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Energy management of electric 
vehicle using a new strategy 
based on slap swarm optimization 
and differential flatness control
Houssam Eddine Ghadbane 1*, Said Barkat 2*, Ali Djerioui 2, Azeddine Houari 3, 
Mihai Oproescu 4 & Nicu Bizon 4,5,6

Optimal energy management of electric vehicles using slap swarm optimization and differential 
flatness control has been proposed. A battery–supercapacitor power system is adopted. Each source is 
connected in parallel to the DC-bus using DC–DC bidirectional converters and supplies a synchronous 
reluctance motor (SynRM) based drive. The proposed EMS fundamental forces lie in using a 
combination of complementary proprieties of two approaches, a Slap Swarm optimization Algorithm 
and Differential Flatness (DF). With a fast optimization mechanism, the Slap Swarm optimization 
algorithm allows adapting in real-time conditions the DF gains to optimize the system performances. 
On its side, DF uses predefined trajectories respecting the physical proprieties of the system, which 
is a powerful tool to guarantee the dynamic constraints of the sources when ensuring desired robust 
control proprieties. To check the feasibility and performance of the suggested EMS, comprehensive 
processor-in-the-loop co-simulations of the electric vehicle were carried out using the C2000 launchxl-
f28379d DSP board. The main goal of the proposed EMS is to guarantee the DC-bus stabilization, 
reducing the DC-bus voltage ripples (Δv = 5 V) and the voltage overshoots 15 V (3.2%), respect the 
source dynamics, and satisfy the SynRM motor power demand. Furthermore, the algorithm minimizes 
induced harmonics by the drive (10.49%), reducing the battery current ripple by 17.15A, thereby 
enhancing the battery lifecycle.

Nowadays, the influence of the transportation system’s growth on global warming and climate change has become 
more and more tangible and has impacted our everyday lives1. According to2, integrating the road transport 
sector into the EU ETS (European Emissions Trading System) is expected to be a cost-effective CO2 reduction 
method. The transport sector accounted for roughly 27% of total EU greenhouse gas (GHG) emissions in 2017, 
with light commercial vehicles (LCVs) contributing to approximately 9% of EU transport GHG emissions3. 
According to the European Environment Agency (EEA), average CO2 emissions from new light-duty vehicles 
(LDVs) rose in 2017 for the first time since 2010 and continued to rise in 20184. The European Commission 
published a proposal to outlaw the sale of petrol and diesel automobiles in the EU from 20355. In this context, 
transportation decarbonization is primarily recognized as one of the priorities for considerably decreasing harm-
ful emissions.

The facts presented here confirm that the automobile industry has adopted the electrified mobility vision. 
Several automakers have openly stated their commitment to an electric vehicle future, expecting the EV market 
to be poised for rapid expansion. For example, Volvo Company stated that cars with internal combustion engines 
have no long-term future. Volvo is firmly dedicated to becoming an all-electric vehicle manufacturer, with the 
transition expected to occur by 20306. By 2035, General Motors intends to eliminate tailpipe emissions from new 
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light-duty cars7. Following a year in which Volkswagen electric vehicle sales quadrupled, the company noticed 
that 2020 represented a turning point in customer mood8. EV conventional power system mainly involves 
batteries and power electronic converters9. It is well established that these power converters’ currents contain 
harmonics. The detrimental effect of current harmonics on the aging of Li-ion cells was studied based on the 
results of the tests conducted by the authors in10–15.

To provide better performance in terms of power quality, durability, and reliability, hybrid power systems 
(HPSs) based EVs are suggested in the literature16–18. HPS comprises a battery as the primary source and a 
supercapacitor (SC) as an auxiliary. The battery provides most of the motor power due to its high energy density. 
At the same time, the SC enhances the power quality by supplying the transient periods due to its high power 
density. The electric machine has played a significant role throughout the evolution of EVs, regardless of the 
precise types of EVs provided. Different electric machines have been used in the EV design; each has advantages 
and disadvantages. Synchronous Reluctance Motor (SynRM) has recently gained more attention in EV applica-
tions due to its increased efficiency, reduced weight, and moderate cost19–23. In addition, SynRM can provide 
torque enhancement by 34% more than the classical machines, which is suitable for the EV industry19. Despite 
the outstanding advantages described above, SynRM has several relevant disadvantages for traction applications, 
including torque ripple and SynRM current harmonics that affect battery lifetime (battery aging)21. The primary 
challenge is to provide an appropriate energy management strategy (EMS) that enhances the performance of the 
HPS and extends the battery lifecycle while considering different constraints.

