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Prediction of linear B‑cell epitopes 
based on protein sequence features 
and BERT embeddings
Fang Liu 1, ChengCheng Yuan 2, Haoqiang Chen 1 & Fei Yang 2*

Linear B-cell epitopes (BCEs) play a key role in the development of peptide vaccines and 
immunodiagnostic reagents. Therefore, the accurate identification of linear BCEs is of great 
importance in the prevention of infectious diseases and the diagnosis of related diseases. The 
experimental methods used to identify BCEs are both expensive and time-consuming and they do not 
meet the demand for identification of large-scale protein sequence data. As a result, there is a need 
to develop an efficient and accurate computational method to rapidly identify linear BCE sequences. 
In this work, we developed the new linear BCE prediction method LBCE-BERT. This method is based 
on peptide chain sequence information and natural language model BERT embedding information, 
using an XGBoost classifier. The models were trained on three benchmark datasets. The model was 
training on three benchmark datasets for hyperparameter selection and was subsequently evaluated 
on several test datasets. The result indicate that our proposed method outperforms others in terms 
of AUROC and accuracy. The LBCE-BERT model is publicly available at: https://​github.​com/​Lfang​111/​
LBCE-​BERT.

B cells, also known as B lymphocytes, play an extremely important role in the mammalian immune response. 
They differentiate into plasma cells in response to antigenic stimulation by bacteria and viruses, producing anti-
bodies to combat bacterial and viral infections1. The fragment of the antigen molecule that specifically binds to 
the B-cell surface receptor or antibody is called the B-cell epitope (BCE)2. B-cell epitopes can either be consecu-
tive amino acid residues in the antigen protein sequence, known as linear epitopes, or they can be discontinuous 
amino acid residues that interact with each other to fold the protein sequence into a three-dimensional confor-
mational structure, known as conformational epitopes3,4.

The identification of BCE has greatly contributed to the development of biomedicine, for example, in the 
overall understanding of immune response mechanisms with respect to the design and development of rel-
evant vaccines5,6. Experimental methods for identifying BCEs in the field of biology include X-ray crystallog-
raphy, cryo-EM, nuclear magnetic resonance, hydrogen–deuterium exchange coupled to mass spectroscopy, 
and peptide-based approaches, etc.7 However, these methods are generally expensive, time-consuming, and 
labour-intensive8. The volume of biological data has grown rapidly in recent years and traditional experimental 
methods can no longer cope with such a large volume of data. Therefore, there is need to develop sequence-based 
computational methods to identify potential BCEs quickly and accurately9. Various computational methods have 
been published for predicting conformational or linear BCEs. Although 90% of these BCEs are for conformational 
epitopes and only 10% are for linear BCEs, linear BCEs have remained a focus of research in recent years10,11.

Early prediction methods for BCE, such as Antigenic12, PEOPLE13, BEPITOPE14, and BcePred15, only utilized 
the physicochemical properties of amino acids. With the development of computer technology, researchers 
have combined these methods with machine learning techniques to construct models that incorporate multi-
ple physicochemical properties of proteins, resulting in new prediction methods. For example, the BepiPred16 
predictor utilises a combined approach that incorporates the amino acid propensity scale and hidden Markov 
models (HMM). Chen et al.17 refined the single amino acid propensity scale by creating the Amino Acid Pairs 
(AAP) antigenicity scale. Experiments based on a support vector machine (SVM) classifier showed that the AAP 
antigenicity scale approach outperformed other methods in BCE prediction. As a result, a new BCE predictor, 
AAPPred, was developed18. Among the various machine learning models that have been developed to predict 
BCE, SVM has emerged as the dominant model. Many researchers have used this model to train BCE predic-
tors based on different datasets that combine a variety of amino acid features, such as BCPred19, FBCPred20, 
COBEpro21, SVMTrip22, LBtope23, IgPred24, APCpred25, and EpitopVec26. BepiPred-2.04 and iLBE27 are other 
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machine learning models that have been used to predict BCE. Both models use random forest(RF) for epistasis 
classification, while iBCE-EL9 uses extraordinarily randomized tree(ERT) for model training. Sahu T K et al.28 
focused on evaluating 18 coding methods based on SVM and RF. In addition to traditional machine learning 
models, deep learning models have also been applied to BCE classification. For example, the predictor ABCpred29, 
developed in 2006, used a recurrent neural network(RNN). DLBEpitope30 and EpiDope31 which used feedforward 
neural network(FNN) and deep neural networks (DNN) training, respectively.

