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Techno‑economic optimization 
for isolated hybrid PV/wind/
battery/diesel generator microgrid 
using improved salp swarm 
algorithm
Zakaria Belboul 1, Belgacem Toual 1,2, Abderrahman Bensalem 1, Chaouki Ghenai 3,4, 
Baseem Khan 5* & Salah Kamel 6

The main objective of this study is to develop a new method for solving the techno-economic 
optimization problem of an isolated microgrid powered by renewable energy sources like solar panels, 
wind turbines, batteries, and diesel generators while minimizing greenhouse gas emissions. An 
Improved Salp Swarm Algorithm (ISSA) with a position adaptation mechanism for the salp leader that 
involves a leader salp that moves about depending on both food availability and its previous position 
has been proposed to overcome the convergence problem. In the original SSA, as the approach 
converges, it can no longer find optimal solutions and becomes trapped in a local minimum. Three 
Microgrid System (MS) configurations are discussed: PV/WT/BESU/DG, PV/BESU/DG, and WT/BESU/
DG. The proposed method seeks to find a middle ground between technical criteria and environmental 
concerns when deciding on PV, WT, BESU, and DG sizes. The findings indicate that the proposed ISSA 
approach gives superior results compared to other well-known algorithms like the original SSA, the 
Ant Lion Optimizer (ALO), the Dragonfly Approach (DA), and the Moth-Flame Optimization Algorithm 
(MFO), which, after significant investigation, has been proven to help determine the appropriate 
microgrid size. With PV sizes of 10, 9 WT, 24 BESU, and 3 DG, the PV/WT/BESU/DG configuration 
offers the highest level of cost-effectiveness with Cost of Energy (COE) of 0.2109 $/kWh, Net Present 
Cost (NPC) of 376,063.8 $, Loss of Power Supply Probability (LPSP) of 4%, Renewable Energy Fraction 
(REF) of 96%, and CO2 emission of 12.4457 tons/year. ISSA is brought up as a possible solution to both 
the problem of rising energy prices and the difficulties inherent in microgrid design.

Energy conservation and efficiency are prerequisites for the continuous development of civilization. They are 
essential for maintaining body heat, preparing food, and providing illumination. They are also necessary for 
modern transportation, communication, healthcare, and industrial systems. Energy availability is essential 
for a prosperous economy and improving living standards. In addition, energy is a crucial component in the 
development and transmission of cutting-edge technologies that have the potential to address urgent issues on 
a worldwide scale, such as poverty, starvation, and damage to the natural environment1.

Energy plays a crucial role in our lives, but conventional energy systems have become a cause of concern 
due to the depletion of fossil fuels, climate change, and global warming. Renewable Energy Sources (RES) have 
been developed as a sustainable and eco-friendly alternative to traditional systems. Examples of RES include 
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solar, geothermal, wind, hydroelectric, and biomass, which have the potential to provide reliable and sustainable 
power in the future2.

Despite significant advances in RES, rural villages and islands still deal with power shortages. As per the 
United Nations Development Program (UNDP), over 25% of the global population currently lacks access to 
electricity. This is especially true for individuals who reside in rural areas. Because of their remote location 
and the difficulty of developing electrical transmission lines across rugged terrain (such as steep hills or thick 
jungles), rural populations are frequently unable to afford them. Wind, solar, and hydropower are all examples 
of renewable resources that may be used to meet the electrical loads in these areas3.

The fact that wind and solar energy are not constant sources of power throughout the day is the primary 
challenge presented by the utilization of such systems for the generation of electricity. Using backup systems 
like Battery Energy Storage Unit (BESU) and Diesel Generator (DG) is necessary due to the unpredictability of 
wind and solar power and the inability of power production to adjust to low and extremely high energy demand 
circumstances4. To make up for their intermittent nature, it is essential to implement some energy storage system5. 
This kind of periodic balancing can be done with the help of technologies that store energy, like BESU6. DG plays 
a crucial role as a backup power source to preserve the system’s stability, particularly under changing loads and 
rapidly rising power consumption, as well as when the BESU is low7.

Hybrid Renewable Energy System (HRES) combines different techniques of energy production and storage, 
or it powers a generator with two or more fuel types. HRES are critical in the move away from economies reliant 
on fossil fuels. HRES has many benefits, such as more renewable energy that can be used immediately and better 
access to power in rural areas. They also reduce the amount of energy that comes from fossil fuels and use more 
RES, even those that don’t work all the time, which improves energy efficiency and security8.

The most practical and affordable alternative for powering off-grid regions is to use renewable energy to 
create MSs, which improve energy supply9. Every MS is made up of distributed energy sources (such as PV, 
biomass, WT, and fuel cells), distributed energy storage units (such as BESU, supercapacitors, flywheels, and 
superconducting inductors), and a central control unit. Energy storage technologies are needed to use extra 
power or compensate for power shortages10. Also, static converters like DC/DC, AC/DC, and DC/AC converters 
help manage energy and voltage adaptation across the various parts of an MS to make it more reliable and 
cost-effective.

Autonomous microgrids powered by renewable energy are the most practical and cost-effective way to bring 
electricity to off-grid areas11. Considering the technical and economic perspectives, many things make it hard 
to plan and make the optimal design for such a system. The fact that RES are so weather-dependent makes them 
unpredictable. In many cases, the size of a microgrid is either too large or too small to provide for the needed 
load adequately. Excessive system size results in high yearly operating costs and surplus energy production. 
The opposite is true for undersized MSs, which cannot meet power demand.Microgrids run by renewable 
energy sources may be advantageous, but this is only the case if their dimensions are optimized. Their energy 
is controlled efficiently11.

Microgrid size has been the focus of discussion in several published studies. Earlier efforts to find the 
appropriate size can be broken down into three categories12. Software tools from the first category, including 
HOMER Pro, HOMER, HOGA, PVSYST, RAPSIM, and IHOGA, were used to improve the design of MSs13. 
Although easy to use, this category has the disadvantage that users cannot easily choose the best system 
components. Moreover, users cannot see or access the computations and algorithms14. Deterministic approaches, 
including iterative, analytical, numerical, graphical construction, etc.15, are included in the second category. While 
straightforward, these approaches take a long time to simulate since all system components are scrutinized15. The 
third category is made up of bio-inspired heuristic or metaheuristic algorithms that have been used successfully 
in many hybrid microgrids to make them more efficient technically and financially16.

Size, design, investment, operation, and stability of energy systems, as well as dynamic control, are all examples 
of complex issues in the energy sector that can be solved with a variety of methods that have been developed 
through research into artificial intelligence (AI) technologies and that were once thought to be impossible to solve 
without several simplified assumptions17. A branch of AI called “metaheuristic” or “heuristic optimization” uses 
appropriate computational changes to natural systems to search for global optimal solutions to non-deterministic 
polynomial time-hard (NP-hard) problems. These issues are incompatible with exact mathematical optimization 
techniques18.

The genetic algorithm (GA) has been used successfully to deal with a hybrid system with many factors19, 
even though it is hard to code. Particle Swarm Optimization (PSO), one of the most popular metaheuristic 
algorithms, is based on how fish and birds move in groups20. Since PSO is so good at solving problems, many 
different approaches have been tried in different situations21. PSO algorithms have been used to study various 
applications, such as optimizing PV, WT, and BESU22. PSO does better than GA because it responds much faster 
and gets to a solution more quickly23.

In other studies, Bukar et al.11 used the grasshopper optimization algorithm (GOA) to find the best system 
configuration in Yobe State, Nigeria, for an MS made up of PV, WT, a BESU, and DG with COE as a fitness 
function. Similarly, Kaabeche et al.24 highlighted the merits of using a firefly algorithm (FA) to identify the 
best size of an autonomous microgrid. The authors consider COE and the load dissatisfaction rate indices for 
calculating power supply reliability and system costs, respectively. Fathy et al.25 used SSO to find the optimal size 
of a microgrid with HRES integration. In the Aljouf area of Saudi Arabia, this unit, which is made up of WT, PV, 
BESU, an inverter, and DG using COE as the objective function, was analyzed using different topologies, such as 
WT/PV/BESU/DG, WT/BESU/DG, and PV/BESU/DG. Diab et al.26 employed four meta-heuristic optimization 
strategies to discover the best design of a hybrid system with PV, WT, diesel, and BESU. They looked at the four 
algorithms using the COE and the system’s reliability as two ways to compare them. They found that the whale 
optimization approach gave better results than the other algorithms.
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Table 1 provides a comprehensive review of the literature. It includes a summary and a complete analysis of 
previous work on the design and operation of the microgrid. This table lists information such as the authors of 
the previous work, the title of the studies, and a brief explanation of their research’s conclusions and essential 
contributions.

These algorithms are highly versatile and can avoid the trap of local optima, making them more effective 
than other approaches. They are based on how living creatures handle problems, offering several advantages 
that enable them to address any optimization issue. It is worth noting, however, that while they excel at solving 
particular optimization problems, they may only be successful at solving some of them11. Nonetheless, the free 
lunch hypothesis states that it is always possible to create newer and more effective approaches or algorithms to 
tackle optimization issues38.We opted for ISSA since it is straightforward and needs fewer configuration param-
eters. It is the optimal approach for fixing the problems above because of how well it has worked when applied 
to other technical problems.

