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Critical analysis for nonlinear 
oscillations by least square HPM
Muhammad Rafiq 1, Muhammad Kamran 1, Hijaz Ahmad 2,3,4,5 & Afis Saliu 6*

In this study, a novel adapted homotopy perturbation method (HPM) is used to treat the nonlinear 
phenomena of free vibration in a system with one degree of freedom. This adaptation involves the 
integration of HPM with a least-squares optimizer, resulting in a hybrid method called the least 
square homotopy perturbation method (LSHPM). The LSHPM is tested on various nonlinear problems 
documented in the existing literature. To evaluate the effectiveness of the proposed approach, the 
identified problems are also tackled using HPM and the MATLAB built-in function bvp5c, and then the 
results are compared with those obtained using LSHPM. In addition, a comparative analysis is carried 
out with the results of the AG method as found in the literature. The results show that LSHPM is a 
reliable and efficient method suitable for solving more complicated initial value problems in the fields 
of science and engineering.

An oscillation system denotes a dynamic system that demonstrates periodic motion around an equilibrium 
point. Oscillations are ubiquitous in the natural world, appearing in various physical, mechanical, electrical, 
and biological systems. A comprehensive understanding of oscillation principles holds paramount importance 
in disciplines such as physics, engineering, and biology.

Dynamic systems that manifest oscillations or vibrations departing from linearity are referred to as nonlinear 
oscillating systems.These systems are commonly characterized by nonlinear differential equations, capturing 
intricate and at times unpredictable dynamics. These kinds of nonlinear oscillatory systems are found in many 
different scientific and engineering fields, including mechanics1, electromagnetic phenomena2, fluid dynamics3, 
biology4–7, chemistry8, and other fields9, including particle physics and cosmology10. These systems describe sev-
eral applications of nonlinear oscillating dynamics. A few examples of this diversity are as follows: an electronic 
circuit that integrates nonlinear components such as diodes or transistors11; a pendulum that exhibits significant 
amplitude swings and displays nonlinear characteristics12; a chemical reaction that displays oscillatory tendencies 
due to nonlinear kinetics13; and animal populations that oscillate due to nonlinear interactions14.

One of the main features of nonlinear oscillatory systems is their sensitivity to initial conditions and param-
eters. Minor adjustments to these parameters may cause the system to function significantly in a different way, 
which may lead to the rise of disordered dynamics or other oscillatory types15. Despite their intricacy, nonlinear 
oscillatory systems are an vital area of investigation that suggest critical perceptions into a class of real and syn-
thetic systems. Through in-depth research and modelling, scientists and engineers can learn a deep knowledge 
of the main procedures of these systems, which they can then use to develop the functionality and shape of vari-
ous systems. Nonlinear oscillators are currently being intensively explored in a wide range of study disciplines, 
including as multi-body systems, vibrations, transportation, structural dynamics, and others16–18.

Various methods, such as He’s Energy Balance method19,20, the Max-Min methodology2, and the homotopy 
analysis method21, have been introduced by researchers to tackle the challenges presented by nonlinear dif-
ferential equations in oscillatory systems. These methodologies provide effective approaches for analyzing and 
predicting the behavior of intricate systems.

In 2012, Ganji and Azimi22 addressed specific nonlinear oscillation systems by applying the max-min tech-
nique and developing an amplitude-frequency formulation. In 2022, Samadi et al.16 tackled similar problems 
utilizing the AGM and HPM procedures, and they compared their results with those obtained through the RK4 
technique. Qie et al.23 introduced a straightforward and distinctive method for addressing highly nonlinear 
oscillators. Their study offers an efficient approach to rapidly establish the amplitude-frequency correlation of 
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a nonlinear oscillator. The investigation conducted by Mohammadian and colleagues24 focused on examining 
the applicability of the AGM and its enhancement for nonlinear damped oscillators. In 2021, El-Dib25 utilized 
the HPM technique in conjunction with a rank-upgrading approach to achieve superior results in nonlinear 
oscillation.

Oscillation systems, commonly encountered in various scientific and engineering disciplines, are frequently 
characterized and examined using mathematical models. These models serve as reliable instruments for predict-
ing, understanding, and controlling the dynamic features of oscillatory processes. Researchers and engineers 
can find notable understandings into the complexities of oscillation systems by explaining physical principles 
into mathematical formulas.

Oscillation systems, distinguished by their rhythmic and repetitive motion, have a close connection with 
the language of differential equations. This association between oscillations and differential equations offers 
a robust framework for articulating and comprehending the dynamic characteristics of these systems across 
various scientific disciplines.