This study proposes a new method, LBCE-BERT, for predicting linear BCEs. The method combines tradi-
tional amino acid residue features, sequence features, and the semantics of the BERT (Bidirectional Encoder 
Representation from Transformers) model used in natural language processing embedding to form an optimal 
feature set. The effectiveness of the method was validated on multiple datasets.

Materials and method
This study involved collecting datasets, extracting of protein sequence information and converting it into matrix 
information, and inputting the acquired matrix information into a machine learning model for training and 
hyperparameter optimization. Furthermore, the method was compared with existing approaches. The experi-
mental structure of this work is shown in Fig. 1.

Benchmark datasets
Most of the datasets used in the BCE predictors developed to date have been obtained from the Immune Epitope 
Database (IEDB)32 or the Bcipep33 database, where the data have been experimentally demonstrated. We collected 
the main benchmark datasets used by existing prediction models. Among them, the early proposed ABCPred29, 
Chen17 and BCPreds19 methods all collect data from the Bcipep database and construct their respective bench-
mark datasets. Other methods proposed subsequently, such as SVMTrip34, iBCE-EL9, BepiPred2.04, DLBEpitope30 
and EpiDope31, use data collected from IEDB. To ensure a fair and comprehensive comparison with previous 
methods, we used the benchmark datasets shown in Table 1. The dataset of ABCPred, Chen and BCPreds are 
all from the Bcipep database and the sequence length is fixed. Whereas the data of LBtope and iBCE-EL are all 
from the IEDB database and only the sequence length of LBtope is fixed. Therefore, we choose BCPreds, LBtope 
and iBCE-EL_training as the training dataset and the other datasets as the independent test set, respectively.

BCPreds dataset
The BCPreds dataset was created by El-Manzalawy et al.19. First, sequence data for the B-cell epitopes were 
collected from the Bcipep database. Amino acid residues were then added or deleted at the ends of the original 

Figure 1.   Overall flow of analysis in the present study. AAC: amino acid composition; AAP: amino acid pair 
scale; AAT: amino acid trimer scale; BERT: embeddings extracted from Bidirectional Encoder Representations 
from Transformers; Pre: precision; Sn: sensitivity; ACC: accuracy; MCC: Matthews correlation coefficient; F1: 
F1 score; and AUROC: area under the receiver operating characteristic (ROC) curve;
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sequences so that each peptide chain was 20 amino acid residues in length. Next, 80% sequence identity was 
used as the threshold and duplicate or highly homologous sequences were removed using CD-HIT, leaving 701 
epitope sequences as the final positive samples. The same number of non-epitope sequences of the same length 
were then obtained from Swiss-Prot35 as negative samples.

LBtope dataset
The LBtope dataset was one of the first datasets to obtain BCEs from the IEDB database, with five datasets cre-
ated by Singh et al.23. In this work we have only used the ‘Lbtope_Fixed_non_redundant’ dataset, which uses the 
same data processing techniques as the BCPreds dataset.

iBCE‑EL dataset
The iBCE-EL dataset was collected from the IEDB database. This dataset only includes sequence data that have 
been experimentally proven to be BCE epitopes twice or more. The original sequence length is maintained, and 
CD-HIT is used with a set threshold of 70% to reduce sequence homology. Unlike LBtope, the dataset does not 
add or subtract from the original sequence length.

Feature representation of peptides
Amino acid composition
Amino acid composition (AAC)26 is a representation of the frequency of occurrence of each amino acid in a 
segment of a peptide chain, which can be expressed as

where fi = Ri
N  ( i = 1, 2, 3, . . . , 20 ) refers to the proportion of this amino acid in this peptide chain, Ri refers to 

the i th amino acid and N refers to the length of this peptide chain.