To date, as far as the authors know, there have been no published studies that specifically applied the ISSA 
and compared it to other algorithms like the SSA, ALO, DA, and MFO algorithms in the optimal sizing of 

Table 1.   Overview of the employed techniques in enhancing HRES.

Refs. Year Location Microgrid System Techniques/Tool Objective Function Strength Weakness

25 2020 Aljouf, Saudi Arabia
PV/WT/BESU/DG
PV/BESU/DG
WT/Battery/DG

SSO, GWO, HHO, MVO, 
WOA and ALO COE

A clear and detailed 
research with several 
results

This study has limited 
constraints, and the 
suggested SSO could be 
explored more

27 2020 Yobe State, Nigeria PV/WT/BESU/DG PSO, CSA, GOA
MOGOA

COE
COE/DPSP

Application of single-
objective and multi-objec-
tive methods
(GOA and MOGOA)

The proposed study 
doesn’t analyze different 
architectures, and it 
doesn’t compare MOGOA 
to other algorithms

28 2021 Dakhla, Morocco PV/WT/BESU/DG EO, HHO, GWO, AEFA, 
and STOA NPC

Apply a novel meta-
heuristic optimization 
algorithm with many 
constraints

There weren’t many 
different architectures or 
configurations analyzed

29 2021 Sousse, Tunisia PV/WT/BESU/DG RG TNPC/EC Real weather data are 
considered

Algorithm comparison is 
needed to make sure that 
the RG algorithm can give 
the best results

30 2022 Yalova, Turkey PV/WT/BESU/DG HS, HOMER, ACO and 
Jaya ACS Simple and clear research The sensitivity analysis is 

not included

31 2023 Sønderborg, Denmark PV/WT/BESU/DG MOMFO, NSGA-II, 
MOPSO, and MOSEO LCOE/LPSP

The Taguchi method is 
employed to establish the 
upper limits of the model’s 
decision variables, while 
a fuzzy decision-making 
approach is utilized to 
acquire the optimal Pareto 
front

In the proposed scenarios, 
areas with varying topog-
raphy can be included in 
order to improve the accu-
racy of the decision-mak-
er’s analysis, particularly 
when solar radiation and 
wind speed are low

32 2023 Jiuduansha, China
PV/WT/BESU/DG
PV/BESU/DG
WT/BESU/DG
PV/WT/BESU

HPSODE-FAM, ABC, 
GA, PSO, and DE LCOE/LPSP/HDI

A tri-objective function, 
which incorporates 
LCOE, LPSP, and HDI, 
and two strategies for 
managing energy are 
implemented

The REF is not considered 
in the constraints

33 2022 Djelfa, Algeria PV/WT/BESU/DG MOSSA, MOGOA, 
MODA, and MOALO COE/LPSP

Application of a new 
meta-heuristic optimiza-
tion algorithm

The MOSSA could be 
further explored with 
different configurations 
of HMS

34 2023 Tunisia PV/WT/BESU/Hydraulic NSGA-II LPSP/COST
Multi-objective optimiza-
tion using an evolutionary 
algorithm in a remote 
location

The results obtained are 
not compared to any other 
algorithms

35 2023 Khartoum, Sudan PV/WT/BESU/DG MILP (Gurobi, Python) NPC/LPSP

Integration Three different 
solar tracking systems 
were utilized with a fixed 
system of PV panels to 
gain maximum power

The algorithm’s application 
is unclear, and it needs to 
be compared with other 
algorithms to get the best 
results

36 2023 Ramnicu Valcea, Romania
PV/WT/BESU/DG
PV/WT/BESU/FC
PV/WT/BESU

HOMER, iHOGA COE/NPC

HOMER and iHOGA 
simulate hybrid system 
performance. Both 
programs examine the 
economic and environ-
mental outlook

The results obtained by 
applying HOMER and 
iHOGA are not compared 
to the meta-heuristic 
algorithms

37 2023 Basra, Iraq PV/WT/Biomass/BESU/
DG

GWCSO, PSO, GA, GWO, 
CSO, and ALO ANC/LCOE

Applied a new hybrid 
meta-heuristic optimiza-
tion algorithm named 
GWCSO

This research does not 
account for reliability, 
which might decrease the 
design system’s credibility
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autonomous microgrids in different configurations such as PV/BESU/DG, WT/BESU/DG, and PV/WT/BESU/
DG. The possible innovations and contributions of this paper can be summarized as follows:

–	 Application of ISSA with a new position adaptation mechanism for salp leaders involves a leader salp that 
moves based on both food availability and its previous position, addressing the convergence problem in the 
original SSA.

–	 The performance and efficiency of the adopted ISSA are validated in comparison to other algorithms, includ-
ing SSA, ALO, DA, and MFO.

–	 The novel proposed method aims to identify the optimal size for an MS comprising of PV, WT, BESU, and 
DG with three different configurations: PV/WT/BESU/DG, PV/BESU/DG, and WT/BESU/DG.

The paper is structured as follows: Models for the various parts of the MS are described in Section "Microgrid 
system component modeling". The third section covers the weather information and load profiles. In Section 
"Energy management strategy", we will discuss the Energy Management System. The issues of optimization and a 
complete design process are covered in Section "Optimization method and strategy". The results of the simulation 
are discussed in Section "Results and discussion". The paper’s conclusion can be found in Section "Conclusion".

Microgrid system component modeling
MS proposed in this study comprises six main parts: three connected to a DC power bus and the other three to 
an AC power bus. The DC components of the microgrid system consist of solar PV and WT, along with a battery 
energy storage unit (BESU). As for the AC components, the demand is met by local load, dump load, and DG 
acting as a backup power source. An energy management system (EMS) tracks and manages the power-sharing of 
each component of the MS. The entire layout of the MS is illustrated in Fig. 1. The system is designed to provide 
energy to a single-phase AC power system with a low voltage of 220 V and a frequency of 50 Hz.

Solar PV array
There are a number of models available for estimating PV panel output power. However, we utilize a simple 
model that requires just two inputs: the ambient temperature and the amount of solar radiation39. The following 
equation is used to determine the power generated by the PV panels39:

where Ppv−out is the power output of PV panels (W), Ppv
−
ref  signifies the rated power (W) of PV panels at the 

Standard Test Condition STC, which the manufacturer typically specifies, Gt is the actual solar irradiance of 
PV panels (kW/m2), Gt−ref  is the solar irradiance at reference conditions ( Gt−ref = 1kW/m2 ), TC−ref  is the cell 
temperature at reference conditions ( TC−ref = 25

◦

C ), KT is the temperature coefficient of the maximum power, 
its value is KT = −3.7× 10−3(1/◦C) for the mono and poly-crystalline (Si) solar cells39.

The cell temperature TC is determined by the following equation39:

where Tamb is the ambient temperature.
The overall amount of power produced by a set of PV panels is expressed as follows:

where Npv is the number of PV panels in the microgrid and ηpv is the efficiency of the PV panels.

(1)Ppv−out(t) = Ppv
−
ref ×

Gt(t)

Gt−ref
×

[

1+ KT

(

TC(t)− TC−ref

)]

(2)TC(t) = Tamb(t)+ [0.0256× Gt(t)]

(3)Ppv(t) = P
pv−out

(t)× Npv × ηpv

Figure 1.   Configuration of the proposed autonomous microgrid system.
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Wind turbine
WT generator has a power output that varies with wind speed, which in turn changes dramatically with altitude 
at the particular location. The height of the axis utilized for the WT may be calculated from the wind speed 
recorded by an anemometer. The log law and the power law are employed here to calculate the vertical profile of 
wind speed at a given location40. In this work, the power-law model40 is employed to determine the wind speed 
at the hub height.

where V2 represent the wind speed at the hub height of the WT (m/s), V1 denote the wind speed at the reference 
height (m/s), h indicate the hub height of the WT (m), href  represent the reference height of the WT (m). The 
parameter α represents the friction coefficient.The value of α is influenced by several factors such as topographical 
characteristics, terrain roughness, wind speed, temperature, height above ground, and time of the year. However, 
in extreme wind conditions, the friction coefficient should be 0.11 instead of the normal value of 0.20. The com-
monly accepted value for α is 1/740.

The relationship between wind speed and the power generated by WT is non-linear. The following equation 
may be used to determine the power generated by each individual WT40.

where Pr is the rated power of the WT (kW), V  is the current time step wind speed (m/s), Vcut−in is the cut-in 
wind speed of the WT, Vrated is the rated wind speed of the WT, Vcut−out is the cut-out wind speed of the WT. 
These specifications are provided by the manufacturer of WT. The overall amount of power generated by a set 
of WT is expressed as follows:

where Nwt is the number ofWT in the microgrid and ηwt is the efficiency of the WT. Figure 2 displays the variation 
of the output power of the WT generator with wind speed.