Differential equations serve as a modeling tool for problems involving diverse independent variables26–28. This 
area of study holds significance in mathematics, addressing intriguing issues related to the modeling of various 
phenomena in physics, biology29–31, and engineering32,33. For instance, phenomena like unsteady squeezing flow 
of heat and mass transfer34 and MHD Boundary Layer Flow over a Stretching Sheet26 find representation through 
differential equations, as the rate of change is a fundamental expression for describing physical phenomena in 
scientific investigations35. Diverse analytical and numerical methodologies are employed to gain valuable insights 
into system behavior, unraveling complexities inherent in the study. These approaches encompass the homotopy 
analysis method36–38, optimal homotopy asymptotic method39–41, Adomian decomposition method42, extended 
optimal homotopy asymptotic method39, the coupling of Runge-Kutta methods with the MATLAB neural net-
work built-in function nftool40,43, the conjunction of the homotopy analysis method with the neural network 
MATLAB function nftool40,44, utilization of artificial neural networks45, the coupling of the MATLAB built-in 
function nftool with the homotopy asymptotic method46, and the combination of the Levenberg-Marquardt 
technique with the MATLAB neural network nftool35,47.

The HPM has been extensively examined since 1999, evolving into a valuable mathematical tool due to the 
collaborative efforts of numerous scientists. Researchers have validated the convergence of the ground breaking 
HPM across various scenarios48, and diverse modifications have surfaced in the scholarly literature. Upon using 
the phrase “modified homotopy perturbation method” as a search query in Clarivate Analytics’ Web of Science, 
we identified over 400 relevant items. The combination of HPM with other methods has garnered significant 
attention, such as the Generalized Differential Quadrature Method49 and the Fourier transform50. The LSHPM, 
a hybrid of the HPM and the least square method51,52. It is Remarkably effective for solving ordinary, partial, 
and fractional differential equations

In 2012 GANJI1 and AZIMI22 applied the Max-Min Approach(MMA) and Amplitude Frequency Formula-
tion (AFF) to derive the approximate analytical solution for motion of nonlinear free vibration of conservative, 
single degree of freedom systems. The results were compared with the results obtained by forth-order runge-kutta 
method. In 2022 Sanadi et al.16 used the Akbari Ganji Method, abbreviated as AGM, and the HPM, to analytically 
investigate some oscillating systems with nonlinear behavior in a variety of situations and compare the results 
to the numerical approach to assess the validity and accuracy of these methods. The findings in all situations 
showed the precision of both the AGM and HPM, with all computations showing an amazing similarity to the 
RK4 method. In this manuscript, we use the newly developed LSHPM and MATLAB builtin functiobn bvp5c 
to unfold the problem22. This method combines HPM with a least squares minimization step, which minimizes 
approximation errors and speeds up convergence, therefore increasing the method’s effectiveness. Compared 
to other iterative techniques, it provides accurate solutions with fewer iterations. LSHPM is a priceless instru-
ment in a variety of scientific and technical fields due to its many advantages, which include simplicity in using, 
accuracy, and computational efficacy.

Methodology
We use the newly developed LSHPM and the bvp5c function integrated in MATLAB to solve the problem.

LSHPM
To understand the main idea about the LSHPM, let’s examine the following nonlinear differential equation

with the boundary conditions

Equation (1) can be expressed in the following format: A denotes a differential operator of general type, B 
represents a boundary operator, g is a well-defined analytic function and Ŵ denotes the boundary surrounding 
the domain � . We have further divided A into its linear and nonlinear summands, L and N, respectively. Con-
sequently, we can reformulate the Eq. (1) as follows

(1)A(v)− g(ξ) = 0, ξ ∈ �,

(2)B(v,
∂v

∂n
) = 0, ξ ∈ Ŵ,

(3)L(v)+ N(v)− g(ξ) = 0, ξ ∈ �.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1456  | https://doi.org/10.1038/s41598-024-51706-3

www.nature.com/scientificreports/

In the Eq. (3), our objective is to solve it using the HPM. To achieve this, we establish a homotopy function 
H : Rn × [0, 1] −→ R

m , for Eq. (3), and this homotopic function H satisfies the convex homotopic property 
as given below

Here, p represents an embedding parameter, while v0 is an initial approximation of Eq. (1), satisfying the bound-
ary conditions (2). Notably, from Eq. (4), it is evident that

and

The progression of the parameter p from 0 to 1 corresponds to the transformation of H(v, p) from v0 to v. The 
function H, parametrized by p, establishes a continuous trajectory from the known initial solution v0 to the 
desired solution v. This function is identified as a homotopy linking the functions H(v, 0) = L(v)− L(v0) and 
H(v, 1) = A(v)− g(ξ) . Moreover, L(v)− L(v0) and A(v)− g(ξ) are recognized as homotopic. The symbol R 
denotes the set of real values. As the parameter p varies within the interval [0, 1], v0 progressively converges 
toward the solution v. It is reasonable to posit that the solution to this equation can be represented as a series 
involving powers of p, as discussed in references53.