Amino acid pair antigenicity scale
The Amino Acid Pair (AAP) antigenicity scale was first proposed and used by Chen et al.17. First, the ratio of the 
frequency of occurrence of amino acid pairs in positive samples to the frequency of occurrence of amino acid 
pairs in negative samples was calculated, and the resulting ratio was logarithmically normalised to [− 1, 1]. Posi-
tive samples were obtained from the Bcipep database and negative samples were obtained from the Swiss-Prot36 
database, where negative samples were selected for all protein sequence information in the database except for 
B-cell epitope sequences. AAP antigenicity scale is calculated as

where f +AAP and f −AAP are the occurrences of specific dipeptides in BCEs and non-BCEs, respectively.

Amino acid trimer antigenicity scale
The Amino Acid Trimer (AAT) antigenicity scale was first used by researchers in SVMTrip34 and is similar to 
the AAP antigenicity scale, except that it targets amino acid trimers rather than amino acid pairs and results are 
also normalised to [− 1,1] on the propensity scale. The AAT antigenicity scale is calculated as

where f +AAT and f −AAT are the occurrences of specific tripeptide in BCEs and non-BCEs, respectively.

Sequence embeddings of BERT
The BERT (bidirectional encoder representations from transformers) model proposed by Devlin et al.37, has 
gained significant recognition in the field of natural language processing due to its exceptional performance. As 
a result, it has been widely adopted across various domains, including bioinformatics. For example, Qiao et al.38 
developed BERT-Kcr, a predictor for identifying protein lysine crotonylation sites use the BERT model. Similary 

(1)FAAC =
(

f1, f2, f3, . . . , f20
)

(2)RAAP = log
(

f +AAP
f −AAP

)

(3)RAAT = log
(

f +AAT
f −AAT

)

Table 1.   The dataset used in the benchmarking of our method.

Dataset Epitopes Non-epitopes Length Homology cut-off value(%) Source dataset

ABCPred 700 700 16 No Bcipep

Chen 872 872 20 No Bcipep

BCPreds 701 701 20 80 Bcipep

Blind387 187 200 15–75 No Various

Lbtope 7824 7853 20 80 IEDB

iBCE-EL
training 4440 5485 5–25 70

IEDB
independent 1110 1408 5–25 70
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Liu et al.39 created BERT-Kgly, a novel predictor for lysine glycosylation sites by combining features extracted 
from a pre-trained protein language BERT model with a deep learning model.

BERT focuses on using a new masked language model (MLM) to train a bidirectional transformer for creating 
deep bidirectional language representations. The coding layer of this mechanism uses a multi-head self-attention 
approach to process both left and right contexts simultaneously, allowing for parallel processing of all words in 
a sentence. The attention mechanism is based on three main concepts: Query (the target word, or the annotated 
word to be generated), Value (the original Value representation of each word in the context), and Key (the Key 
vector representation of each word in the context). In the multi-headed self-attentive mechanism, it first uses h 
linear transformations with different parameters to project Query, Value and Key, followed by inputting each of 
the transformed h sets of vectors to the self-attentive layer. After the self-attentive layer, the model obtains differ-
ent attentional results. These results are then combined to create an information representation of the different 
subspaces. The main calculation procedure is shown in the following equation:

where Q, K, V represent the three vectors Query, Key, Value. dk is the dimension of Key, and WQ
i  , WV

i  , WV
i  and 

WO are parameter matrices40. When a sentence is fed into the BERT model, the input vector for each word con-
sists of three components: token embedding, segment embedding and position embedding. Where the token 
embedding represents each word present in the dictionary, encoded based on a different partitioning method. 
The fragment embedding indicates whether the word belongs to the first or second half of the sentence. The for-
mula for encoding the positional embedding, which represents the position of a word in a sentence, is as follows:

where pos is the position, i is the component position of the vector dmodel represents the dimension of the vector37. 
Then, context-dependent features can be obtained from various encoder layers of the model.

Machine learning methods
The XGBoost (eXtreme Gradient Boosting)41 classifier was used in this study to build the model. It is based on a 
modification of the gradient boosting decision tree (GBDT)42. This classifier is a modified version of the gradi-
ent boosting decision tree (GBDT), which combines multiple regression trees to predict values that are as close 
to the true values as possible and have strong generalisation power. The model has two main advantages: it is 
regularised to prevent overfitting and supports parallelisation, which can greatly speed up training.