Battery bank
Due to the unpredictability of WT and PV sources, the introduction of BESU into the autonomous microgrid is 
unavoidable. In this case, HRES uses BESU to store extra energy and use it when renewable energy is not enough 
or is unavailable. The capacity of the BESU is calculated using the following formula7:

(4)V2 = V1 ×

(

h

href

)α

(5)Pwt_out(t) =



























0 V < Vcut−in

V3

�

Pr
V3
rated−V3

cut−in

�

− Pr

�

V3
cut−in

V3
rated−V3

cut−in

�

Vcut−in ≤ V < Vrated

Pr Vrated ≤ V ≤ Vcut−out

0 V > Vcut−out

(6)Pwt(t) = Pwt−out(t)× Nwt × ηwt

(7)Bcap =
AD × EL

ηinv×ηBatt × DOD

Figure 2.   Characteristics curve of WT.
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where EL represents the load’s power demand, DOD denotes the BESU depth of discharge, ηInv is the inverter’s 
efficiency, ηBatt indicates the BESU efficiency, and the autonomy days ( AD ) are the total number of days that the 
BESU can meet the load demand without running out.

The required number of BESU that must be connected in parallel, Nbatt_p , is calculated by dividing the total 
required capacity of BESU, Bcap , by the capacity of a single battery, Bb , as shown below41:

In addition, the number of BESU that must be connected in series, Nbatt_s , is calculated using Vs and Vbatt , 
the voltages for the DC bus system and the BESU, in volt (V), respectively41:

Finally, the total number of BESU, Nbatt , is determined by the product of Nbatt_p and Nbatt_s , as illustrated 
below41:

Accordingly, the total cost of the BESU, CBatt
C  , assuming CBatt represents the cost of a single battery, will be 

as follows41:

Due to the unpredictability of wind speed and intensity of solar irradiance, the autonomy days of the BESU 
are critical and must be considered when designing the storage system to avoid power shortages generated from 
RS (PV and WT). When there is an overabundance of energy, it is stored in the BESU and utilized later.

The following equation can be used to indicate the power generated by the BESU11:

where Ppv(t) , Pwt(t) , and Pload(t) stand for the generated energy by PV, WT, and load energy demand, respec-
tively, and ηInv is the efficiency of the inverter.

When PBatt(t) < 0 , it means there is an energy generation deficit. If PBatt(t) > 0 , it implies that energy gen-
eration surpasses power demand. In the unusual circumstance where PBatt(t) = 0 , the power provided by RS 
equals the load power demand.

The state of charge (SOC) of the BESU is a crucial factor that impacts BESU performance and reveals its 
present capacity when determining the status of the BESU. In this context, the SOC has two modes charging 
and discharging; when the BESU is in charging mode, if the power produced by RES is higher than the demand, 
and in discharge mode if the power produced is insufficient to meet the demand. The quantity of charge and 
discharge at time t is calculated as11:

•	 Charging mode, if; Ppv(t)+ Pwt(t) > Pload(t)

•	 Discharging mode, if; Ppv(t)+ Pwt(t) < Pload(t)

where EBT (t) denotes the BESU available capacity at hour (t) (kWh), EBT (t − 1) indicates the BESU available 
capacity at the hour (t − 1) (kWh), σ is the BESU self-discharge rate, ηBatt represents the BESU efficiency (%) 
during charging and discharging.

Furthermore, the BESU can meet the demand as long as the SOC(t) is larger than the SOC minimum 
( SOCmin ). In the same way, the extra power generated will charge the BESU until SOC(t) reaches SOC maximum 
( SOCmax ), where SOC minimum is 30% and SOC maximum is 100%. The maximum SOC is equal to the total 
capacity of the BESU ( Bbatt ). It is represented as follows42:

The maximum allowed depth of discharge (DOD) is expressed as a percentage (%), with 70% considered for 
this research study. It is impossible to drain the BESU entirely. The DOD value indicates the maximum discharge. 
The equation below determines the BESU minimum capacity41.

(8)Nbatt_p =
Bcap

Bb

(9)Nbatt_s =
Vs

Vbatt

(10)Nbatt = Nbatt_p × Nbatt_s

(11)CBatt
C = Nbatt × CBatt

(12)PBatt(t) =
(

Ppv(t)+ Pwt(t)
)

−
Pload(t)

ηInv

(13)EBT (t) = EBT (t − 1)× (1− σ)+

(

(

Ppv(t)+ Pwt(t)
)

−
Pload(t)

ηInv

)

× ηBatt

(14)EBT (t) = EBT (t − 1)× (1− σ)+

(

Pload(t)

ηInv
−

(

Ppv(t)+ Pwt(t)
)

)

/ηBatt

(15)Bcap(Ah) =
Nbatt

Nbatt_s
× Bb(Ah)

(16)EBatt−min = (1− DOD)× EBatt−max



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2920  | https://doi.org/10.1038/s41598-024-52232-y

www.nature.com/scientificreports/

Furthermore, the BESU capacity restriction at any hour is represented using Eq. (17)43.

where EBatt−max denotes the maximum charge quantity of the BESU that is deemed equivalent to the battery’s 
nominal capacity ( Bcap ), EBatt−min indicates the minimum charge quantity of the BESU as determined by the 
maximum depth of discharge ( DOD ), and DOD is the maximum allowable depth of BESU discharge.

Diesel Generator
In the MS, the DG is used as a backup power source to make up for when the power generated by the renewable 
resources (PV and WT) and the BESU is inadequate. In order to simplify the DG model’s reliance on fuel usage, 
we use the following equation7:

where FDG is the generator fuel consumption (L/h), α is the fuel curve slope coefficient (L/kWh), β is the fuel 
intercept coefficient (L/kWh), PDG is the actual power generated (kW), Pr denotes the capacity of the generator 
(kW) or rated power. The values for α and β used in this study are α = 0.246 and β = 0.084157. DG efficiency 
may be determined as follows44:

where ηoverall , ηgenerator , and ηbrake−thermal denote the DG’s overall efficiency, generator efficiency, and thermal 
brake efficiency, respectively. The total power output of a set of DG is defined as follows:

where PS_DG is the output power of a single DG and NDG is the number of DG in the microgrid.
The cost of fuel ( CF ) throughout the useful lifetime of a power system can generally be expressed as27:

where Cf  is the current price of diesel fuel per liter in US$/L.
The carbon dioxide ( CO2 ) emission methodology for DG is predicated on the approach approved by the 

Intergovernmental Panel on Climate Change (IPCC), which is explained below45.

where FDG is the quantity of consumed fuel ( Tons/Year ), NCV  denotes the net calorific value of fuel ( TJ/Tons ), 
and EF refers to the emission factor ( kgCO2/TJfuel).

The coefficients used for the analysis in this study were obtained from Ref.45 and are provided in Table 2.

Inverter and converters
Converters are used to convert AC power to DC power and vice versa. Simultaneously, energy flows bidirec-
tionally between the AC and DC buses via the inverter/converter, as illustrated in Fig. 1. Power converters are 
necessary when the system has both AC and DC components. For example, PV and BESU generate direct current 
(DC) output while the considered load is AC. The AC to DC/ DC to AC system is modeled based on expected 
maximum and minimum energy loads and surges, as well as system efficiency. The converter size is determined 
by peak load demand ( PpeakL ).

The rated power of the inverter, PInv , is calculated as follows39.

The efficiency of the inverter can be calculated using the following equation29:

where P , P0 , and K can be determined by the following formula29:

(17)EBatt−min ≤ EBatt(t) ≤ EBatt−max

(18)FDG(t) = αPDG(t)+ βPr

(19)ηoverall = ηgenerator × ηbrake−thermal

(20)Pr = PS_DG × NDG

(21)CF = Cf

8784
∑

t=1

FDG(t)

(22)CO2 = FDG × NCV × EF

(23)PInv =
P
peak
L

ηInv

(24)ηInv =
P

P + P0 + KP2

Table 2.   Net calorific value coefficient and emission factor.

Fuel utilized Naphtha

NCV 45 GJ/Tons

EF 73,300 kgCO2/TJfuel
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where Pn is the rated power of inverter, and η10 and η100 denote the inverter efficiencies at 10% and 100% of its 
nominal power, respectively, the manufacturer specifies both η10 and η100. The technical and economic parameters 
of the microgrid components used in this work are listed in “Supplementary file”.

Meteorological data and load profile
Location and meteorological condition
The projected MS, which combines various RES, is intended to be in the town of Aïn El Ibel, located in Algeria’s 
north-central area. The coordinates of this location are 34.346° latitude and 3.163° longitude. The microgrid’s 
proposed construction site is unique because it is located in an area that acts as a bridge between the dry 
northern high plains and the dry southern desert. The weather conditions in this area are extreme, with extremely 
sweltering summers and frigid winters. Additionally, the area is characterized by high wind speeds during the 
winter months. The study site is shown on a map in Fig. 3, and the context for the region and the time frame of 
data collection are provided in Table 3.