However, the main focus lies in evaluating the efficacy of the chosen EMS. To attain this objective, multiple 
EMSs have been documented in academic literature. Broadly, these EMSs can be categorized into optimiza-
tion, rule-based, and learning-based techniques, as mentioned in24,25. Optimization-driven approaches employ 
optimization theory tools to solve the issue, aiming for an optimal power load distribution across the bat-
tery–supercapacitor storage system to maximize component lifespans. The methods focused on optimization can 
be classified as offline (global scale) or online (real-time scale). Offline optimization EMS involves determining 
the best control solution for a predefined condition, like a speed profile. There are two methods for this: Direct 
methods encompass disciplined optimum control; Indirect methods involve approaches such as the calculus of 
variations24, Pontryagin’s Maximum Principle (PMP)26, Pontryagin’s Minimum Principle27, stochastic dynamic 
programming (SDP)28, and dynamic programming (DP)29. The real-time application of online optimization 
includes determining the most efficient energy distribution in a hybrid system using specified data. The cost func-
tion factors in the system’s current status, operational costs, and emissions. Model predictive control (MPC)30, 
equivalent consumption minimization strategy (ECMS)31, and external energy maximization strategy (EEMS)32 
fall under this category. In artificial intelligence, learning-based techniques, particularly reinforcement learn-
ing (RL)33 and deep learning (DL)34, leverage machine learning advancements. These methods have exhibited 
effectiveness across diverse domains, notably in image categorization, leading to widespread implementation in 
energy management35,36. However, the unavailability of databases required for training models poses a challenge, 
given the lack of extensive research on this emerging subject. These databases offer no assurance of compatibility 
with data beyond the provided training set. Rule-based strategies are management strategies based on a sequence 
of IF–THEN situations. This kind of management strategy can be categorized into two types: deterministic 
strategies, such as state machine control (SMC) strategy27,28, and intelligent strategies, such as fuzzy logic-based 
EMS29,30. The fundamental disadvantage of these strategies is that developing their roles requires the designer’s 
experience, which is not always available. They also suffer from problems related to the abrupt transitions between 
various operating modes that present a real challenge for conventional controllers to keep the desired power 
quality and system stability. A linear proportional-integral (PI) based management strategy was reported in24–35. 
Authors in37 proposed a PI-based voltage control strategy for the common DC-bus of hybrid EVs. However, 
PI controller design based on linearization around an operating point suffers from robustness problems. The 
flatness-based management strategy (FLAT) has been widely used to manage the power flow in a multi-sources 
power system38,39. This strategy can provide excellent performance, but defining the trajectory parameters is chal-
lenging; the definition of flat outputs and the dependence on the reference model decreases these performances 
in case of essential parameter changes.The traditional approaches may offer restricted effectiveness. This research 
aims to evaluate the optimization of trajectory generation parameters utilizing a metaheuristic optimization 
technique known as the Salp Swarm Algorithm (SSA). The main benefits of SSA over other optimization strategies 
are faster solution convergence and fewer parameters with faster-resolving capability40. Based on the advantages 
of the above-mentioned optimization algorithms, this paper reports a new optimized flatness-based management 
strategy to manage the power flow in an EV power system while reducing battery aging. The considered hybrid 
power system is based on a Li-ion battery and supercapacitor as energy storage elements. The main goals of the 
suggested EMS are to provide DC-bus stabilization, respect the dynamics of the sources, and satisfy the SynRM 
motor power demand. Additionally, the algorithm allows the minimization of the effect of harmonics generated 
by the motor on the battery current. Thus, the main contributions can be listed as follows:

•	 Stabilizing the DC-bus voltage;
•	 Ensuring the proper use of the power flows between the battery and SC while respecting the SoC limits;
•	 Preventing the SynRM motor from the harmonics that impact the energy storage systems’ lifetimes;
•	 Reducing the battery current harmonics induced by the electric drive;
•	 Minimizing the battery current ripples generated by both the SynRM and PWM inverter;
•	 Combining different strategies to obtain the best performances.