Evaluation metrics
This study employed five commonly used evaluation metrics to assess the model: accuracy (ACC), precision (Pre), 
sensitivity (Sn), F1 score (F1) and Matthews correlation coefficient (MCC). Additionally, we also calculated the 
receiver operating characteristic (ROC) curve and calculated the area under the receiver operating characteristic 
(ROC) curve (AUROC).

where TP, TN, FP and FN signify the numbers of true positives, true negatives, false positives and false nega-
tives, respectively.

(4)MultiHead(Q,K, V) = Concat(head1, · · · , headh)WO

(5)headi = Attention
(

QW
Q
i , KW

K
i , VW

V
i

)

(6)Attention(Q,K, V) = softmax

(

QKT
√

dk

)

V

(7)PE(pos,2i) = sin

(

pos

10000
2i

dmodel

)

(8)PE(pos,2i+1) = cos

(

pos

10000
2i

dmodel

)

(9)Sn = TP
TP+FN

(10)Pre = TP
TP+FP

(11)ACC = TP+TN
TP+TN+FP+FN

(12)F1 = 2TP
2TP+FP+FN

(13)MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Results
Sequence discrepancy between positive and negative samples in the benchmark dataset
We developed a machine learning method based on peptide sequence information to distinguish between BCEs 
and non-BCEs. The assumption of different sequence patterns for positive and negative samples was taken 
into account. For overall pattern differences, we visualized them by two sample markers, the distribution and 
preference of epitope and non-epitope residues43. Figure 2 illustrates that residue P is significantly enriched in 
several positions in the positive samples, while residues T, G, and D are enriched to varying degrees. In contrast, 
residue L is significantly depleted in several positions in the negative samples, along with residues I and F. The 
overall enrichment or depletion rate for specific sequential positions was 9.4%. Figure 3 shows an enrichment 
or depletion ratio of 6.9% for specific sequence positions in the benchmark dataset LBtope. Residues P and Q 
are enriched to a higher degree in positive samples, while residues L, V, and A are depleted to a higher degree in 
negative samples. It is worth noting that the sum of the enrichment and depletion rates of the different residues 
at each position implies a difference between the positive and negative samples at that position.

Model based on embeddings of pretrained BERT models
In this work, we directly used the BERT pre-training model constructed by Zhang et al.44 based on 556,603 
protein sequences to encode peptide chain sequences and extract their embeddings of tokens as features. To 
experiment the effectiveness of this feature encoding approach, we extracted the embedding of the marker ‘CLS’ 
and the average embedding of all amino acids in the entire peptide chain as features from the epitope and non-
epitope sequences in the BCPreds, iBCE-EL_training and LBtope datasets, respectively. The ‘CLS’ is always the 
first token of each classification sequence, as described in Devlin et al.45. Next, we built a model to predict linear 
BCE using the XGBoost classifier and trained it with various features. Table 2 shows the results of the five-fold 
cross-validation of the different models. The results show that the model trained with the embedding of the 
token ‘CLS’ consistently outperforms the model trained with the average embedding of all amino acids in the 
entire peptide chain, regardless of which dataset the model is trained on in BCPreds, iBCE-EL_training and 
LBtope. Therefore, in the next work, we will only use the embedding of the token ‘CLS’ from the protein BERT 
pre-training model as features for our experiments. The experimental results based on the BCPreds dataset were 
optimal in the above three datasets, and the combination of using embedding of the token ‘CLS’ as a feature to 
train the model achieved an AUC value of 0.693 and an ACC value of 0.629 for the five-fold cross-validation. 
Using the average embedding of all amino acids as a feature, the model achieved a five-fold cross-validation AUC 
value of 0.671 and an ACC value of 0.619.

Figure 2.   Overall sequence pattern discrepancy between positive and native samples illustrated by Two Sample 
Logo43 in the benchmark dataset BCPreds.