The main purpose of this study was to simulate wind speed, ambient temperature, and sun irradiance using 
real-world meteorological data. Our simulations took place in Aïn El Ibel, located at 34.346° latitude and 3.163° 
longitude. NASA46 supplies meteorological data for these models, so you can trust the findings. Solar radiation 
levels in Aïn El Ibel made it a suitable study location. This is critical for considering the viability of solar power 
generation. The area’s moderate wind speed helps generate wind power. We averaged 0.2357 kW/m2 of solar 
radiation, 17.251 °C of air temperature, and 4.3467 m/s of wind speed throughout the year. The solar radiation 
profile in Fig. 4 shows a yearly variation. The profile indicated that June, July, and August solar radiation average 

(25)P =
Pout

Pn
, P0 = 1− 99(10/η10 − 1/η100 − 9)2,K =

1

η100
− P0

Figure 3.   Geographical map of the study location (image courtesy of Google Earth mapping service).

Table 3.   The geographical coordinates of the studied location.

Specifics Case Study

Study location
Municipality
District
State
Country
Longitude
Latitude
Altitude above sea level

Central PV Aïn El Ibel (SKTM)
Aïn El Ibel
Aïn El Ibel
Djelfa
Algeria
3.163°
34.346°
1098 m

Period of measurement
1 January 2020
To
31 December 2020
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0.27 kW/m2. Winter solar radiation averages 0.20 kW/m2 in December, January, and February. Because the 
Earth’s axis is tilted, in the northern hemisphere, summers are brighter than winters, and vice versa. Figure 5 
shows the yearly wind speed variation at 10 m above ground. Winter wind speeds averaged 5.1 m/s across the 
profile in December, January, and February. In June, July, and August, the wind speed averages 3.8 m/s, the lowest. 
Many regions see greater winds in the winter when the surface cools. As seen in Fig. 6, ambient temperatures 
fluctuated throughout the year. The profile shows that June, July, and August average 26.85°C. In December, 
January, and February, the average temperature drops to 6.85°C. Summer temperatures increase because the 
sun’s rays are unhindered.

Load assessment
One of the biggest challenges in microgrid design is load fluctuation. Weather, daily habits, time of day, and 
human occupancy might create these variances. Load fluctuations may affect system reliability, necessary 
components, and electrical energy costs. This study focuses on a stand-alone microgrid that supplies energy 
to a residential area with a cluster of housing units, as illustrated in Table 4. Building a microgrid with RES to 
suit dwelling units’ energy demands is the goal. As shown in Fig. 7, this requires load profile research and an 
understanding of system component interactions. Microgrid design will incorporate system cost. A reliable, 

Figure 4.   Annual solar radiation in the location under study.

Figure 5.   Annual wind speed in the location under study.
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cost-effective system is the goal. RES will dramatically lower microgrid running expenses. Energy storage systems 
also reduce load variability and improve system reliability.

The microgrid of a set of housing units in an off-grid community has been analyzed for a full year, and the 
findings are shown in Fig. 7 This data is especially useful for analyzing the energy consumption habits of homes 
and finding opportunities for energy conservation, offering a comprehensive view of power usage throughout the 
year in order to facilitate comprehension. This data is essential for making educated choices on how to increase 
energy efficiency and decrease expenditures in the off-grid community.

Energy management strategy
RES’ inherent volatility adds complexity to the EMS process. Therefore, it is unrealistic to expect RES alone to 
meet our energy requirements. In this case, RES, such as PV and WT, may be used in conjunction with the BESU 
and DG. But it is the system operator’s job to optimize renewable energy utilization and minimize the need for 
the BESU and the diesel engine. Only an EMS that has been well planned and implemented can do this. The 
purpose of the EMS is to coordinate the distribution of power across the microgrid’s multiple components47. By 
decreasing fuel consumption, EMS helps extend the life of BESU and boost the usage of RES. It also helps improve 
system efficiency, which leads to cost savings and less energy use. Figure 8 displays the flowchart outlining the 
EMS employed in this study.

The cycle charging-based EMS proposed in this research is implemented using a rule-based method. The 
algorithm is written mostly using "if " and "then" phrases. The modes of operation are then implemented in a 

Figure 6.   Annual ambient temperature in the location under study.

Table 4.   Power-consuming devices needed by residential units.

Appliances Power (W) Quantity Electric load (W)

Refrigerator 220 2 440

Television 150 3 450

Mobile Charger 12 6 72

Water Pump 450 2 900

Radio 12 1 12

Lamps Bulb 75 5 375

Lamps CFL 18 8 144

Fluorescent Light 40 5 200

Laptop 46 3 138

Desktop computer 120 2 240

Mixer 450 1 450

Deep freezer 260 1 260

Air conditioner 430 2 860

Washing machine 420 1 420

Microwave 900 1 900
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variety of "if " and "then" expressions. The microgrid’s energy flow is regulated by several modes, which operate 
according to a predetermined set of rules. In this study, the EMS is shown in the following modes:

Mode 1: The energy generated by RES (such as PV and WT) adequately meets the load energy demand 
requirements. The surplus energy is put to use to recharge the BESU.

Figure 7.   Annual load profile of the location under study.

Figure 8.   The proposed EMS.
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Mode 2: When the BESU is fully charged, the energy generated from RES is sufficient to fulfill and surpass 
the load demand requirements. In this particular instance, the excess energy is used by a "dump load," such as 
a water pump or a heating system.

Mode 3: The energy supplied by renewable resources is insufficient to fulfill the needs of the load. In this 
instance, the BESU will make up for the shortfall in power production to satisfy the demands of the load.

Mode 4: Energy from RS is inadequate to fulfill load demand when the BESU has been exhausted. Here, the 
DG will be turned on to make up for the difference in energy production so that the load’s energy demand is 
met and to further assure the BESU charge.

Optimization method and strategy
The optimal sizing for the MS, which consists of PV, WT, BESU, and DG, is determined by an economic-technical 
strategy. The main aim of optimization is to ensure reliable power supplies at the lowest possible cost. COE is 
used as an economic criterion, while LPSP is used as a reliability criterion.

Objective function
COE is the main objective function of MS optimization. Optimization aims to ensure reliable power sup-
plies at the lowest possible cost. The COE is the average of the total NPC ( TNPC ), which includes investment 
( Investment ), operation and maintenance ( O&M ), replacement cost ( Replacement ), and fuel cost ( FC ) of the 
DG. It is common for RES to have minimal operating and maintenance expenses since they do not need fuel, 
yet capital expenditures are quite expensive.

The COE indicates the cost of energy production per unit. It is the value most often used to estimate the MSs 
economic profitability, which is outlined as follows43.

where TNPC is the total NPC, CRF is the capital recovery factor, and Pload is the hourly loads power consump-
tion, as defined in43:

where n is the lifetime of the HRES project (years), which is usually the same as the lifetime of the PV panels, and 
i is the real interest rate (%). The real interest rate is a function of the nominal interest rate ( ir ) and the annual 
inflation rate ( fr)48.

The total NPC can be expressed mathematically as follows27:

Investment represents the investment or initial capital cost, which is determined by adding the costs of each 
component of the MS. Investment is computed using Eq. (30)29.

where Npv , Nwt , Nbatt , and NDG refer to the optimum numbers of PV, WT, BT, and DG, respectively. CPV
C  , CWT

C  , 
CBatt
C  , CDG

C  , and CInv
C  are the investment costs of the PV, WT, BT, DG, and inverter components, respectively.O&M 

is the operation and maintenance costs for all system components, which are determined based on the overall 
cost incurred in O&M over a year. These costs depend on the length of the systems life and the interest rate. It 
is expressed as follows29:

where CPV
O&M , CWT

O&M , CBatt
O&M , and CDG

O&M represent the O&M costs for PV, WT, BT, and DG, respectively. The 
O&M costs of the inverter and converters are overlooked. The replacement cost of the MS components can be 
determined as follows29:

(26)COE =
TNPC

∑8784
h=1 Pload

× CRF

(27)CRF =
i(1+ i)n

(1+ i)n − 1

(28)i =
ir − fr

1+ fr

(29)TNPC = Investment + O&M + Replacement + FC

(30)Investment =
(

Npv × CPV
C

)

+

(

Nwt × CWT
C

)

+
(

Nbatt × CBatt
C

)

+
(

NDG × CDG
C

)

+ CInv
C

(31)

O&M =

(

(

Npv × CPV
O&M

)

+

(

Nwt × CWT
O&M

)

+
(

Nbatt×CBatt
O&M

)

+
(

NDG×CDG
O&M

)

)

×

(

(1+ i)n − 1

i(1+ i)n

)

(32)Replacement = CBatt
Replacement + CDG

Replacement + CInv
Replacement

(33)CBatt
Replacement = Nbatt × CBatt

R ×

∑

(

n
nBatt

−1
)

j=1

(

1+
1

(1+ i)jnBatt

)
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where CBatt
R  , CDG

R  , and CInv
R  represent the replacement costs of the BESU, DG, and inverter, respectively. As both 

the PV panels and the WT have a 25-year lifetime, their replacement is not considered.nBatt , nDG , and nInv are 
the lifetimes of the BESU, DG, and inverter, respectively.

The expression for the fuel cost ( FC ) has been detailed in the equation below.