The control algorithm and EMS for the proposed hybrid power system are validated by processor-in-the-loop 
(PIL) technology in Matlab/Simulink using embedded Matlab functions. The final generated control algorithm 
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codes are embedded in a real target DSP (C2000 launchxl-f28379d). In this, the integrated DSP control algo-
rithm manages all components of the hybrid power system (Bat-SC-SynRM), modeled in the host PC using 
SimPowerSystems (SPS) Toolbox.

The remainder of this work is arranged as follows: Sect. 2 presents modeling the electric traction chain’s parts. 
Section 3 discusses the suggested EMS based on the optimal differential flatness. The results and interpretations 
of the co-simulations are presented in Sect. 4. The study’s conclusion is presented in Sect. 5.

System description and modeling
Detailing the study and the proposed diagram
Finding the specific numerical values for trajectory generation parameters presents a challenge because there 
is not an exact model replicating the physical system. To address this, an approach involves improving these 
parameters through metaheuristic optimization algorithms. The main concept involves creating random poten-
tial solutions within a confined search area. These solutions will be directed to the HPS, where their behavior 
will be evaluated by calculating the integral square error (ISE) between the reference and actual DC bus and 
supercapacitor voltage and battery and the supercapacitor current. The optimizers will adjust and update the 
potential solutions based on this ISE, which represents the fitness value. The optimized adaptive Flatness-based 
EMS is described in Figure 1.

HPS topology
Three hybrid power system topologies for electric vehicles, as illustrated in Fig. 2, have been commonly reported 
in the literature. These topologies with distinctive qualities can be categorized as passive, semi-active, and active41.

The architecture of the studied HPS is based on the fully active topology, as shown in Fig. 3, Since each ESS 
is controlled independently, this architecture provides the maximum level of controllability. It makes it easier 
for the energy management plan to use the complementing traits of HPS and HES. Additionally, it supports 

Optimizer
SSA

BatoP
    Adaptive FLAT   

Based EMS  scV

busV

loadP

ref
busV

scd

battd

errorsISE

Figure 1.   SSA-FLAT-based EMS.
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topology.
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implementing a wide range of control mechanisms42. The traction chain comprises two energy storage systems 
(battery and SC), their converters (bidirectional DC–DC), and a synchronous reluctance motor drive.

Power system modeling
The switching and average models are the two DC–DC converters models extensively utilized in the literature. 
The switching model is primarily used to investigate different forms of pulse width-modulated systems in terms 
of power losses and harmonics. It requires a short sampling period, making simulation time-consuming; hence, 
the following average model was adopted in this study.

where VSC and Vbus are the supercapacitor and DC-bus voltage, respectively; rSC and rbatt denote the internal 
converter resistors; LSC and Lbatt are the converter inductors; dSC and dbatt represent the duty cycle ratios; Cbus 
represents the DC-bus capacitance; iLoad , iSC , and ibatt are the load, the supercapacitor, and the battery currents, 
respectively.

The electromagnetic energy stored in the DC bus capacitance Ebus and the capacitive energy of the SC ESC 
are given by:

The total stored electromagnetic energy ET is expressed as follows:

According to Fig. 1, the differential equation for power balance is43 :

The supplied powers from the sources, including converter losses, are expressed by PBato and PSCo as follows:

where
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Figure 3.   Schematic structure of the proposed EV.
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Synchronous reluctance motor and vehicle dynamics modeling
There are currently several main rotor structures of SynRM: solid rotor, flux barrier rotor, axially laminated 
rotor, and magnet-assisted rotor. The structures suitable for traction applications have flux barriers since they 
meet performance, robustness, cost, and manufacturing requirements20. The SynRM electromechanical model 
is presented in the (d-q) frame as follows:

where vsq and vsd are the stator’s quadrature and direct axis voltages, respectively. isq and isd represent their 
corresponding currents. The Ld and Lq are the d-q magnetizing inductances. Ω represents the mechanical rotation 
speed, Rs represents the stator resistance, p denotes the number of pair poles, TL, is the rotor’s torque load, f and 
J represent the viscous friction coefficient, and inertia moment.