Figure 3.   Overall sequence pattern discrepancy between positive and native samples illustrated by Two Sample 
Logo43 in the benchmark dataset LBtope.
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Evaluate model performance based on different datasets
The AAC, AAP, AAT and embedding are combined with the token ‘CLS’ in the protein BERT pre-training model. 
This is then input into XGBoost for training to find hyperparameters. It is important to note that although 
variable-length linear BCEs exist in these datasets, these four feature representations enable the extraction of 
variable-length linear BCEs as fixed-dimension matrix information. As a result, the variable-length linear BCE 
does not affect the training model. We trained three different BCE prediction models using BCPreds, LBtope, 
and iBCE-EL_training datasets. These models are labelled LBCE-BERT(BCPreds), LBCE-BERT(LBtope) and 
LBCE-BERT(iECB-EL). To evaluate the model’s performance, we performed a five-fold cross-validation and 
independent dataset validation based on seven different datasets (BCPreds dataset, Chen dataset, ABCPred 
dataset, Blind387 dataset, LBtope dataset, iBCE-EL_training dataset, iBCE-EL_independent dataset), where 
the evaluation metrics for models are calculated as shown in section “Evaluation metrics”. The following are the 
results and correlation analysis of the five-fold cross-validation of the three models.

To observe the test performance of model strained on BCPreds, LBtope, and iBCE-EL_training on other 
datasets. We plotted AUROC curves for BCPreds, Chen, ABCPred, Blind387, LBtope, iBCE-EL_training, and 
iBCE-EL_independent for their performance on the three models are shown in Figs. S1–S7, respectively.

Evaluation of model LBCE‑BERT(BCPreds)
Table 3 shows that our proposed method, based on the BCPreds dataset with five-fold cross-validation, has an 
AUROC of 0.924. This is a 3% improvement over the EpitopVec model, which was also trained on the same data-
set. We then tested this model on other datasets and found that it performed well in both Chen and ABCPred. As 
shown in Table 4, our method achieves a higher AUROC of 0.990 on the Chen dataset compared to EpitopVec 
(the current optimal method) which achieved 0.959. Additionally, our method has an ACC of 0.941, represent-
ing a 21.6% improvement over the original method. On the Chen dataset, the models’ prediction accuracy 
ranged from 0.494 to 0.941, the lowest performing methods were iBCE-EL and LBtope, with ACC values of 
0.494 and 0.533, respectively. In the ABCPred dataset (Table 5), the accuracy of the original method (ABCPred) 
is only 0.6593, which is lower than that of AAP(0.7314), BCPreds(0.7457), and EpitopVec(0.856). Additionally, 
LBCE-BERT(BCPreds) has the highest AUROC value of 0.934 among all methods, indicating that our model’s 

Table 2.   Cross-validation results based on two kinds of BERT embedding. a ‘avg’ means the average of the 
embeddings of residues in the epitope.

Tokena Pre Sn F1 ACC​ MCC AUROC

BCPreds
‘CLS’ 0.634 0.611 0.622 0.629 0.259 0.693

‘avg’ 0.624 0.601 0.612 0.619 0.238 0.671

iBCE-EL_training
‘CLS’ 0.593 0.450 0.511 0.615 0.210 0.643

‘avg’ 0.587 0.440 0.503 0.610 0.199 0.638

LBtope
‘CLS’ 0.566 0.540 0.552 0.565 0.128 0.589

‘avg’ 0.548 0.530 0.538 0.548 0.094 0.571

Table 3.   Multi-method prediction results on the BCPreds dataset. a To facilitate understanding, the highest 
value in each dataset is shown in bold. The methods shown in bold are those proposed in this work. b Blank 
cells indicate that the indicator scores reported in the original publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