Constraints
During the optimization process, several constraints and limitations are considered to avoid undesirable out-
comes because of the microgrid’s operational and physical restrictions. The following constraints are considered:

Loss of power supply probability
One of the most important indicators for evaluating the longevity of a hybrid MSs capacity and performance is its 
reliability. In this research, LPSP is used to measure the dependability of a system. LPSP is a design factor that may 
take on values between 0 and 1. If it has a value of 0, all of the loads electrical needs have been fulfilled. However, 
if LPSP is 1, the load power demand cannot be supplied. Below is the equation used to determine the LPSP49:

The Loss of Power Supply (LPS) at every given instant “t” may be determined using Eq. (38)49.

where Ppv(t) , Pwt(t) , PBatt(t) , and PDG(t) are the power outputs of the PV panels, WT, BESU, and DG, respectively.
In this analysis, the worst-case scenarios are used to assess the systems reliability, as follows38:

where P(t)generate is the amount of power produced. In this case, it’s vital to remember that the total energy 
demand of the load is greater than the sum of the energy output from all sources.

Renewable energy fraction
The pursuit of the energy transition from conventional energy production to a renewable energy project is not a 
straightforward process. The objective here is to increase the use of renewable energy. REF defines the propor-
tion of energy produced from renewable sources relative to non-renewable sources (DG) within the microgrid 
and is represented as follows38:

When the REF reaches 100%, the system is in optimal condition and depends only on electricity provided by 
RES. When it equals 0%, it indicates that the DG is making the same amount of energy as RES.

In addition to the aforementioned constraints, the following constraints must also be adhered to:

Design variables
The number of PV ( Npv ), the number of WT ( Nwt ), the number of BESU ( Nbatt ), and the number of DG ( NDG ) 
are the design variables taken into account in this research. The following are the lower and upper limits on the 
suggested design variables:

(34)CDG
Replacement = NDG × CDG

R ×

∑

(

n
nDG

−1
)

j=1

(

1+
1

(1+ i)jnDG

)

(35)CInv
Replacement = CInv

R ×

∑

(

n
nInv

−1
)

j=1

(

1+
1

(1+ i)jnInv

)

(36)FC =
CF

CRF

(37)LPSP =

∑8784
t=1 LPS(t)

∑8784
t=1 Pload(t)

(38)LPS(t) = Pload(t)−
(

Ppv(t)+ Pwt(t)+ PBatt(t)+ PDG(t)
)

(39)P(t)load > P(t)generate

(40)REF =

(

1−

∑

PDG
∑

Ppv +
∑

Pwt

)

× 100
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Algorithm
SSA is a recently developed metaheuristic optimization approach, first proposed by Mirjalili et al.50. In their work, 
the authors presented a theoretical framework that describes the foraging behavior of salps and highlights their 
remarkable cognitive abilities. This research was conducted in 2017. Salps have a behavioral response whereby 
they aggregate into chains when encountering a food supply, facilitating their foraging efficiency. According to 
the illustration shown in Fig. 9b, the salp colonies are seen to be guided by a dominant salp. This particular salp 
assumes the responsibility of overseeing and organizing the collective efforts of the other salps in their pursuit 
of capturing the food supply. Figure 9a illustrates the morphological characteristics of salp organisms, which 
often aggregate to form salp chains. Figure 9c illustrates the sequence of salps in a visual representation. There 
is a notable resemblance between the tissues of salps and jellyfish. The movement requirements of both entities 
demonstrate a significant level of resemblance, as shown in citation50.

Single‑objective SSA
The mathematical model developed by the SSA accurately simulates the hunting behavior seen in swarms of salps, 
a species belonging to the Salpidae family. The model divides the population of the salp swarm into two distinct 
types, namely leaders and followers. In each iteration, instead of individually searching for the ideal value, every 
non-leader salp mimics the movement of the previous salps.

The leader salp, x1j  , advances towards the food supply ( Fj ) located in the search area, while the subordinate 
salps can travel towards the remaining salps. The salps are defined in a search space with n dimensions. This 
corresponds to the number of factors specific to the problem being addressed. Consequently, a two-dimen-
sional matrix named Xi , with dimensions N × d , is employed to store the positions of all the salps, as stated in 
Equation50:

The leader position is updated in accordance with the following equation50:

The position vector, denoted as x1j  , represents the location of the first salp, which acts as the leader. Similarly, 
the position vector Fj corresponds to the feeding supply position in the jth dimension. The upper and lower 
bounds of the jth dimension is indicated by ubj and lbj , respectively. In this context, c1 , and c2 are random num-
bers within the range of [0,1]. As per Eq. (44), the leader only adjusts its position based on the food source, 
disregarding other factors.

SSA coefficient c1 is one of the most crucial factors because it strikes an equilibrium between investigation 
and utilization. It is described as follows51:

(42)Design variables =


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Figure 9.   In the realm of a salp swarm, we observe three shapes: (a) an individual salp, (b) a chain of salps, (c) a 
collective swarm of salps.



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2920  | https://doi.org/10.1038/s41598-024-52232-y

www.nature.com/scientificreports/

where, L signifies the maximum number of iterations, while l  represents the current iteration.
The followers adjust their positions according to the following equation50:

where i ≥ 2 , xij represents the position vector of the ith follower salp in the jth dimension. Furthermore, t  denotes 
time, v0 corresponds to the initial speed, and a represents the ratio of a =

vfinal
v0

 , where v =
x−x0
t .

The difference between iterations is equivalent to 1 signifying the repetition based on a specific sampling 
unit in optimization time, and by taking into account that v0 = 0 , the aforementioned equation can be stated 
as follows50:

where i ≥ 2 and xij represents the locations vector of the follower Salps in the jth dimension, the collective behav-
ior of the salp chains can be comprehended and mathematically reproduced based on the simulations outlined 
in the aforementioned formulas.

To solve the sizing problem, SSA is used to follow several procedures. The proposed procedure of action is 
defined in detail in Fig. 10

Improved SSA
The equation denoted as (48) delineates the mechanism by which salps are reintroduced into the search region 
subsequent to their departure or in instances when specific salps have strayed outside its boundaries.

SSA may not be suitable for more complex problems due to its tendency to become stuck in local optima, 
despite its ability to provide satisfactory outcomes when compared to other well-recognized algorithms. Based 
on the equation denoted as (44), the displacement of the dominant salp within the SSA is contingent upon the 
comparative nutritional value of the accessible food sources and the relative location of the most superior salp 
within the whole population. This finding implies that in each iteration, the SSA algorithm functions by main-
taining the leader salp in close proximity to a fixed point while the other salps (following) change their locations 
dynamically to converge with the leader. Once the iterative process reaches convergence, it loses the ability to 
explore globally optimum solutions and becomes confined to a local minimum. To effectively tackle this matter 
and boost the search capabilities and flexibility of the SSA, a refined iteration of the algorithm, referred to as the 
ISSA, is presented. The suggested ISSA model incorporates a leader salp that exhibits movement patterns influ-
enced by the availability of food resources and its prior spatial location. This is undertaken in order to enhance 
the efficacy and investigative capacities of the technique. The determination of the leading salps’ position update 
is accomplished by the use of the following equation52:

In Eq. (49), the variable c1 signifies a time-varying value derived from Eq. (45), while c3 denotes a random 
number ranging from 0 to 1. By adopting this approach, the SSA algorithm facilitates both exploration and a 
more efficient global search across the entire search area. In order to enhance the efficacy of the proposed ISSA, 
the followers modify their locations based on the subsequent equation52:

In Eq. (50), instead of the conventional fixed value of 0.5, a random time-varying element is employed. This 
element enhances the global search capability of the algorithm in its early iterations and fosters local search in 
later iterations. Moreover, within the proposed ISSA framework, upon the creation of each algorithm, the salp 
with the highest fitness value is substituted for a randomly generated salp.

In order to address the issue of sizing, ISSA employs a number of procedures. Figure 11 provides a very 
detailed explanation of the suggested strategy. Upon initiation of the simulation, the ISSA algorithm randomly 
distributes particles within the search landscape, as is typical of optimization algorithms, with the user-defined 
constraints dictating the bounds of the search. As per the governing equations of the algorithm, the particles 
navigate through the search landscape with the aim of optimizing the objective function that has been defined.

The authors have done a number of tests to see how well the ISSA works. In these tests, the ISSA’s performance 
is compared to that of other optimization methods in various scenarios. For example, when solving optimiza-
tion problems in the coordinated design of damping controllers for a power system with a UPFC, the ISSA was 
found to be much better in terms of stability, accuracy, and flexibility. The proposed method also works well to 
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stop oscillations in a power system with more than one machine when there are faults52. By changing the hyper-
parameters of a backpropagation neural network that uses chaotic mapping and a decay factor, ISSA was also 
used to improve the prediction of tool wear. The algorithm is tested on benchmark functions, showing better 
solution accuracy and stability53. In another study54, ISSA is applied to enhance the performance of a blind digital 
modulation detection technique. The improvements to SSA include introducing an inertia weight, dynamically 
varying the weight factor in the position update formula and employing an opposition-based learning technique 
to overcome premature convergence and evolution stagnation. ISSA is proposed for feature selection in high-
dimensional medical data classification and compares the performance of this algorithm in terms of classification 
accuracy and execution time, where ISSA incorporates an inertia weight parameter to enhance exploration and 
exploitation capabilities. The algorithm is tested on 23 UCI datasets. Results show that ISSA outperforms other 
optimization algorithms in terms of classification accuracy and feature reduction55.