Taking p → 1 , estimated result that HPM will produce is

After introducing the unknown constants c′s into the derived series solution ũ given by Eq. (8) as coefficients of 
v′s in order to control the convergence, we designate this new series as Ũ =

∑∞
i=0 civi . Subsequently, we substitute 

the approximate solution Ũ  in place of the unknown function v in Eq. (3) to construct the residual function.

We now determine the residual sum of squares

The optimal values for the unknown constants ci are established by solving the system of equations ∂J
∂ci

= 0 . 
Afterward, by substituting these determined values of ci back into Ũ  , we achieve the desired solution through 
the application of the Least Square Homotopy Perturbation Method (LSHPM) approach.

bvp5c
The bvp5c code utilizes a finite difference implementation based on the four-stage Lobatto IIIa formula, as 
described in54. This formula, employing collocation, produces a C1 continuous solution with fifth-order accuracy 
consistently over the interval [a, b], where a, b ∈ ℜ . The implementation adopts the Lobatto IIIa formula as an 
implicit Runge-Kutta formula. The MATLAB built-in function bvp5c is specifically crafted to directly solve the 
associated algebraic equations, ensuring a smooth and efficient solution process.

(4)H(v, p) = (1− p)[L(v)− L(v0)]+ p
[

L(v)+ N(v)− g(ξ)
]

= 0, ξ ∈ �, p ∈ [0, 1].

(5)H(v, 0) = L(v)− L(v0) = 0,

(6)H(v, 1) = L(v)+ N(v)− f (ξ) = A(v)− g(ξ) = 0, ξ ∈ �.

(7)v = v0 + pv1 + p2v2 + p3v3 + · · · .

(8)ũ = lim
p→1

v = v0 + v1 + v2 + v3 + · · · .

(9)R̂(ξ , ci) = L(Ũ)+ N(Ũ)− g(ξ), ξ ∈ �..

(10)J(ci) =

∫

�

R̂2(ξ , ci)dξ , i = 0, 1, 2, · · · .

Figure 1.   Geometric representation of Case 1.
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Oscillating systems
Case 1. In Fig. 1, we assign m1 as the mass of the horizontal block, and m2 represents the mass of the vertically 
displaced block connected to m1 . The symbol L denotes the length, g stands for the acceleration due to gravity, 
and k represents the spring constant, as illustrated in Fig. 1. Introducing an additional parameter, denoted as v, 
defined as v =

x

L
 , with the condition that |v| << 1 . With this definition, the differential equation can be expressed 

in the following manner, as detailed in references16,22:

In this context, v, v̇ , and v̈ represent the dimensionless displacement, velocity, and acceleration, respectively, of 
the vibrating system. The initial displacement and velocity are specified as follows:

In the presented model, it is apparent that the restoring force of the springs follows a linear pattern. However, the 
introduction of damping introduces nonlinearity, leading to a mathematical model that deviates from linearity.

Case 2. Figure 2 depicts a simple pendulum with a rod connected to a rotating rigid frame. The rigid frame 
experiences continuous rotation at an angular velocity represented by � around the vertical axis, giving rise to 
the formulation of the ensuing nonlinear differential equation.16,22,

where, � =
r�2

g
, the variables θ and t are dimensionless and represent displacement and time, respectively. In 

the context of the Eq. (13), the expression −� cos θ sin θ is a result of the movement of the rotating rigid frame.
Consider

and

Substituting (15) and (16) into (13), we have

Given that both problems (11) and (17) can be viewed as highly nonlinear in nature. We will apply the HPM, 
LSHPM and the MATLAB built in function bvp5c to solve these problems.

Implementation of LSHPM
Now, we proceed to address problems (11) and (17) with the help of examples by varying the parameter values.

(11)v̈ + v̈v2
m2

m1

+
m2

m1

vv̇2 +

(

k

m1

+
gm2

Lm1

)

v +
gm2

2Lm1

v3 = 0

(12)v(0) = A, v̇(0) = 0.