The equation representing the dynamics of an electric motor is formulated as follows18:

The torque of the load is provided by:

where TLwheel , i, and r represent the load torque on the wheels, the transmission ratio, and the wheel radius, v and 
vw are the vehicle and wind speed, respectively,  α represents the angle of the slop, mv is vehicle masse, µ,km , and 
Cd are the tire rolling resistance, the rotational inertia, and aerodynamic drag coefficient, respectively,γ and Af  
represent the air density and the frontal vehicle area. Respectively, g represents the earth’s gravity.

Classification and comparative analysis of the energy management approach
EMSs can be partitioned into three main methods: optimization-based methods, rule-based methods, or more 
recently, learning-based methods, as depicted in Fig. 4.
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The suggested EMS
The suggested EMS aims to control the motor speed effectively and stabilize the voltage of the DC bus. Indirect 
Field Oriented Control (IFOC) is used to control the motor speed. This strategy provides the d-q voltage refer-
ences for the State Space Vector PWM (SVPWM) system. Hybridization between the differential flatness theory 
and metaheuristic optimization is used to control the bus voltage optimally.

SynRM drive IFOC design
The SynRM’s Indirect Field Oriented Control (IFOC), as shown in Fig. 5, comprises three control loops: an 
external speed control loop, an internal current control loop for isd and another loop for isq . The first loop output 
generates the quadrature reference current, which is compared to the current value resulting from the current 
measurements. Their error is applied to the input of the isq current controller. Similarly, there is a current regula-
tion loop of direct current isd. The outputs of the two internal loops isq and isd are applied to a decoupling block 
generating the reference voltages vrefsd  and vrefsq  . By passing from the reference (d-q) to the reference (α,β), the two 
voltages reference vrefsα  , vrefsβ  required by the Space Vector Modulation (SVM) block.

The proposed optimal differential flatness‑based EMS
The proposed EMS is based on optimal differential flatness. It is divided into two parts: a lower-level controller 
and a higher-level controller. The higher-level controller generates the power reference for each source. The power 

Figure 5.   Diagram of SynRM Field-oriented control.

Table 1.   Comparative analysis of EMS47.

EM strategy Advantages Limitations Refs.

Deterministic
rule-based

Simple, reliable, and robust, low computation complexity, easy to 
implement

Not adaptive and poor parametric
calibration

48

Frequency
separation Simple and easy implementation Not robust, filter design is difficult 49

Fuzzy logic
Control

Robust and good with model uncertainties and state variations, real-
time implementable

Dependent on membership functions,
optimal control is not guaranteed

50

Dynamic programming Global optimal solution is found, optimal control, easy to solve 
nonlinear optimization problems

Not real-time implementable requires
heavy computational burden

51

Pontryagin’s principle Easy to adapt and simple to implement, no additional controllers are 
required The computation burden is heavy 52,53

Instantaneous
optimization The optimal value is found at each instant Not guaranteed to be optimal, 54,55

Model
predictive
control

Has potential for real-time implementations; Easy to handle 
constraints directly in the design procedure

Model accuracy may be compromised by using a linearized model
May need large memory for heavy
computations

30

Reinforcement Learning (RL) RL can adapt to unknown environments; DL handles complex 
nonlinear relationships

RL requires significant exploration time. DL might lack explain-
ability and require extensive data

56

Neural network It is more robust to new information, real time implementable Large amount of training data is
required; stability is not guaranteed

57
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references created by the inverse dynamic in Eq. (16) and Eq. (18) are divided by the measured supercapacitor 
and battery voltages to generate the reference currents for the supercapacitor and battery converters. The lower-
level controller adjusts for DC-bus current variations and compensates for the DC-bus current harmonics using 
a supercapacitor, which results in improved energy quality and battery lifecycle enhancement. Figure 6, illustrates 
the operational control structure.

Energy regulation
In the considered HPS, the flat model is expressed by its flat output y = [y1y2]T , control variable u = [u1u2]T , 
and state variable x = [x1x2]T,

Where:

From Eq. (2), the state variable x1 representing Vbus can be expressed as follows:

From Eq. (4), the state variable x2 representing VSC can be expressed as follows:

The SC power reference PSCref, considered the first input control variable, u1 , is derived from Eqs. 5, 7, and 9.
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Figure 6.   Proposed optimal differential flatness-based EMS.
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with PSCmax is the SC converter’s maximum power limit. It can be defined as

Concerning the second input, the power reference of the battery PBattref is calculated from Eqs. 5, 6, and 9 as 
follows:

where PBattmax is defined as the maximum limiting power from the battery converter.