Figure 10.   Flowchart of SSA method.
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Results and discussion
This research paper discusses the optimal size of an autonomous microgrid that utilizes HRES comprises of 
PV, WT, and BESU. It also uses the DG system as a backup source. Figure 1 shows the proposed microgrid. The 
system meets the energy demand of a group of houses for a residential unit. Furthermore, the paper presents 
analyses of the total NPC, the energy generation contribution of the various elements, CO2 emissions, and the 
energy flow of the designed microgrid. This is based on the case study results. By examining the costs incurred 
and benefits accrued from the system and its technical feasibility, the proposed microgrid is evaluated for its 
technical feasibility and economic viability. The results of the analyses provide insights into the economic and 
financial aspects and technological aspects of the proposed microgrid, determining its practicality and long-term 
viability. The analyses below are made for three different MS configurations:

•	 PV/WT/BESU/DG;
•	 PV/BESU/DG;
•	 WT/BESU/DG.

Figure 11.   Flowchart of the proposed ISSA method.
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The PV/WT/BESU/DG configuration combination uses four distinct energy generation sources. This combi-
nation utilizes two RES, namely PV and WT, as well as the BESU and DG, to generate electricity. The combination 
of the PV/BESU/DG configuration combines three diverse sources of energy generation, including one renew-
able source, PV, plus the BESU and DG. Finally, the WT/BESU/DG configuration combination also utilizes one 
renewable source, the WT, plus the BESU and DG to generate electricity.

MATLAB R2018a provided a platform for system’s implementation. The Windows 10 Pro Version 21H2 (64-
bit) PC with a 1.80 GHz Intel Core i7-10510U CPU and 16 GB of RAM ran tests efficiently.

Validation of ISSA algorithm
This research involves using five optimization techniques to solve the optimization design problem highlighted 
in this paper. The five algorithms are the ISSA, SSA, ALO, DA, and MFO. In order to analyze the efficiency of the 
five suggested approaches, ISSA, SSA, ALO, DA, and MFO, they were executed over the course of 100 iterations. 
To ensure accuracy and consistency, each approach was subject to specific control parameters carefully selected 
for future reference. These control parameters were unique to each approach, as they were tailored to suit the 
specific characteristics and requirements of each method. The control parameters were documented in Table 5, 
which provides a detailed overview of the various control parameters utilized in each approach.

To verify the effectiveness and ability of the ISSA algorithm to achieve the best optimum design with high 
reliability and minimal investment expenses. This is done by comparing its results with those obtained from the 
SSA, ALO, DA, and MFO algorithms for all the studied configurations. The convergence of the five optimization 
algorithms was analyzed using the convergence curves presented in Fig. 12. The convergence curves for the 
PV/WT/BESU/DG configuration are displayed in Fig. 12a. The ISSA algorithm consistently provides better 
convergence results. In this configuration, the SSA algorithm achieves the second-best convergence, while the 
convergence values for ISSA, SSA, ALO, DA, and MFO are 0.2109 $/kWh, 0.2245 $/kWh, 0.2407 $/kWh, 0.3385 
$/kWh, and 0.3549 $/kWh, respectively. Figure 12b presents the convergence curves for the PV/BESU/DG 
configuration. The ISSA algorithm consistently converges to the best optimal solution within 60 iterations. The 
convergence values for ISSA, SSA, ALO, DA, and MFO are 0.2748 $/kWh, 0.2865 $/kWh, 0.3297 $/kWh, 0.3637 
$/kWh, and 0.3917 $/kWh, respectively. The convergence curves for the WT/BESU/DG configuration are shown 
in Fig. 12c, where the ISSA algorithm consistently obtains the best solution. Convergence is achieved after 50 
iterations, with convergence values of 0.2080 $/kWh for ISSA, 0.2121 $/kWh for SSA, 0.2160 $/kWh for ALO, 
0.2366 $/kWh for DA, and 0.2340 $/kWh for MFO. The ISSA algorithm has been shown to be highly efficient 
and effective at providing better convergence results than other algorithms. It can be used for optimizing and 
providing optimal solutions for different microgrid configurations.

Table 6 summarizes the comparison results of five algorithms: ISSA, SSA, ALO, DA, and MFO, in different 
microgrid configurations. The results indicate that the most suitable configuration for the case study is PV/WT/
BESU/DG using the ISSA algorithm. The COE of the system in this configuration is 0.2109 $/kWh, which is 
equivalent to 376,063.8 $ for the total NPC. The constraints have been met: LPSP is 4%, the system gets 96.0655% 
of its power from RS, and the BESU autonomy day is set at 1.5291. In the other configurations, the PV/BESU/
DG receives more attention than the WT/BESU/DG, indicating the efficacy of the synergy between the PV and 
wind systems.

Table 6 reveals that the COE ranges from 0.2080 $/kWh to 0.3917 $/kWh. The lowest COE is found in the 
WT/BESU/DG configuration at 0.2080 $/kWh, and the highest COE is found in the PV/BESU/DG configuration 
at 0.3917 $/kWh. The total NPC ranges from 698,656.4 $ to 371,038.8 $. The constraints are respected in all 
cases, with LPSP less than 6% in all cases. The two most favorable cases are 3.8% and 4% in the PV/WT/
BESU/DG configuration using the ISSA and SSA algorithms, respectively. The aforementioned case is 6% in 
the PV/BESU/DG configuration using the ISSA algorithm. In all cases, the REF performed well, exceeding 
89.9989%. According to the DA algorithm, this is the most efficient PV/BESU/DG configuration and the worst 

Table 5.   Optimization control parameters for each algorithm.

Techniques Parameters

ISSA
Population size: 10
Independent simulation run: 30
The coefficient c1 : Eq. (45)
The coefficient c2 : rand

SSA

Population size: 10
Independent simulation run: 30
The coefficient c1 : Eq. (45)
The coefficient c2 : rand
The coefficient c3 : rand

ALO
Population size: 10
Independent simulation run: 30
ct = ct

I ,dt = dt

I

DA
Population size: 10
Independent simulation run: 30
w = 0.9− 0.2 , s = 0.1

a = 0.1 , c = 0.7 , f = 1,e = 1

MFO
Population size: 10
Independent simulation run: 30
b = 1
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Figure 12.   The objective function convergence using the proposed algorithms for all configurations, (a) PV/
WT/BESU/DG, (b) PV/BESU/DG, (c) WT/BESU/DG.

Table 6.   Economical and technical results from the proposed algorithms for all configurations.

MS Algorithm
COE
($/kWh)

NPC
($) LPSP

REF
(%)

AD
(Day)

PV/WT/BESU/DG

ISSA 0.2109 376,063.8 0.04 96.0655 1.5291

SSA 0.2245 400,358.9 0.0382 96.3846 1.5065

ALO 0.2407 429,279 0.04 96.0002 1.5181

DA 0.3385 603,819.7 0.04 97.8808 1.4673

MFO 0.3549 632,910.7 0.039 96.5101 1.5006

PV/BESU/DG

ISSA 0.2748 490,099 0.06 95 1.5291

SSA 0.2865 510,978.2 0.0583 95 1.5291

ALO 0.3297 587,986.8 0.06 96.0075 1.5169

DA 0.3637 648,693.7 0.0479 95 1.5291

MFO 0.3917 698,656.4 0.0524 94.9988 1.4488

WT/BESU/DG

ISSA 0.2080 371,038.8 0.0388 90 1.3928

SSA 0.2121 378,252.6 0.0486 90 1.273

ALO 0.2160 385,178.6 0.0474 90.0004 1.2718

DA 0.2366 421,958.7 0.05 89.9989 1.177

MFO 0.2340 417,351.4 0.0498 91.1017 1.2078
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WT/BESU/DG configuration for REF performance. The BESU autonomy day results were all convergent. The 
table demonstrated that the PV/WT/BESU/DG configuration using the ISSA algorithm was the most optimal 
microgrid configuration, with the highest cost-effectiveness and reliability.

Table 7 provides a comparison summary with an emphasis on sizing outcomes using the same methods and 
configurations. ISSA algorithm finds the most suitable MS, composed of 10 PV systems, 9 WT, 24 BESU, and 3 
DG. Additionally, this table displays the length of time required for each algorithm to complete the optimiza-
tion process.

For the PV/WT/BESU/DG configuration, the MFO algorithm generated the largest PV systems, 25, while 
the ISSA and SSA algorithms created the fewer PV systems, 10. The MFO method resulted in the lowest WT, 
5, whereas the SSA approach achieved 12. All algorithms yielded convergent BESU. MFO produced 4 DGs, 
whereas ISSA produced 3.

For the PV/BESU/DG configuration, the MFO algorithm yielded the largest PV systems at 30, while the 
ISSA algorithm produced the fewest at 20. All algorithms resulted in convergent BESU. MFO produced 5 DGs, 
while ISSA had 4.

For the WT/BESU/DG configuration, the MFO algorithm gave the highest WT, 25. In contrast, the ISSA 
algorithm gave the lowest WT, 22. The ISSA algorithm produced the largest BESU, 21, while the MFO algorithm 
yielded the fewest, 19 BESU. MFO produced 5 DGs, while ISSA had 4.

