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Introducing a new exchange 
functional by altering the electron 
density’s ionization dependency 
in density functional theory
E. Rahmatpour  & A. Esmaeili *

Each of the exchange–correlation functionals in the density functional theory has been customized 
to particular systems or elements and has unique advantages and disadvantages. In one of the 
most recent research on exchange–correlation functionals, Chachiyo et al. present a relationship for 
exchange–correlation functional by assuming the simplest form of electron density. Their utilized 
electron density causes a systematic inaccuracy in the energy of the molecules since it does not fully 
account for the variation of the ionization energy for different atoms. We offer a novel relationship for 
exchange functional that improves the precision of the energy calculations for molecules by using the 
basic assumptions of the Chachiyo approach and correcting the electron density. Our density is directly 
related to the atom’s ionization energy. Our suggested functional was implemented for 56 molecules 
composed of atoms from the first, second, and third rows of the periodic table using Siam Quantum 
package. We discussed about the role of our functional on the reducing the computation error of 
dipole moment along with total, bonding and zero point energies. We also increased the portion of 
core electrons to improve the accuracy of the results.

Quantum Monte Carlo (QMC) is employed to obtain one of the most precise estimates for the total energy of 
atoms in the framework of many particle systems1. As shown in Fig. 1, the mean absolute error (MAE) of QMC 
for molecules made from the first row of the periodic table and other rows, respectively, is 13.5 and 23.7 kcal/mol. 
Since QMC computations are very time-consuming, other approaches are currently being developed. Density 
functional theory (DFT) is one of them. It uses the electron correlation, kinetic and exchange energies, nuclear-
electron interaction, and classical electron–electron Coulomb repulsion to determine the energy of a system. 
Since the correlation term is not taken into consideration in Hartree–Fock (HF) theory, the exchange energy 
determined precisely in HF cannot be employed in DFT2. Exchange energy can be calculated using a variety 
of approaches. These approaches depend on the electron density (n) as well as its gradients. Determining an 
exact exchange functional specially in the intermediate region, where electron density decays outside molecules 
between slow and rapid variation limit, is still under discussion. The primary aim of this work is to obtain 
exchange energy values that lead to results that are more accurate than QMC in all regions.

As predicted by the Thomas–Fermi model, the exchange energy enhancement in a system with slowly vary-
ing density is proportional to (1+ µS2) , where S is a function of the reduced density gradient and is equal to 
S = |∇n(r)|/[2

(

3π2
)
1
3 (n)

4
3 ] . According to the Kleinman model and taking into account an alternative external 

potential with a long wavelength as a perturbation, the µ coefficient has a constant value of 8/213. In order to 
achieve more precise results for the total energy, Chachiyo et al. added the Bragg scattering condition for Fermi 
electrons and obtained a greater value for µ1. Then, using the assumption that the electron density decays expo-
nentially as n(r) → Ne−ar , they offered a novel relationship for the exchange energy that led to accurate results 
for the total energy, particularly for a system with intermediate varying density1. As can be seen in Fig. 1, the error 
value of Chachiyo model (CM) for computing the total energy of molecules is acceptable and better than QMC.

The work by Chachiyo et al. actually misses a key aspect because the ionization energy is different for various 
atoms and the same relation for electron density should not be used for all of them. In this work, we utilized 
the density of electrons as n(r) → Ar

2β
e
−2(2I)

1
2 r that clearly depends on the atom’s ionization4. We analytically 

derive a new relation for the exchange functional that is more accurate than previous attempts and works well 
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in all slow, rapid, and intermediate varying density regions. To verify the accuracy of our results for different 
kinds of structures, we employed a set of reference data5.

Theoretical method
An interacting many-particle system is described by the DFT exclusively in terms of its density and the system 
energy is stated as6–8:

F and Vion, respectively, stand for universal function and external potential in Eq. (2). The charge density 
contains all the information related to the system’s ground state9.