Above all, the flat output ( y1 = Ebus ) is the most crucial variable to control. For this, a classical PI controller 
is used to ensure that this flat variable is under control. Assuming the SC control loop is significantly faster than 
the battery control loop44, the DC-bus power stated in Eq. (7) can be approximated as:

The transfer function is represented as a straightforward integrator. A PI regulator is used to control this 
part44. Recognizing that y1 = Ebus , as shown below:

where kVbus
p ,kVbus

i  are the integral and the proportional gains chosen so that the closed loop characteristic 
polynomial is expressed as follows:

Clearly, the error e1 = y1 − y1−ref  meets:

By matching the characteristic polynomial p(s) to a desired one pdes(s) , given by Eq. (22), with pre-specified 
root positions, an adequate choice of controller parameters can be calculated by Eq. (25) and Eq. (26).

where ωn represents the natural frequency, and ξ represents the dumping ratio.
The SC energy control loop depends on total energy management. A linearizing feedback control rule is used 

to achieve an exponential asymptotic tracking of the trajectory44 as follows:

where kVSC
p  is the proportional gain of the SC voltage controller.

Current control
The flat output y = [y3y4]T , control variable u = [u3u4]T , and state variable x = [x3x4]T may be written as 
follows:

The control vector variables u3 , u4 are evaluated from Eq. (1) and Eq. (29) as follows:
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(23)ë1 + k
Vbus
p ė1 + kVbusi e1 = 0

(24)pdes(s) = s2 + 2ξωns + ω2
n

(25)k
Vbus
p = 2ξωn

(26)k
Vbus
i = ω2

n

(27)
(
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The first current control law, y3−ref  , defines the set-point for the battery current. The closed-loop control law 
is written as follows37,45:

where kbati  and kbatp  represent the controller’s parameters. Let us consider the following desired dynamic 
polynomial46:

By matching the derivative of Eq. (32) with the desired dynamic polynomial p1(s) with predetermined root 
locations, the appropriate controller parameters are expressed by:

The second current control law based on feedback regulation is written as follows:

By matching the derivative of Eq. (36) with the following desired characteristic polynomial p2(s) with pre-
specified root positions, the controller parameters can be obtained as in Eq. (38) and Eq. (39).

where y3−ref  and y4−ref  are the required inductor current references;ksci ,kbati  are the integral gains of the 
supercapacitor and battery current controllers, respectively.kscp  and kbatp  represent the proportional gains of 
the supercapacitor and the battery current controllers, respectively. ωni1,ωni2 and ξi1, ξi2 represent the natural 
frequencies and the dumping factors, respectively.

Salp Swarm Algorithm:
Slap swarm algorithm (SSA) was proposed by Mirjalili in32 and inspired by the behavior of slaps in the ocean. 

It is distinguished primarily by its high precision and quick convergence capabilities. There are two sorts of agents 
in the agent set: leaders and followers, and their movements can be described as:

where LP(n) and FP(n) are the leader and food position at iteration (n), respectively, and c2 and c3 are arbitrary 
variables [0,1].ub and lb are the higher and lower search space boundaries, respectively. The coefficient c1 is the 
most significant parameter that affects the algorithm performance since it balances exploration and exploitation. 
It is described as:

where Nmax is the maximum number of iterations.
The movement of the follower can be expressed as:

where FPi(n) is the position of the i-th follower. This last one updates its position based on its position and the 
position of the previous salp. The objectives are attenuating the battery current harmonics and DC voltage rip-
ples, reducing the voltage overshoots, and ensuring the stable operation of the HPS. Thun, the cost function can 
be formulated as the integral square error (ISE) as:

(30)u3 = 1
/

Vbus

(

Lbat ẏ3 − Vbat + rbatty3
)

= υ1(y3, ẏ3) = dbat

(31)u4 = 1
/

Vbus

(

Lscẏ4 − VSC + rSCy4
)

= υ2(y4, ẏ4) = dsc

(32)
(

ẏ3 − ẏ3−ref

)

+ kbatp

(

y3 − y3−ref

)