(13)d2θ

dt2
+ (1−� cos θ) sin θ = 0,

(14)θ(0) = A,
dθ

dt
|t=0 = 0,

(15)sin θ = θ −
θ3

3!
+

θ5

5!
− · · · ,

(16)cos θ = 1−
θ2

2!
+

θ4

4!
+ · · · .

(17)d2θ

dt2
− (−1+�)θ +

1

6
(−2+ 2�)θ3 +

1

120
(1− 16�)θ5 = 0.

Figure 2.   Geometric representation of Case 2.
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Example 4.1  By taking K = 100 Newton/meter2 , g = 9.8meter/sec2 , m1 = 5Kg  m2 = 1Kg  , L = 1meter , 
A = π

6
meter , we rewrite the problem (11) as (11) as

As previously noted, the initial step in addressing equation (18) using the HPM method involves introducing 
a constant p as the perturbation factor, which is then integrated into Eq. (18). This results in the formulation of 
the resultant homotopy equation:

Upon substituting Eq. (7) into Eq. (20) and conducting simplifications and rearrangements that are contingent 
on the powers of p, we can derive the corresponding parameters

.

.

.

By solving Eqs. (21)–(23) with appropriate initial conditions, we can ascertain the parameters associated with 
vi for i = 0, 1, 2, . . . . It is noteworthy that, except for Eq. (21), the remaining equations are addressed with a zero 
initial condition. Upon resolving Eqs. (21) through (23), we can determine the values for v0 , v1 , and v2 . Through 
the synthesis of the solutions to Eqs. (21) through (23), we obtain the approximate solution for Eq. (18) using 
the HPM in the following manner.

This implies

It is crucial to note that incorporating a greater number of components, such as v3 , v4 , and so forth, within 
v in Eq. (24) has the potential to further enhance accuracy and minimize errors to a greater extent. Subse-
quently, Eq. (24) comprises various terms, including cos5(αt) , cos3(αt) , cos(αt) , t cos2(αt) sin(αt) , t sin(αt) , 
and t2 cos(αt) , where α = 4.686149806 . With this information, we propose that our trial solution for Eq. (18) 
within the LSHPM framework takes the following form:

When we apply the boundary conditions (19) to Eq. (25), we obtain

By putting  (26) in (25), we have

We establish the residual function by substituting ṽ in place of v in Eq. (18), we have

Upon performing the computation represented by Eq. (29):

(18)
d2

dt2
v +

1

5
v2

d2

dt2
v +

1

5
v

(

d

dt
v

)2

+
549

25
v +

49

50
v3 = 0,

(19)v(0) =
π

6
,

dv

dt
|t=0 = 0.

(20)H(v, p) =

{

(1− p)
(

d2

dt2
v + 549

25
v
)

+ p

(

d2

dt2
v + 1

5
v2 d2

dt2
v + 1

5
v
(

d
dt v

)2

+ 549
25

v + 49
50
v3
)

= 0.

(21)p0 :
{

d2

dt2
v0 +

549
25

v0 = 0,

(22)p1 :

{

d2

dt2
v1 +

549
25

v1 +
1
5

(

d2

dt2
v0

)

v20 +
1
5
v0

(

d
dt v0

)2

+ 49
50

v30 = 0,

(23)p2 :

{

d2

dt2
v2 +

549
25

v2 +
2
5

(

d2

dt2
v0

)

v0v1 +
1
5

(

d2

dt2
v1

)

v20 +
2
5
v0

(

d
dt v0

)

d
dt v1 +

1
5
v1

(

d
dt v0

)2

+
147
50

v20v1 = 0,

v = v0 + v1 + v2.

(24)
v = 0.0002524761914 cos5(αt)− 0.006546499663 cos3(αt)+ 0.5298927993 cos (α t)−

0.0008175481825 t cos2(αt) sin (αt)+ 0.02200129925 t sin (α t)− 0.0004781577738 t2 cos (αt).

(25)
ṽ = c0 cos5(αt)+ c1 cos3(αt)+ c2 cos (α t)+ c3 t cos

2(αt) sin (αt)+ c4 t sin (α t)+ c5 t
2 cos (α t).

(26)c0 = π/6− c1 − c2.

(27)

ṽ =
(π

6
− c1 − c2

)

cos5(αt)+ c1 cos
3(αt)+ c2 cos (α t)+ c3 cos

2(αt) sin (α t)t + c4t sin (α t)+ c5t
2 cos (α t).