And the density is calculated using the variational method as follows:

Equation (2) may also be rewritten as follows:

where E0xc[n] is the exchange correlation (XC) energy, which is defined by the following relationship:

where εxc
[

n
(−→
r
)]

  represent exchange energy per electron. Gradient corrections are required in Eq. (6) to take 
into account the long-range gradient effects. The generalized gradient approximation (GGA) is the model that 
accomplishes this as:

As mentioned earlier, the density in Eq. (7) is employed as follows in our model4:

where β =
(
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)

− 1 . For this density, |∇n(r)| is obtained as:

(1)E
(

n
(−→
r
))

= T
(

n
(−→
r
))

+ U
(

n
(−→
r
))

+
∫

n
(−→
r
)

Vion

(−→
r
)

d
3
r,

(2)E
(

n
(−→
r
))

= F
(

n
(−→
r
))

+
∫

n
(−→
r
)

Vion

(−→
r
)

d
3
r.

(3)n
(−→
r
)

≡
∑

i

ni

∣

∣φ
(−→
r
)∣

∣

2
,

(4)
δ

δn
(−→
r
)

[

E
[

n
(−→
r
)]

− µ

∫

d
3
rn
(−→
r
)

]

= 0.

(5)F
[

n
(−→
r
)]

= Ts

[

n
(−→
r
)]

+
1

2

∫

n
(−→
r
)

VH

[

n
(−→
r
)]

d
3
r + Exc

[

n
(−→
r
)]

,

(6)Exc[n] =
∫

n
(−→
r
)

εxc
[

n
(−→
r
)]

d
3
r,

(7)E
GGA
xc [n(r)] =

∫

n(r)εLSDAx (n(r))FGGAxc (n(r),∇n(r))dτ .

(8)n(r) → Ar
2β
e
−2r(2I)

1
2
,

-15
-10

-5
0
5

10
15
20
25
30
35

H2 Li
H

Be
H Li
2

CH
CH

2 
(1

A1
)

CH
2 

(3
B1

)
N

H
CH

3
N

H2 O
H

CH
4

H2
O HF

N
H3 Li

F
CN

C2
H2 CO HC

N N
2

HC
O

N
O

C2
H4

H2
CO O

2
C2

H6 F2
H2

O
2

H3
CO

H
N

2H
4

CO
2

QMC[MAE=13.5][Ref 2] Chachiyo[MAE=3.2][Ref 1]

Kc
al
/m

ol

Figure 1.   Total energy prediction error in terms of kilojoules/mol obtained from quantum Monte Carlo 
method and Chachiyo model for molecules containing atoms of the first and second rows of the periodic table1.
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In Eq. (8), I stands for the ionization energy and A is a constant. Equations (8) and (9) result:

For a homogeneous electron gas, the Dirac exchange energy per electron, or εx , equals10:

The density determined by Eq. (8) yields the value of εx as follows:

Additionally, by using following equation for S10:

As the reduced gradient parameter in the primary Ex equation, the exchange energy will take the form:

Therefore, S can be expressed as follows using Eq. (10):

In the limit of r → ∞,

Now, using Eq. (12) and this equation for S, we can derive the following equation for εx:

At the asymptotic limit of S → ∞ , the exchange energy density should behave as10:

Since the value of the optimum coefficient should be equal to 1 at S = 0 limit, Fx(S) is expressed as follows:

The relationship between r and S can be identified through Eq. (16). Assuming:

And using W as the Lambert function, we obtain:

In this case, Fx(S) is resulted as:
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Equation (22) is obtained in the asymptotic range S → ∞. A weight function is required to extend the appli-
cation of this formula to the intermediate range between S → ∞ and S → 0 limits.  Fx(S) should not diverge to 
infinity in the limit s → 0, thus we modify its functional as follows:

The weight function is then introduced as ω(S) = 1
dS+1

 where d is a constant that controls the weight func-
tion’s speed from the ranges between low variation range to the asymptotic limit. Since the value of the functional 
at S = 0 must be equal to 1, we rewrite the weight function as follows:

We derive the following series for the functional by using Taylor expansion up to the second order around 
the zero point:

which is comparable to the reported ( 1+ µS2) behavior for the low variation range3.
We obtain the following value for d in Eq. (25) by applying Chachiyo et al.’s suggested µ = 8/27:

We ultimately achieved the non-experimental exchange functional in this work by using the value of d found 
in Eq. (26) and defining the new variable x = 4πS/3:

The exchange energy was calculated using this F(x) as follows:
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We combined this exchange energy with the subsequent correlation energy to create a new exchange–cor-
relation energy for DFT computations:

We examine the accuracy of the introduced exchange–correlation energy for the set of atoms and molecules 
using Siam Quantum software and calculating Lambert function (Appendix A)11,12.

Results and discussion
The suggested exchange energy and functional in Eqs. (28) and (29) offers a very accurate total energy for a set 
of the atoms and molecules in the first and second rows of the periodic table. Figure 2 illustrates the errors of the 
estimated total energies of single atoms. For atoms smaller than Ne, the fit performance is excellent; however, it 
is less precise for bigger atoms.

A quick correction approach utilized to increase the accuracy of total energy1. This approach is predicated on 
taking into account how core electrons affect the quantity of energy. Exchange functional performs exceptionally 
well for atoms smaller than Ne, but it performs less accurately for larger atoms. A precise and straightforward 
adjustment for atoms and molecules can be applied to overcome this issue. For each core ion, such as the mag-
nesium ion, we first compute the exchange energy error using the Hartree–Fock computations. Hartree–Fock 
orbitals are the results of this. Next, we compute the DFT exchange energy (28) using density equation and the 
Hartree–Fock exchange energy utilizing these orbitals. As shown in Fig. 2, the errors were decreased after apply-
ing the correction. The MAE of the entire set of 56 molecules was only 3.7 kcal/mol. (ExDFT–EHF) for core electrons 
are nearly identical to the errors of the predicted total energies, as Fig. 3 illustrates. We take into account the 1S2 
orbital as the core electrons from the H atom to the Al atom in our error correction technique, and the 2S22P6 
orbitals for the atoms larger than the Al atom (Fig. 3).

(29)Ec =
∫

nεc
(

1+ t
2
)

h

εc d
3
r.

Figure 2.   The mean absolute errors of the estimated total energies of single atoms. For atoms smaller than Ne, 
the fit performance is excellent; however, it is less precise for bigger atoms.

Figure 3.   (Ex-DFT-EHF) core correction and the error of total energy for neutral atoms.
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In Fig. 4, this correction method depicted for molecules containing atoms from the first, second, and third 
rows of the periodic table.

For molecules containing atoms from the third row, this method very precisely illustrates the equality of the 
core electrons with the errors of predicted total energies.

The mean error (ME) of the total energy for the molecules containing the first, the second and the third rows 
of periodic table atoms is compared in Fig. 5. As shown in the caption of Fig. 5, the absolute mean error (MAE) 
for the first and second row molecules is better than the third row. These values for MAE are four times more 
accurate than the QMC result.

Tables 1 and 2 present a summary of the total energy produced by our developed XC functional as well as 
reference energies of atoms and molecules for computing the error value13.

The ME and MAE for neutral atoms obtained with our functional are less than CM, as Table 3 illustrates. 
Our exchange functional’s ME is nearly zero for the total energy of the 56 molecules after rapplying correction, 
making it more accurate than the CM’s reported 1 kcal/mol value, even though it yielded a 3.9 kcal/mol MAE, 
which is higher than the CM’s reported 3.5 kcal/mol value. Table 4 illustrates the errors of the total energy for 
our model and the CM.