+ kbati

∫

(

y3 − y3−ref

)

dt = 0

(33)p1(s) = s2 + 2ξi1ωni1s + ω2
ni1

(34)kbatp = ξi1ωni1

(35)kbati = ω2
ni1

(36)
(

ẏ4 − ẏ4−ref

)

+ kSCp
(

y4 − y4−ref

)

+ kSCi

∫

(

y4 − y4−ref

)

dt = 0

(37)p2(s) = s2 + 2ξi2ωni2s + ω2
ni2

(38)kSCp = 2ξi2ωni2

(39)kSCi = ω2
ni2

(40)LP(n) =
{

FP(n)+ c1((ub− lb)c2 + lb) if c3 ≥ 1
/

2
FP(n)− c1((ub− lb)c2 + lb) if c3 < 1

/

2

(41)
c1 = 2e

−
(

4n
/Nmax

)2

(42)FPi(n) = 1
/

2(FPi(n− 1)+ FPi−1(n))
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For the hybrid power systems (HPSs), there are four errors written as follows:

where εVbus , εSC are the DC-bus and the supercapacitor voltage errors, respectively, εibatt and εiSC represent the 
battery and the supercapacitor current errors.irefSC  and iSC represent the SC’s reference and measured currents; 
i
ref
bat and ibatt are the battery’s reference and measured currents, respectively; Vref

bus and Vbus denotes the DC bus’s 
reference and measured voltages, respectively; Vref

SC  and VSC are the SC’s reference and measured voltages; and 
ih is the harmonic current.

Relying on the adopted cost function representing the ISE, the SSA calculates the necessary controllers’ 
parameters kVbus

p ,kVbus
i ,kVSC

p ,ksci  , kscp  , kbati  , kbatp .

PIL implementation technique description and performing steps
The PIL co-simulation technique allows the verification and validation of the proposed control algorithms by 
generating code onto the embedded processor core and running these algorithms in a real environment based 
on the C2000 launchxl-f28379d DSP board. During PIL co-simulation, the implemented control algorithm is 
linked to a computer on which the physical system model is carried out. Subsequently, it is possible to evaluate 
the performance of the system in order to assess and improve some essential factors such as storage capacity, 

(43)f = min





t
�

0

√
εdt





(44)



















εVbus
= V

ref
bus − Vbus

εVSC = V
ref
SC − VSC

ε
ibatt

= i
ref
bat − ibatt

εiSC = (i
ref
SC − ih)− iSC

b)

a)

b)b)

Figure 7.   PIL co-simulation strategy: (a) PIL scheme, (b) PIL platform.
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code size, and execution of the algorithm according to the required time. As indicated in Fig. 7, during the 
prototyping of the PIL, based on a fixed simulation time, the power part of the power system is simulated in the 
Matlab/Simulink platform. At each step, the C2000 launchxl-f28379d DSP board receives the signals from the 
computer, implements control algorithms, and sends the control commands back to the computer to control the 
power system. At this point, a PIL co-simulation cycle is performed. The data exchange between the computer 
and the DSP board is synchronized using the serial communication of the DSP board. To perform the PIL, the 
following steps are needed to be carried out:

•	 Connecting the C2000 launchxl-f28379d DSP board to the computer,
•	 Tuning several settings and configuration parameters from the select hardware implementation tab found 

on Matlab/Simulink,
•	 Selecting the appropriate hardware port using the defined DSP board under the Hardware implementation,
•	 Selecting target hardware resources and selecting the correct device name of the adopted DSP board again,
•	 Choosing the external mode to set up the serial communication.

After that, a configuration of the PIL procedure should be performed based on multiple line codes in the 
command window of the Matlab software as follows:

•	 Calling of the system model,
•	 Setting the com port number,
•	 Defining the board rates, which represent how fast the computer and the DSP board will communicate,
•	 Enabling the serial communication for the PIL co-simulation,
•	 Generating the PIL model that will be used for the PIL procedure.

A trial implementation in a real-time interface (RTI) utilizing a DSpace card can be conducted to enhance the 
proposed energy management in the electric vehicle (EV) system. This experimental evaluation aims to assess 
the performance of the enhanced energy management system.

