3.2 at
y = 0.65, u = 0.5.
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Figure 6. Chaotic attractor behaviors of zx, k = 1, 2, 3 for Example 3.2 aty = 0.9, u = 0.8..
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Figure 9. The trajectories of the imaginary parts of zx, k = 1, 2 for Example 3.3 aty = 0.98, u = 1.

y " Equilibrium points for our results Equilibrium points in'®

0.98 1 (- 0.6506, 0.0491) and (0.6958, 1.2216) | (- 0.6542, 0.0432) and (0.6979, 1.2275)

0.9 0.8 (- 0.6309, 0.0815) and (0.6843, 1.1897) | -

0.85 0.75 | (= 0.6154, 0.1070) and (0.6752, 1.1645) | —

Table 2. The equilibrium points for system (3.3) at various values of y and ..

in'®. It’s worth mentioning that the numerical method is based on a decomposition formula for the generalized
Caputo derivative, for more details, see??.

Remark 3.1

® In recent past, many authors have demonstrated the various stability results of fractional order neural net-
works in Banach spaces making use of the contractive map. (check'®'?, for more info)

- As compared to the above results, we have used the complex-valued metric space to demonstrate the
uniform stability of the problem.

e In order to investigate the stability of the equilibrium point and demonstrate its existence and uniqueness
for generalized Caputo fractional-order, the authors of?*?! have taken into consideration real-valued neural
networks.

- As compared to the above results, we first utilized complex-valued neural networks in the setting of
generalized Caputo fractional-order.

Open Questions
Prove or disprove the following:

e Synchronization and uniform stability of neural networks having complex valued fractional order;
o Finite time stability of neural networks having Atangana-Baleanu fractional derivative with complex order*’;
e Extend our results to complex orders.

Conclusion

The uniform stability of CVNNs under the setting of generalized Caputo fractional-order with time delays
in complex-valued metric spaces is investigated. The results of CVNNs are also developed in the context of
fractional-order with time delay in complex-valued metric spaces, which produces fixed-point and unique
equilibrium-point results. Additionally, numerical examples are given to support and illustrate the theoretical
results. Our findings are significant because they open up novel possibilities for studying neural systems and
chaotic theory. The findings of this work provide additional research directions for:
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Finite-time projective synchronization of generalized Caputo fractional-order complex-valued neural net-
works;

Feedback synchronization of the generalized Caputo fractional-order and application to computational topol-
ogys

Physics-informed neural networks for fractional-order model of system identification.

Data availability
The data sets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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