Additionally, we compared our total energy’s ME with the results of the well-known B3LYP, BLYP, PBE, OLYP, 
QMC, and CE methods1,14–16. The ME for the reference energies and for the molecules of the first and second 
rows of the periodic table is approximately 0.4 kcal/mol and which is same as our functional result as illustrated 
in Fig. 612. Our functional estimates 17.3 kcal/mol MAE for the total energy without applying any corrections. 
For the CM, this error was equal to 18.5 kcal/mol.

Although the errors are only a few kcal/mol for molecules made up of atoms from the first and second rows 
of the periodic table, they drastically increase for molecules composed of toms from the third row. This increase 
in errors is caused by the core electrons.

Additionally, we used both corrected and uncorrected energies to evaluate molecules bond energy (Eb) using1:

(30)Eb =
∑

A∈atoms
E
(A)
total

− E
(M)
total

,

Si
H2

(1
…

Si
H2

(3
…

Figure 4.   (Ex-DFT-EHF) core correction and the error of total energy for molecules including (A) first and 
second row atoms and (B) third row atoms.
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Figure 5.   The errors of total energy obtained using our exchange functional in comparison to the experimental 
data for the total energy (kcal/mol) of molecules that (A) contain atoms from the first and second rows of the 
periodic table and (B) contain atoms from the third row of the periodic table.

Table 1.   The total energy of examined atoms (versus Hartree)13.

Atoms Total energy (experimental) Total energy (our model)

H  − 0.5000  − 0.502554

He  − 2.9037  − 2.907579

Li  − 7.4781  − 7.484782

Be  − 14.6674  − 14.65707

B  − 24.6539  − 24.64627

C  − 37.845  − 37.83908

N  − 54.5892  − 54.58151

O  − 75.0673  − 75.06775

F  − 99.7339  − 99.73586

Ne  − 128.9376  − 128.95558

Na  − 162.2546  − 162.27037

Mg  − 200.053  − 200.06092

Al  − 242.346  − 242.35457

Si  − 289.359  − 289.35931

P  − 341.259  − 341.25789

S  − 398.11  − 398.10728

Cl  − 460.148  − 460.15389

Ar  − 527.54  − 527.54032
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Table 2.   The total energy of examined molecules (versus Hartree)13.

Molecules Total energy (experimental) Total energy (our model)