The experimental implementation in a real-time interface (RTI) using a Dspace card for the proposed energy 
management optimization in an electric car system is a promising avenue for advancing research in sustainable 
transportation. By leveraging the computational capabilities of a Dspace card within the vehicle’s infrastructure, 
the energy management system can dynamically optimize power distribution among various components, such 
as the battery, motor, and auxiliary systems, in real-time.

Results and discussion
Simulation part results
In this section, MATLAB-Simulink is utilized to construct the HPS model and validate the suggested EMS. The 
HPS is simulated employing the urban drive cycle ECE-15, where the HPS and SSA parameters are summarized 
in Table 1,2, respectively.

Notwithstanding the change in the driving cycle, the EV speed response is shown in Fig. 8.a, showing a 
good follow-up. The torque curve in Fig. 8.b, shows that the motor creates max torque when the vehicle’s veloc-
ity attains the reference path. When it reaches a steady state, the motor provides lower torque, only enough to 
compensate for total load torque.

The suggested energy management technique can stabilize the DC-bus voltage immediately, as depicted in 
Fig. 9, despite the significant load power variations. Compared to the classical differential flatness and the PSO 
differential flatness, the proposed EMS based on the SSA differential flatness reduces DC-bus voltage ripples 
and overshoots. Indeed, for a maximum load step of 21 kW, the DC-bus voltage overshoot is minimized by 15V 
(3.2%) and 3V (0.6%) compared to the classical differential flatness and PSO differential flatness.

Table 2.   HPS parameters.

Parameters Value

rbatt Ω 0.1

rsc Ω 0.1

Lbat mH 2

Lsc mH 2

V
ref
bus V 500

V
ref
SC  V 200

V
ref
bat V 100

cSC F 80

cbat Ah 340

cbus µF 2000
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Figure 8.   EV traction side simulation results: (a) EV linear speed, (b) EV load torque (TL) and SynRM 
electromagnetic torque (Te).

Figure 9.   DC-bus voltage.
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The battery provides most of the load power to the motor during the acceleration phases, which causes the 
battery SOC to decrease. It receives energy during deceleration phases when the motor torque is negative, thus 
increasing the SOC battery, as shown in Fig. 10.

From Fig. 11, which depicts the battery current, the proposed EMS can improve the power quality by reducing 
the current ripple, which is the main cause of battery aging, thus enhancing the battery life cycle. 

Table 3 provides the comparison study results between the proposed EMS based on optimal adaptive and 
classical differential flatness strategies. In this table, the battery current ripple differences ΔI1 = ΔIC_FLAT–ΔISSA_FLAT 
and ΔI2 = ΔIPSO_FLAT–ΔISSA_FLAT are evaluated, where ΔIC_FLAT and ΔISSA_FLAT, ΔIPSO_FLAT are the battery current 
ripple at the periods (Pn) for classical FLATand SSA_FLAT, PSO_FLAT, respectively. The battery current ripple 
is minimized by 15.5A for a maximum load step of 21kW.

Figure 12, shows that the SSA differential flatness minimizes the battery current THD to 10.49% instead 
of 77.39% for the classical differential flatness strategy and 34.52 for the PSO differential flatness strategy. This 
finding suits the purpose of the proposed EMS, which is the reduction of battery current harmonics leading to 
battery lifecycle enhancement.

As shown in Fig. 13, the battery supplies the motor power and absorbs it during braking periods, while the 
SC works to assist the battery during transient periods (acceleration and deceleration phases), which accords 
with the management strategy.

Figure 14, shows that the suggested EMS algorithm exhibits quicker supercapacitor voltage dynamics with 
fewer ripples than the classical differential flatness technique. The quick response of the proposed management 
system leads to enhancing the stability of the SC voltage.

Figure 10.   Battery SoC (%).

Figure 11.   Battery Current.

Table 3.   Optimizer parameters.

gains k
Vbus
p k

Vbus
i k

VSC
p ksci kscp kbati kbatp

Lower bound (× 10) 100^2 418.879 0.01 8.7730 × 104 8.3576 9.7478 × 103 27.8253

Upper bound (× 0.5) 100^2 418.879 0.01 8.7730 × 104 8.3576 9.7478 × 103 27.8253

Search Agents number = 30 Maximum number of iteration = 150
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Figure 12.   Harmonics spectrum of battery current: (a) for SSA differential flatness strategy; (b) for PSO 
differential flatness strategy; (c) for classical differential flatness strategy.