ABCPred 0.643

AAP 0.6405 0.7

BCPreds 0.73 0.360 0.679 0.758

LBtope 0.5157

iBCE-EL 0.49 0.97 0.33 − 0.009 0.4871 0.576

EpitopeVec
(BCPreds) 0.808 0.807 0.807 0.618 0.808 0.894

EpitopeVec
(LBtope) 0.559 0.692 0.619 0.151 0.573 0.645

EpitopeVec
(iECB-EL) 0.574 0.572 0.573 0.148 0.574 0.602

LBCE-BERT
(BCPreds) 0.872 0.820 0.844 0.701 0.850 0.924

LBCE-BERT
(LBtope) 0.664 0.482 0.559 0.248 0.619 0.641

LBCE-BERT
(iECB-EL) 0.619 0.534 0.573 0.207 0.603 0.643
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performance is stable and efficient. The Blind387 dataset was also tested, and the results are shown in Table 6. This 
dataset consist of epitopes derived from viruses and was obtained from published literature. Our model’s per-
formance on this dataset was mediocrely, with an ACC of 0.705, which is 4.1% higher than the original method 
used to build the dataset but slightly lower than the optimal method, EpitopVec. Similarly, the AUROC value of 
0.757 is only 2.2% lower than the optimal method. Chen, ABCPred, LBtope and iBCE-EL are some of the earlier 
methods for obtaining BCE datasets using the IEDB database, compared to BCPreds. According to the results 
in Table 7, LBCE-BERT(BCPreds), BCPreds, iBCE-EL, and EpitopVec(BCPreds) have similar accuracy on the 
LBtope dataset. However, on the training and independent test sets of iBCE-EL (Table 8), EpitopVec(BCPreds) 
slightly outperformed LBCE-BERT(BCPreds).

Evaluation of model LBCE‑BERT(LBtope)
Table 7 shows the results of the five-fold cross-validation based on the LBtope dataset. The model trained on this 
dataset performs slightly worse. On the BCPreds dataset (Table 3), the AUROC values for LBCE-BERT(LBtope), 
EpitopVec(LBtope), and ABCPred were 0.641, 0.645, and 0.643, respectively. The ACC values for LBtope and 
iBCE-EL were 0.5157 and 0.4871, respectively. In the Chen dataset (Table 4), our model is the second-best 
performing method, following the original proposed method. The lowest performing method is iBCE-EL, with 
an accuracy of only 0.494. LBCE-BERT(LBtope) did not perform well in both ABCPreds and Blind387, with 

Table 4.   Multi-method prediction results on the Chen dataset. a To facilitate understanding, the highest value 
in each dataset is shown in bold. The methods shown in bold are those proposed in this work. b Blank cells 
indicate that the indicator scores reported in the original publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

AAP 0.61 0.366 0.7109 0.7

AAP + scales 0.64 0.404 0.7254

LBtope 0.5333

iBCE-EL 0.5 0.96 0.35 − 0.036 0.494 0.528

EpitopeVec
(BCPreds) 0.849 0.932 0.889 0.770 0.883 0.959

EpitopeVec
(LBtope) 0.563 0.714 0.630 0.167 0.580 0.658

EpitopeVec
(iECB-EL) 0.573 0.567 0.570 0.145 0.572 0.591

LBCE-BERT
(BCPreds) 0.911 0.977 0.943 0.884 0.941 0.990

LBCE-BERT
(LBtope) 0.650 0.460 0.539 0.222 0.606 0.639

LBCE-BERT
(iECB-EL) 0.598 0.525 0.559 0.173 0.586 0.616

Table 5.   Multi-method prediction results on the ABCPred dataset. a To facilitate understanding, the highest 
value in each dataset is shown in bold. The methods shown in bold are those proposed in this work. b Blank 
cells indicate that the indicator scores reported in the original publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

ABCPred 0.67 0.466 0.6593

AAP 0.50 0.518 0.7314 0.782

BCPreds 0.70 0.493 0.7457 0.801

LBtope 0.5790

iBCE-EL 0.51 0.96 0.42 0.112 0.527 0.588

EpitopeVec
(BCPreds) 0.836 0.884 0.860 0.713 0.856 0.928

EpitopeVec
(LBtope) 0.612 0.766 0.680 0.289 0.640 0.719

EpitopeVec
(iECB-EL) 0.686 0.353 0.466 0.219 0.596 0.615

LBCE-BERT
(BCPreds) 0.873 0.886 0.879 0.757 0.879 0.934

LBCE-BERT
(LBtope) 0.637 0.454 0.530 0.204 0.598 0.617

LBCE-BERT
(iECB-EL) 0.619 0.520 0.565 0.203 0.600 0.625
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AUROC values of 0.617 and 0.656 on these two datasets, respectively. Additionally, based on the LBtope data-
set, LBCE-BERT (LBtope) achieved an AUROC of 0.733 and an ACC of 0.671. Other methods achieved ACC 
values ranging from 52.2 to 69%. Furthermore, as shown in Fig. 3, our model’s accuracy was slightly higher than 
EpitopVec(LBtope) but lower than the original method on both the training and independent test sets of iBCE-
EL. However, our model’s AUROC was the lowest among the three models.