Li2  − 14.9951  − 14.99553

CH  − 38.4788  − 38.47462

CH2 (1A1)  − 39.1346  − 39.12451

CH2 (3B1)  − 39.1484  − 39.14978

NH  − 55.2227  − 55.22271

CH3  − 39.8355  − 39.83338

NH2  − 55.8794  − 55.88145

OH  − 75.7371  − 75.74185

CH4  − 40.5158  − 40.50829

H2O  − 76.4383  − 76.43823

HF  − 100.459  − 100.4600

H2  − 1.1745  − 1.176598

LiH  − 8.0704  − 8.073238

CO  − 113.326  − 113.3207

HCN  − 93.4311  − 93.42615

N2  − 109.542  − 109.5360

HCO  − 113.857  − 113.8624

NO  − 129.905  − 129.9022

C2H4  − 78.5888  − 78.57484

H2CO  − 114.509  − 114.5084

O2  − 150.327  − 150.3493

C2H6  − 79.8274  − 79.80910

F2  − 199.53  − 199.5463

H2O2  − 151.564  − 151.5724

H3COH  − 115.731  − 115.7231

N2H4  − 111.878  − 111.8715

CO2  − 188.601  − 188.6098

BeH  − 15.2468  − 15.25018

SiH2(3B1)  − 290.569  − 290.5712

H2S  − 399.403  − 399.4023

Hcl  − 460.819  − 460.8197

PH3  − 343.146  − 343.1403

SiH4  − 291.874  − 291.8631

CS  − 436.229  − 436.2236

SiO  − 364.734  − 364.7255

SO  − 473.378  − 473.3893

ClO  − 535.32  − 535.3352

CH3Cl  − 500.124  − 500.1178

CLF  − 559.982  − 559.9915

CSH4  − 438.712  − 438.7029

HOCl  − 535.98  − 535.9870

SO2  − 548.659  − 548.6561

Na2  − 324.536  − 324.5576

LiF  − 107.434  − 107.4343

SiH2 (1A1)  − 290.602  − 290.5969

Cl2  − 920.39  − 920.3977

Si2H6  − 582.567  − 582.5472

NaCl  − 622.561  − 622.5670

Si2  − 578.839  − 578.8378

P2  − 682.704  − 682.7042

S2  − 796.384  − 796.3956

PH2  − 342.504  − 342.5055

SiH3  − 291.221  − 291.2170

CN  − 92.725  − 92.72058

C2H2  − 77.3355  − 77.32817

NH3  − 56.5647  − 56.56075
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Table 3.   The comparison of the our and Chachiyo models total energy errors for neutral atoms. The unit of 
every energy is kcal/mol.1.

Total energy Chachiyo model Chachiyo model with correction Our model Our model with correction

ME (for all neutral atoms) 12.6  − 0.1 11.2  − 1.4

MAE (for all neutral atoms) 13.7 2.7 12.2 3.7

ME (for first and second row neutral 
atoms) 1.5 0.2 1.1  − 0.1

MAE (for first and second row 
neutral atoms) 3.4 3.5 3.0 4.0

Table 4.   The comparison of the our and Chachiyo models total energy errors for examined 56 molecules. The 
unit of every energy is kcal/mol.1.

Total energy Chachiyo model Chachiyo model with correction Our model Our model with correction

ME (for 56 molecules) 16.9 1.0 15.5 0.0

MAE (for 56 molecules) 18.5 3.5 17.3 3.9

ME (for molecules made up from first and 
second row atoms) 0.4 0.4 0.5 0.4

MAE (for molecules made up from first and 
second row atoms) 3.2 3.2 3.6 3.4

Figure 6.   The total energy mean absolute error (kcal/mol) of various DFT approaches compared to the 
experimental values for molecules that contain (A) atoms from the first and second rows of the periodic table 
and (B) atoms from the third row of the periodic table.
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where E(A) and E(M) represent the total energies of atoms and molecules, respectively. In Fig. 7, the bond energy 
errors are displayed. MAE for molecules having atoms from the first and second rows of periodic table, from 
the third row of periodic table, and for all 58 molecules is equal to 4.6, 5.7 and 5.1, respectively. The MAE value 
for all molecules is decreased to 0.0 kcal/mol considering the core correction in Eq. (30). In this case, the atomic 
energies from reference13, along with the corrected molecule energy are employed.

In Fig. 8, the MAE for our bond energy is compared with the QMC and CM approaches.
Table 5 compares the bond energy errors for our model and the CM.
Dipole moments are also analyzed using our employed electron density at this work. Our results and experi-

mental data for dipole moments are summarized in Table 6.
As summarized in Table 7, MAE is obtained 0.09 Debye which is comparable to the DFT-based estimations 

and better than CM17.
In contrast to classical mechanics, quantum systems fluctuate around zero-point energy (EZP) even at absolute 

zero temperature. In order to calculate vibration frequencies, the accuracy of EZP should be increased. EZP can 
be calculated using Eq. (31) as18:

where i represent the frequency of a certain molecule and h is the Planck constant. Table 8 provides an overview 
of our findings and the experimental data for EZP.

The MAE of the EZP, as shown in Table 8, is 0.11 kcal/mol, which is comparable to the Chachiyo prediction1. 
In this investigation, the QZP-g basis set was employed.

We compared the errors of zero point energy for our and CM in Table 8.
As a result, in addition to the total energies, our exchange correlation can also reliably predict the dipole 

moment, EB and EZP.
We were curious to see how our exchange functional performed with various organic and solid substances. We 

also achieved satisfactory results for their dipole moment, zero-point energy, and total energy, as Table 9 shows.