Figure 13.   Load, battery, and SC power curves
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Co‑simulation results
To approve and evaluate the performance of the suggested EMS, the system was modeled using embedded Matlab 
functions and co-simulated using the C2000 launchxl-f28379d DSP board through the processor-in-the-loop 
(PIL). The co-simulation is performed utilizing a reduced-time version of the ECE-15 urban drive cycle depicted 
in Fig. 15, based on the parameters listed in Table 4, Tables A1 and A4.

The proposed EMS stabilizes the bus voltage shown in Fig. 16, against load variations. Compared to classical 
differential FLAT, using the SSA differential flatness, the maximum overshoot voltage is 4 V instead of 10 for 
the PSO differential flatness and 15 V for the classical FLAT strategy at the maximum power demanded by the 
electric vehicle (about 21 kW). For the classical FLAT strategy, the SSA differential flatness minimizes the voltage 
ripple at (ΔV = 0.5 V) instead of (ΔV = 4 V).

From Fig. 17, representing the current of the battery, the ripple is minimized by the SSA differential flatness to 
(ΔI = 3 A) instead of (ΔI = 12 A) for PSO differential flatness and (ΔI = 20 A) for the classical differential flatness 
strategy at the maximum power demanded by the electric vehicle (about 21 kW).

As illustrated in Fig. 18, the battery provides the average power demanded by the traction system and receives 
energy during the braking phases. The supercapacitor assists the battery during transient periods (acceleration 
and deceleration phases), which agrees with the adopted energy management strategy. These results confirm the 
efficiency of the suggested EMS in managing both energy storage systems.

Figure 14.   Supercapacitor voltage.

Figure 15.   Reduced time version of the ECE-15 urban drive cycle

Table 4.   Comparison based on battery current ripple between classical and proposed differential flatness.

Time (Pn) (s) P1 = [0,11] P2 = [28,49] P3 = [61,85] P4 = [143,155]

ΔIC_FLAT (A) 20 15 18 20

ΔIPSO_FLAT (A) 10 6 8.7 15

ΔISSA _FLAT (A) 3 2.8 2.5 2.85

ΔI1 17 12.2 15.5 17.15

ΔI2 10 9 9.3 5
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Compared to the PSO and classical differential flatness strategy, the proposed EMS algorithm shows faster 
supercapacitor voltage dynamics with fewer ripples, as depicted in Fig. 19, During the acceleration and decel-
eration phases, the SC provides the electric vehicle power until the power provided by the battery reaches its 
reference, which improves the DC-bus voltage stability.

The suggested technique adjusts its control parameters in accordance with the measured cost function, 
resulting in enhanced system performance for battery current harmonics, DC-bus voltage ripples, and voltage 
overshoots.

Conclusion and future works
This work proposed a new optimized energy management strategy for a battery/supercapacitor-based hybrid 
power system dedicated to an electric vehicle. Based on the optimal difference flatness, the proposed management 
technique seeks to manage both sources’ power well depending on the load demand. The main goal of this energy 

Figure 16.   DC-bus voltage.

Figure 17.   Battery Current

Figure 18.   Load, battery, and supercapacitor power waveforms
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management is to optimize the power quality by reducing the current harmonics while satisfying the SynRM 
motor power demand, which positively impacts the battery lifecycle. Compared to the classical differential 
flatness strategy, the proposed optimal adaptive differential flatness strategy can protect the battery against peak 
current during the acceleration and deceleration phases and significantly reduce the battery current harmonics 
and DC-bus voltage ripples (Δv = 5 V), as well as the voltage overshoots 15 V (3.2%) for a load power of 21 kW. In 
addition, the online updating approach also enhances the power system behavior under unknown load changes, 
improving its robustness and efficiency. The obtained co-simulation results using the C2000 launchxl-f28379d 
DSP board confirm the effectiveness of the suggested energy management strategy.

The proposed EMS holds the potential for broader applicability across various power systems, including those 
reliant on fuel-cell technology within hybrid electric vehicles. Our ongoing research involves exploring alternative 
objective functions within the proposed EMS framework and investigating the efficacy of diverse optimization 
algorithms. These aspects will be further elucidated in our forthcoming publications.
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