Evaluation of model LBCE‑BERT(iBCE‑EL)
In the five-fold cross-validation of our model based on the iBCE-EL training set, Table 8 shows that the AUROC 
value of 0.820 is 2.7% higher than the current optimal model EpitopeVec of 0.793. The original method present-
ing this data is only 0.782, proving that our method LBCE-BERT(iBCE-EL) is the current optimal model. In the 
iBCE-EL independent test set, the original method (iBCE-EL) achieved an AUROC of 0.786. EpitopeVec(iBCE-
EL) achieved an AUROC of 0.785, while LBCE-BERT(iBCE-EL) achieved an AUROC of 0.828 and an ACC 
of 0.757. These results suggest that LBCE-BERT(iBCE-EL) has better generalisation ability. This model was 
also evaluated on other datasets. The results of LBCE-BERT (iBCE-EL) on each dataset BCPreds (Table 3), 
Chen (Table 4), ABCPred (Table 5), Blind387 (Table 6) and LBtope (Table 7), showed little various, with only 
a 0.017 different in ACC values and a 0.027 different in AUROC values. LBCE-BERT (iBCE-EL) achieved an 
ACC of 0.603 in the BCPreds dataset, 0.586 in Chen and 0.586 in ABCPred. In Blind387, LBCE-BERT (iBCE-
EL) achieved an ACC value of 0.589, which is only better than the iBCE-EL method’s ACC of 0.434. Other 
methods, such as ABCPred(0.6641), AAP(0.6460), BCPreds(0.6589) and EpitopeVec(0.693), outperformed 

Table 6.   Multi-method prediction results on the Blind387 dataset. a To facilitate understanding, the highest 
value in each dataset is shown in bold. b Blank cells indicate that the indicator scores reported in the original 
publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

ABCPred 0.72 0.6641

AAP 0.64 0.292 0.6460 0.689

BCPreds 0.66 0.318 0.6589 0.699

iBCE-EL 0.44 0.84 0.32 − 0.227 0.434 0.501

EpitopeVec
(BCPreds) 0.759 0.588 0.663 0.427 0.711 0.779

EpitopeVec
(LBtope) 0.591 0.834 0.692 0.316 0.641 0.755

EpitopeVec
(iECB-EL) 0.733 0.572 0.643 0.389 0.693 0.726

LBCE-BERT
(BCPreds) 0.759 0.572 0.652 0.418 0.705 0.757

LBCE-BERT
(LBtope) 0.618 0.519 0.564 0.223 0.612 0.656

LBCE-BERT
(iECB-EL) 0.583 0.524 0.552 0.175 0.589 0.626

Table 7.   Multi-method prediction results on the LBtope dataset. a To facilitate understanding, the highest 
value in each dataset is shown in bold. The methods shown in bold are those proposed in this work. b Blank 
cells indicate that the indicator scores reported in the original publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

BCPreds 0.5256

LBtope 0.6486 0.69

iBCE-EL 0.51 0.99 0.39 0.135 0.522 0.619

EpitopeVec
(BCPreds) 0.546 0.286 0.376 0.056 0.525 0.538

EpitopeVec
(LBtope) 0.684 0.705 0.694 0.381 0.690 0.755

EpitopeVec
(iECB-EL) 0.567 0.613 0.589 0.147 0.573 0.603

LBCE-BERT
(BCPreds) 0.555 0.208 0.302 0.054 0.522 0.547

LBCE-BERT
(LBtope) 0.665 0.686 0.675 0.342 0.671 0.733

LBCE-BERT
(iECB-EL) 0.589 0.624 0.606 0.190 0.595 0.633
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LBCE-BERT(iBCE-EL). On the LBtope dataset, our model achieved an ACC of 0.595, which is higher than 
BCPreds(0.5256), iBCE-EL(0.522) and EpitopeVec(0.573).