(31)EZP =
1

2

∑

hνi ,

Figure 7.   The bond energies mean absolute error (kcal/mol) obtained by our new functional compared to the 
experimental value for (A) molecules containing atoms of the first and second rows of the periodic table and (B) 
molecules containing atoms of the third row of the periodic table.
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Siam-Quantum can be used to compute additional variables, such as molecular vibrations and the related 
normal modes and forces, which were computed for solids. Table 10 presents an overview of the results achieved 
for these parameters.

Conclusion
In this paper, we derive an accurate and straightforward exchange functional that can be applied in the inter-
mediate, slow and fast density variation limits. According to calculations on first, second and third rows of 
periodic table neutral atoms and 56 molecules, our exchange functional accurately predicts the total energy, 
dipole moment, bond and zero point energies. The total energy mean error of our functional is 0.0 for examined 
56 molecules which shows that it concludes more accurate results than other exchange functionals. The mean 
absolute error of the total energy for the mentioned molecules are calculated was obtained 3.9 kcal/mol which 

Figure 8.   The bond energies mean absolute error (kcal/mol) obtained by various models compared to the 
experimental values for (A) molecules containing atoms of the first and second rows of the periodic table and 
(B) molecules containing atoms of the third row of the periodic table.

Table 5.   The comparison of the bond energy errors for our and Chachiyo models. The unit of every energy is 
kcal/mol.

Bond energy error Chachiyo model Chachiyo model with correction Our model Our model with correction

ME (for 56 molecules)  − 1.9  − 1.0  − 1.9 3.9

MAE (for 56 molecules) 4.7 3.5 5.1 0.0

ME (for molecules made up from 
first and second row atoms)  − 0.3  − 0.4 0.0  − 0.4

MAE (for molecules made up from 
first and second row atoms) 4.4 3.2 4.6 3.4



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3226  | https://doi.org/10.1038/s41598-024-53341-4

www.nature.com/scientificreports/

Table 6.   The experimental and our results for zero point energy and dipole moment of molecules. The units 
are in Debye5.