The optimization time varied between the algorithms, with ISSA being the fastest, followed by SSA, and fol-
lowed by other algorithms in all configurations. These results demonstrate the effectiveness of the ISSA algorithm 
at optimizing size.

Comparative analysis of the contribution of microgrid energy generation
A comparison of the energy contributions from microgrid components using different design configurations. 
We analyzed three architectural combinations: PV/WT/BESU/DG, PV/BESU/DG, and WT/BESU/DG. Each 
architecture had five algorithms analyzed. Figure 13 shows the energy contributions of microgrid components 
throughout one year.

PV/WT/BESU/DG design provides the greatest energy since it uses four components. The PV and WT pro-
vide renewable energy, while the BESU and DG supply backup power when other sources fall short. The results 
are: The ISSA algorithm contributed 134.8739 MW, 75.9201 MW, 61.72 MW, and 8.2937 MW to PV, WT, BESU, 
and DG, respectively, and the SSA algorithm contributed 134.8739 MW, 94.4973 MW, 58.718 MW, and 8.2927 
MW to PV, WT, BESU, and DG, respectively. PV and WT systems generated the highest energy across all algo-
rithms. Figure 13a’s comparison graph shows each algorithm’s energy contribution differences.

PV/BESU/DG design produces less energy than the PV/WT/BESU/DG architecture since it uses just three 
components. This architecture does not use WT. When the PV is not producing enough electricity, the BESU 
and DG supply backup. ISSA algorithm generated an annual contribution of energy of 269.8327 MW, 79.965 
MW, and 13.4916 MW for PV, BESU, and DG, respectively; the results of all algorithms are illustrated in Fig. 13b.

WT/BESU/DG design produces the least energy since it uses WT, BESU, and DG to create power. This 
architecture does not use PV. The BESU and DG offer backup power when the WT is not producing enough 
energy, but the WT is still a renewable source. ISSA algorithm contributed 177.7404 MW, 74.4557 MW, and 
17.774 MW to WT, BESU, and DG, respectively; Fig. 13c shows how the different microgrid elements contribute 
energy with all algorithms.

The proposed ISSA algorithm outperforms competing methods in the energy contribution efficiency of 
microgrid elements. The ISSA algorithm may be a potential approach for optimizing MS and enhancing their 

Table 7.   Optimal sizing results from the proposed algorithms for the studied configurations.

MS Algorithm Npv

PV
(kW) Nwt

WT
(kW) Nbatt

BESU
(kW) NDG

DG
(kW)

Time
(s)

PV/WT/BESU/DG

ISSA 10 73.0000 9 45.1400 24 49.9999 3 2.4221 950.5462

SSA 10 73.0000 12 56.1855 23 49.2601 3 2.5213 955.0167

ALO 14 96.5790 8 38.1487 23 49.6377 3 2.7940 1082.542

DA 22 156.8879 12 56.0965 22 47.9773 3 2.6395 1212.283

MFO 25 180.8246 5 25.2562 23 49.0679 4 3.7316 1319.526

PV/BESU/DG

ISSA 20 146.0460 – – 24 49.9999 4 3.3284 1002.983

SSA 21 152.6540 – – 24 49.9980 4 3.4996 1055.774

ALO 26 185.4879 – – 23 49.6009 4 3.4523 1455.23

DA 27 196.3262 – – 24 49.9997 5 4.6178 1494.567

MFO 30 212.9717 – – 22 47.3736 5 5.0000 1667.075

WT/BESU/DG

ISSA – – 22 105.6795 21 45.5421 4 3.7800 1024.599

SSA – – 22 108.6075 20 41.6247 4 3.9000 1076.804

ALO – – 23 110.6090 20 41.5852 4 4.0000 1457.172

DA – – 25 121.8705 18 38.4849 5 4.5418 1491.183

MFO – – 25 124.9215 19 39.4913 5 4.1848 1623.207
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performance, essential for sustainable and dependable energy systems. PV/WT/BESU/DG configuration 
produces the most energy compared to PV/BESU/DG and WT/BESU/DG. Such signs suggest that the PV/WT/
BESU/DG configuration can be an effective solution for MS, especially in areas with high renewable energy 
potential.

Comparative analysis of the CO2 emissions, fuel consumption, and COE
An analysis was performed to compare the CO2 emissions, fuel consumption, and COE of the microgrid using 
different architecture combinations: PV/WT/BESU/DG, PV/BESU/DG, and WT/BESU/DG. The five proposed 
algorithms for each architecture were analyzed to determine their respective performances. As shown in Fig. 14.

The first configuration of PV/WT/BESU/DG. This configuration has the lowest CO2 emissions and fuel con-
sumption. The high cost of PV and WT components made this design the second-highest COE. Results of the 
ISSA algorithm of 12.4457 Tons/Year CO2 emissions, 3.7731 Tons/Year fuel consumption, and 0.21085 $/kWh 
COE. Figure 14a shows the comparative results with all algorithms.

The second configuration of PV/BESU/DG. The analysis demonstrated minimal CO2 and fuel usage for this 
configuration. This configuration earned the greatest COE since it used only solar energy. The outcomes of the 
ISSA algorithm are 18.8022 Tons/Year of CO2 emissions, 5.7002 Tons/Year of fuel consumption, and 0.27478 $/
kWh COE. Figure 14b shows the comparative results with all algorithms.

Figure 13.   The annual energy generation contribution in different architectural combinations of the MS, (a) 
PV/WT/BESU/DG, (b) PV/BESU/DG, (c) WT/BESU/DG.
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The third configuration of WT/BESU/DG. The research found that this configuration’s dependency on a few 
renewable resources increased CO2 emissions and fuel usage. Due to its wind-only design, this architecture has 
the lowest COE. The outcomes of the ISSA algorithm are 23.3429 Tons/Year of CO2 emissions, 7.0768 Tons/Year 
of fuel consumption, and 0.20803 $/kWh COE. Figure 14c shows the comparative results with all algorithms.

ISSA is more efficient and environmentally friendly than other algorithms in various MS configurations, 
according to the results. Today, since carbon footprints and RES are becoming more relevant, this is crucial. This 
research stressed the relevance of cost and environmental effects in MS design.

Analysis of the total NPC
In the following section, we will talk about the total NPC of the microgrid over the course of its lifetime. The 
analysis was done using the results from the ISSA, which were found to be better than the studied methods of 
sizing for microgrid optimization, which had a total NPC of 376,063.8 $. The total NPC of the MS is made up 
of four main components: the cost of capital, the cost of replacement, the cost of O&M, and the cost of fuel. 
Specifically, the capital costs, replacement costs, O&M costs, and fuel costs account for 69%, 11%, 11%, and 9% 
of the total NPC, respectively. Figure 15 presents a detailed analysis of the total NPC associated with the various 
components of the microgrid. Figure 15a illustrates the respective contributions of the PV array, WT, FC, DG, 
BESU, and Inverter to the total NPC, which are 47%, 25%, 9%, 9%, 8%, and 2%, respectively. The PV and WT, 
which serve as RES power supplies, occupy the largest proportion of the total NPC.

Figure 15b shows the cash flow division of the MS in the area of interest for the given case study. As shown 
in the diagram, all of the microgrid’s parts, except for the inverter, have costs for O&M. Also, it should be noted 
that the BESU, DG, and Inverter are the only components that have replacement costs. The PV and DG incur a 
significant portion of the operations and maintenance expenses. Additionally, higher fuel consumption costs. 
The outcomes are as follows: for the capital costs, the costs are divided among different types of equipment: 
the cost of PV is 156,950 $, the cost of WT is 90,280 $, the cost of the inverter is 2500 $, the cost of the BESU is 
3865.733 $, and the cost of DG is 2422.06 $. These costs are for the initial investment required to purchase the 
equipment. The replacement costs for the equipment are given as 2500 $ for the inverter, 26,321.1 $ for the BESU, 
and 14,733.32 $ for the DG. These are the costs involved in replacing the equipment after a certain period of time 

Figure 14.   The comparative analysis of the five proposed algorithms in terms of annual CO2 emissions, fuel 
consumption, and COE in different MSs, (a) PV/WT/BESU/DG, (b) PV/BESU/DG, (c) WT/BESU/DG.



23

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2920  | https://doi.org/10.1038/s41598-024-52232-y

www.nature.com/scientificreports/

or when the equipment has reached the end of its useful life. O&M costs are 19,080.06 $ for PV, 2359.655 $ for 
WT, 505.1947 $ for the BESU, and 18,072.47 $ for DG. These costs represent the ongoing costs associated with 
operating and maintaining the equipment. The fuel costs associated with the DG are 33,974.12 $ worth of fuel. 
This is for the cost of the diesel fuel that is required to run the generator.

This shows that the developed MS is a good option and can compete with the systems that are used in most 
microgrid communities right now. So, the project we just talked about is thought to be economically possible 
in the proposed case study area. If the microgrid project is put into place correctly, it should make the energy 
supply more efficient and help reach the sustainable development goals.