Discussion and conclusions
In this study, we developed the LBCE-BERT method, a machine learning approach for predicting linear BCEs 
based on amino acid sequence features and the protein language model BERT embedding, and achieved good 
performance. The accurate prediction of linear BCEs using this method provides valuable insights for applications 
in biotechnology, such as the treatment and prevention of infectious diseases. We trained three different models 
based on the BCPreds, LBtope and iBCE-EL datasets respectively, and compared various methods, including 
the original method used to propose these datasets and the current optimal method for predicting BCE. The 
experimental results showed that the LBCE-BERT (BCPreds) and LBCE-BERT (iBCE-EL) models performed 
better than other models. However, the LBCE-BERT (LBtope) model performed slightly worse than EpitopVec. 
The difficult to classify sequences in the LBtope data set can be seen in the sequence analysis, showing lower 
overall enriched or depleted ratios for specific sequential positions compared to the BCPreds dataset. In contrast, 
the LBCE-BERT (iBCE-EL) achieves better performance on the dataset iBCE-EL, which is obtained from the 
same IEDB database as the dataset LBtope. This may be due to the original sequence being altered during addi-
tion or deletion processing, which can result in the loss of sequence information regarding the table position.

Furthermore, our model exhibited exceptional performance when validated with other datasets, indicat-
ing its strong generalization capability. However, during cross-validation on several datasets, all of which were 
derived from the Bcipep database, we observed a significant decrease in the predictive performance of one 
class of models. These models were primarily trained on datasets derived from the IEDB database. Similarly, 
when cross-validating on multiple datasets obtained from the IEDB database, we obtained the same results for 
models trained on datasets derived from the Bcipep database. These findings indicate that models trained on 
datasets from the same database may exhibit similarities. Therefore, it is important to diversify training sets for 
computational methods.

In conclusion, this study presents the LBCE-BERT method, which effectively predicts linear BCEs, and dem-
onstrates its robust performance across multiple datasets. These findings contribute to the field of BCE prediction 
and offer valuable insights for future research in this area.

Data availability
All datasets and source codes of LBCE-XGB are publicly available on https://​github.​com/​Lfang​111/​LBCE-​BERT.
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Table 8.   Multi-method prediction results on the iECB-EL dataset. a To facilitate understanding, the highest 
value in each dataset is shown in bold. The methods shown in bold are those proposed in this work. b Blank 
cells indicate that the indicator scores reported in the original publication do not exist.

Methoda Preb Snb F1b MCCb ACC​b AUROCb

iECB-EL training dataset

iBCE-EL 0.716 0.454 0.729 0.782

EpitopeVec
(BCPreds) 0.512 0.263 0.347 0.071 0.558 0.551

EpitopeVec
(LBtope) 0.551 0.746 0.634 0.259 0.615 0.715

EpitopeVec
(iECB-EL) 0.698 0.644 0.669 0.422 0.715 0.793

LBCE-BERT
(BCPreds) 0.507 0.240 0.325 0.062 0.556 0.540

LBCE-BERT
(LBtope) 0.586 0.563 0.575 0.243 0.627 0.667

LBCE-BERT
(iECB-EL) 0.716 0.710 0.713 0.482 0.744 0.820

iECB-EL independent dataset

iBCE-EL 0.66 0.79 0.73 0.454 0.734 0.786

EpitopeVec
(BCPreds) 0.519 0.250 0.338 0.082 0.567 0.566

EpitopeVec
(LBtope) 0.558 0.769 0.647 0.294 0.630 0.742

EpitopeVec
(iECB-EL) 0.682 0.647 0.664 0.412 0.711 0.785

LBCE-BERT
(BCPreds) 0.514 0.234 0.322 0.074 0.565 0.545

LBCE-BERT
(LBtope) 0.599 0.595 0.597 0.282 0.646 0.706

LBCE-BERT
(iECB-EL) 0.722 0.731 0.726 0.508 0.757 0.828

https://github.com/Lfang111/LBCE-BERT
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