Molecules

EZP Dipole moments

Experimental Our calc (kc/mol) ME Experimental Our calc (Debye) ME

H2 6.2 6.4 0.2 0.0 0.0 0.0

LiH 2.0 2.1 0.1 5.87 5.74  − 0.13

BeH 2.9 3.0 0.1 0.25 0.25 0.0

Li2 0.5 0.5 0.0 0.0 0.0 0.0

CH 4.0 4.1 0.1 1.45 1.42  − 0.03

NH 4.6 4.6 0.0 1.39 1.49 0.1

NH2 11.5 12.0 0.5 1.76 1.76 0.0

OH 5.3 5.5 0.2 1.65 1.62  − 0.03

CH4 27.1 27.2 0.1 0.0 0.0 0.0

H2O 12.9 13.1 0.2 1.85 1.85 0.0

HF 5.9 6.0 0.1 1.82 1.77  − 0.05

NH3 20.6 21.0 0.4 1.47 1.50 0.03

LiF 1.3 1.4 0.1 6.31 6.13  − 0.18

CN 2.9 3.1 0.2 1.14 1.14 0.0

C2H2 15.3 15.3 0.0 0.0 0.0 0.0

CO 3.1 3.1 0.0 0.11 0.19 0.08

HCN 8.7 9.0 0.3 2.98 2.90  − 0.08

N2 3.4 3.6 0.2 0.0 0.0 0.0

HCO 7.8 7.9 0.1 1.39 1.39 0.0

NO 2.7 2.9 0.2 0.16 0.21 0.05

H2CO 16.1 16.1 0.0 2.32 2.19  − 0.13

O2 2.3 2.4 0.1 0.0 0.0 0.0

F2 1.3 1.4 0.1 0.0 0.0 0.0

H2O2  −  16.3  −  1.57 1.72 0.15

CH4O  −  31.7  −  1.69 1.56  − 0.13

N2H4  −  32.6  −  1.75 1.87 0.12

CO2 6.2 6.3 0.1 0.0 0.0 0.0

SiH2 7.2 7.4 0.2 0.26 0.26 0.0

H2S 9.2 9.2 0.0 0.98 1.05 0.07

HCl 4.2 4.3 0.1 1.11 1.13 0.02

PH3 14.6 14.7 0.1 0.57 0.70 0.13

SiH4 19.2 19.2 0.0 0.0 0.0 0.0

CS 1.8 1.9 0.1 1.95 1.93  − 0.02

SiO 1.8 1.8 0.0 3.09 2.83  − 0.26

SO 1.6 1.7 0.1 1.54 1.36  − 0.18

ClO 1.2 1.3 0.1 1.3 1.38 0.08

CH3Cl  −  23.3  −  1.88 1.87  − 0.01

ClF 1.1 1.2 0.1 0.88 0.75  − 0.13

CSH4  −  28.5  −  1.52 1.56 0.04

HOCl 8.0 8.1 0.1 1.40 1.53 0.13

SO2 4.3 4.6 0.3 1.62 1.48  − 0.14

Na2 0.2 0.2 0.0 0.0 0.0 0.0

NaCl 0.5 0.5 0.0 8.99 8.8  − 0.19

Si2 0.7 0.7 0.0 0.0 0.0 0.0

P2 1.1 1.1 0.0 1.1 0.0 0.0

S2 1.0 1.1 0.1 1.0 0.0 0.0

Cl2 0.8 0.8 0.0 0.8 0.0 0.0

MAE 0.11 MAE 0.09

ME 0.11 ME  − 0.02
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is higher than the result of CM calculations but is better than the QMC result. The error of our functional for 
the third row of the periodic table’s atoms was greater than that of the first and second rows’ atoms because of 
the role of core atoms. Our functional results for neutral atoms are comparable to CM as evidenced by its low 
ME and MAE. The MAE for the estimated zero-point energy and dipole moments also confirms the accuracy 
of our new exchange functional.

Table 7.   The comparison of the dipole moment errors for our and Chachiyo models. The unit of every energy 
is kcal/mol.1.

Dipole moment Chachiyo model Chachiyo model with correction Our model Our model with correction

ME  − 0.03  − 0.02

MAE 0.11 0.09

Table 8.   The comparison of the zero point energy errors for our and Chachiyo models. The unit of every 
energy is kcal/mol.1.

Zero point energy Chachiyo model Chachiyo model with correction Our model Our model with correction

ME  − 0.005 0.11

MAE 0.12 0.11

Table 9.   Comparison of three organic and six solid materials’ zero point energy (EZP), dipole moment, and 
total energy19–23. Dashed line shows that experimental value is not available.

Molecules EZP (kcal/mol)
Experimental 
EZP (kcal/mol) EZP error

Dipole moment 
(Debye)

Experimental 
dipole moment

Dipole moment 
error

Total energy 
(Hartree)

Experimental 
total energy 
(Hartree)

Total energy 
error (Kcal/
mol)

Thiadiazole 
(1-3-4 C2H2N2S) 26.80 27.4 [22] 0.6 2.76 1.57 [23] 1.19  − 584.99  − 584.92 [22]  − 43.8

Thiophene 
(C4H4S) 43.90 43.6 [22] 0.3 0.71 0.55 [19, 20] 0.16  − 552.92  − 552.95 [22]  − 20.33

Benzothiazole 
(C7H5NS) 65.34  −   −  1.39 1.46 [19, 20] 0.07  − 714.05  −   − 

BeO 2.05 2.05 [22] 0.0 5.31  −   −   − 89.849  − 89.846 [22] 1.96
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Data availability
All data generated or analyzed during this study are included in this published article. If required, any data are 
available from the corresponding author on reasonable request.
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