Analysis of power flow
This part focuses on the evaluation of the energy flow performance of the optimized MS according to the optimal 
combination of microgrid components. The optimal configuration was determined using the ISSA algorithm that 
was investigated in the section above; this analysis is based on ISSA algorithm results for one year, which were 
found to be the most suitable among the various optimization algorithms that were tested. Figure 16a,b depict the 
PV and WT’s annual power production according to the best system size. Figure 16c depicts the backup system’s 
(DG) power contribution, while Fig. 16d depicts the annual mix of power produced from PV, WT, BESU, and 
DG, as well as the load power demand. This analysis may be expanded throughout the course of the project’s 
lifetime, and it will need to consider the sizes of the microgrid components as established by the proposed ISSA 
method. This will aid in avoiding supply and demand imbalances within the microgrid.

Figure shown in Fig. 17 gives a clear representation of the contributions made by various sources to the 
microgrid’s overall power generation. The data indicates that the PV contributes 48% of the microgrid’s total 
energy production, which is a significant contribution. The WT, BESU, and DG are other elements of power 
generation. The WT accounts for around 27% of the total energy generated, while the BESU and DG contribute 
22% and 3%, respectively. The PV contributes significantly to the total energy generated, with an annual energy 
output of 134.8739 MW/Year. The WT, BESU, and DG also contribute a considerable amount of energy, with 
75.9201 MW/Year, 61.7200 MW/Year, and 8.2937 MW/Year, respectively. It is evident that the PV array is the 
primary source of energy generation, while the WT, BESU, and DG also play a crucial role in ensuring a stable 
and consistent supply of energy.

BESU is crucial to the HRES because it stores any surplus energy produced by the system. The battery’s SOC 
is shown in Fig. 18a. Depending on the load needed and the electricity provided by the PV and WT, the analysis 
reveals that the SOC of the BESU might vary significantly. The BESU is charged during times of surplus electricity 
production and drained during times of peak demand. This makes sure that the BESU can kick in when the 
energy output from the PV and WT isn’t enough to fulfill the needs of the intended region.

Figure 18a displays the battery SOC data for a full year. Hours make up the x-axis of the graph, while BESU 
state-of-charge percentages make up the y-axis. The selected time range of [1450–1650] allows us to examine the 
SOC of the BESU in more detail, as seen in the same picture at a larger scale. The figure depicts a little variation 
in SOC of the BESU between about 30% and 100% throughout this time and more so between the time intervals 
[6300–6500], with some times exhibiting a fall in SOC and others displaying an increase.

Figure 15.   Analysis of the total NPC, (a) the contributions of the different elements of the microgrid to cash 
flow, (b) the cash flow associated with the various components of the microgrid.
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Figure 18b presents an analysis of the battery SOC and the contribution of the DG power for the same period. 
This figure provides insight into how the battery bank’s SOC and the DG work together to fulfill load energy 
demand in the system. The DG is used as a backup system to provide power during periods of low power gen-
eration or high energy demand, such as at night or during periods of low wind or solar irradiation. The figure 
shows that the battery bank SOC and the DG work together tofulfill the energy demand. For example, during 

Figure 16.   The power generation by different components of the MS over the course of a year, (a) the PV, (b) 
the WT, (c) the DG, and (d) the annual electricity generation mix.

Figure 17.   The total annual power generation contribution of the PV, WT, BESU, and DG.
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periods of high energy demand, the DG provides additional power to the system, while the SOC of the BESU 
decreases as it is discharged to meet the demand. On the other hand, when there is little demand for energy, the 
SOC of the BESU rises as a result of the excess power that the PV and WT produce, and the DG may not even 
be necessary. But it’s important to keep in mind that the SOC of the BESU depends on many things, like how 
much energy the target area needs, how much power the HRES makes, and how much power the BESU can hold.

On the other hand, monthly presentations of PV power production and WT are given from January through 
December and are illustrated in Fig. 19. According to the research, the biggest monthly total PV power output 
occurs in July, suggesting that PV power generation is greater during the hot season than during the cold season. 
The PV system produced close to 15.7889 MWh/month throughout this month. On July 7th, solar electricity 
output peaks at 566.285 kWh/day, the highest level ever recorded. In contrast, electricity generation from PV is 
at an all-time low in December. This month, PV systems produced about 6.6308 MWh/month. On December 
11th, the lowest PV generation rate of the month was 118.0584 kWh/day.

The study found that March has the highest monthly total WT power production, indicating that WT power 
generation is higher in the cold season than in the hot season. This month, the WT system generated around 
12.5407 MWh/month. The greatest ever recorded production of wind-generated power was 1.0267 MWh/day 

Figure 18.   The hourly variation of the battery SOC and generated power by DG, (a) the annual profile of the 
battery SOC, (b) the contribution of the DG and battery SOC in the same period.

Figure 19.   Daily electricity output from wind and solar between January and December.
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on March 6. However, in February, WT’s power production hit a record low. This month, WT systems have a 
production of around 2.162 MWh/month. The lowest daily WT generating rate this month is 1.4399 kWh/day 
on February 17th. The combination of the highest total power generated from PV sources and WT was about 
23.4675 MWh/month in June. 10.7114 MWh/month is the bare minimum power this combination can produce 
in January.

These results provide valuable insights into the power generation trends of PV and WT systems. The integra-
tion between PV and wind energy during the cold and hot seasons suggests that the system is capable of generat-
ing a consistent amount of power throughout the year. However, there is variation in some months, highlighting 
the significance of choosing the optimal size for the system to guarantee it can meet the necessary energy demand.

Conclusion
This study offers the ISSA, a metaheuristic optimization technique inspired by nature, to determine the optimal 
size for an independent microgrid in Djelfa, Algeria. Three configurations of the MS have been implemented, 
such as: (1) PV/WT/BESU/DG, (2) PV/BESU/DG, and (3) WT/BESU/DG, which consist of PV, WT, BESU, and 
DG. The optimization problem’s primary focus was meeting the energy demand in an off-grid community. The 
suggested approach determines four design variables: the number of PV, WT, BESU, and DG. As a result, reli-
ability and renewable fraction are maximized while COE is minimized. The obtained results show that the PV/
WT/BESU /DG configuration is the most cost-effective and reliable system, with a COE of 0.2109 $/kWh, an NPC 
of 376,063.8 $, a LPSP of 4%, a REF of 96.0655, and an AD of 1.5291 days. Otherwise, the best MS configuration 
contains 10 PV, 9 WT, 24 BESU, and 3 DG. These systems work together to provide sustainable energy sources. 
This system consumes only 3.7731 Tons/Year of fuel, offset by an impressive 12.4457 Tons/Year of CO2 emission 
reduction. Additionally, the results showed that in all configurations studied, the ISSA algorithm reached the 
optimal solution faster and more efficiently than the traditional SSA, ALO, DA, and MFO algorithms. Further-
more, analyses of CO2 emissions, fuel consumption, COE, total NPC, and energy flow of the proposed system 
configurations were performed to obtain their impacts on the MS performance, which were confirmed to be 
particularly important and have a significant impact on the overall system performance. This suggests that the 
proposed microgrid is highly efficient and environmentally friendly. This makes it an ideal solution for remote 
areas or places with unreliable grid power supplies. Overall, this MS offers an effective solution to address energy 
challenges while promoting sustainability and reducing carbon footprints in the long run. This study will provide 
useful information for decision-makers working to develop Algeria’s renewable energy sector. In future studies, 
the proposed ISSA may be applied to other engineering problems.

Perspectives and future work
HRES helps reduce fossil fuel use, essential to a sustainable future. Future research should include varied energy 
sources. Matches expectations in each area. Scientists, politicians, and business leaders must collaborate to 
discover and deploy the most promising sources. Promote renewable energy and educate the public about its 
benefits. Optimization of HRES’ design and operation using AI algorithms and hybrid optimization methods 
may boost efficiency and reduce costs. AI can forecast energy demand and optimize RES. Hybrid optimization 
can balance cost, reliability, and environmental effects. These strategies help us control hybrid system complexity. 
We customize energy solutions for each place. With this, we can accelerate the transition to a sustainable energy 
system and improve future generations’ lives.

However, surplus energy is a significant concern with MS. Low demand or excessive energy output often 
generates this. Wasted or discarded energy increases MS expenses and resource usage inefficiency. Our technology 
heats buildings and powers irrigation using this energy. Unfortunately, past research has ignored surplus energy 
in MS. Figure 20 shows the yearly energy drain. The ISSA algorithm wastes and produces surplus energy in an 
MS over a year. The average energy dump for the year is 13.209 kW, and the total is 116.02 MW.

Propose linking rural microgrids in remote areas, where communities depend on localized energy sources 
like solar panels and WT. This network of interconnected systems enables communication between neighboring 
farms and facilitates energy sharing. In times of energy shortage, a microgrid can tap into a nearby microgrid’s 
surplus energy to meet demand, promoting a comprehensive EMS. This approach guarantees a continuous, reli-
able electricity supply for isolated communities.
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Data availability
The wind speed, solar radiation, and ambient temperature data used in this work are available on the following 
website: http://​www.​soda-​pro.​com/​web-​servi​ces/​meteo​data, accessed on April 5, 2023. The additional data 
offered in this research may be found in the main content of this publication.
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