(28)R̂(t, c1, c2, c3, c4, c5) =
d2

dt2
ṽ +

1

5

(

d2

dt2
ṽ

)

(ṽ)2 +
1

5
ṽ

(

d

dt
ṽ(t)

)2

+
549

25
ṽ +

49

50
(ṽ)3.
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The optimal values for the variables ci , with i ranging from 1 to 5, can be obtained by calculating the partial 
derivatives 

∂J

∂ci
 using MAPLE 2016 software. Once these optimal values are determined, they can be substituted 

into the proposed solution as outlined in Eq. (25):

Discussion of results of Example 4.1
The numerical results for both the HPM (22) and the LSHPM (28) are summarized in Table 1, and graphical 
representations of the HPM solution (22) and the LSHPM solution (28) are presented in Fig. 3.

(29)J(c1, c2, c3, c4, c5) =

∫ 3

0

R̂2(t, c1, c2, c3, c4, c5), dt,

(30)

ṽ = 0.0002205067 (cos (4.686149806t))5 − 0.006357987814 (cos (4.686149806t))3+

0.5297362569 cos (4.686149806t)− 0.0007420527380 (cos (4.686149806t))2 sin (4.686149806t)t+

0.02190612201 sin (4.686149806t)t − 0.0004639409468 cos (4.686149806t)t2.

Table 1.   Comparison of HPM, LSHPM, AGM and bvp5c results when k = 100 , g = 9.8 , m1 = 5, m2 = 1 , 
L = 1 , A =

π
6
.

t bvp5c AGM16 HPM LSHPM |AGM − bvp5c| |HPM − bvp5c| |LSHPM − bvp5c|

0 0.52359877 0.52359878 0.5235988 0.52359877 0 0 0

0.3 0.09348159 0.10071564 0.0934789 0.09342673 7.23× 10
−3

2.62× 10
−6 5.48× 10

−5

0.6 − 0.49167124 − 0.48485292 − 0.4916685 − 0.49166608 6.82× 10
−3

2.69× 10
−6

5.15× 10
−6

0.9 − 0.26805498 − 0.28724119 − 0.2680486 − 0.26793718 1.91× 10
−2

6.40× 10
−6

1.17× 10
−4

1.2 0.39917946 0.37434968 0.3991713 0.39918235 2.48× 10
−2

8.21× 10
−6

2.88× 10
−6

1.5 0.40780643 0.43125554 0.4077659 0.40768673 2.34× 10
−2 4.06× 10

−5
1.19× 10

−4

1.8 − 0.25623998 − 0.20844333 − 0.2562237 − 0.25630187 4.78× 10
−2 1.62× 10

−5
6.18× 10

−5

2.1 − 0.49613197 − 0.51144482 − 0.4959898 − 0.49600062 1.53× 10
−2

1.42× 10
−4

1.31× 10
−4

2.4 0.07994805 0.01168773 0.0798925 0.08008753 6.83× 10
−2 5.55× 10

−5
1.39× 10

−4

2.7 0.52342702 0.51594116 0.5231526 0.52325033 7.49× 10
−3

2.74× 10
−4

1.76× 10
−4

3.0 0.10694792 0.18679763 0.1071116 0.10682589 7.98× 10
−2

1.63× 10
−4

1.22× 10
−4

0 1 2 3 4 5 6 7 8 9 10
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

v(
t)

Figure 3.   Case 1: Graph representation of solutions Example 4.1.
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The problem represented by Eqs. (18) and (19) was numerically solved using the bvp5c function in MAT-
LAB, as detailed in references55. The analysis revealed that the computed maximum error was approximately 
9.779× 10−11.

A comprehensive examination of the results in Table 1 unequivocally demonstrates the superior performance 
of the LSHPM over AGM16. The LSHPM consistently delivers uniform results throughout the entire domain. 
In stark contrast, the HPM and AGM methods exhibit diminishing convergence as one moves away from the 
initial point, as illustrated by the data at x = 2.7 and x = 3 in Table 1.

The numerical solution of the problem represented by Eqs. (18) and (19) was carried out using MATLAB’s 
bvp5c function, as detailed in references55. The computed maximum error was found to be on the order of 
9.779× 10−11.

Analysis of the results presented in Table 1 clearly indicates the superior performance of the LSHPM over 
the AGM16. LSHPM consistently delivers uniform results throughout the entire domain, in stark contrast to the 
HPM and AGM, which exhibits diminishing convergence as one moves away from the initial point, as illustrated 
by the data at x = 2.7 and x = 3 in Table 1.

Example 4.2  By taking A = 0.25 , � = π
3
 , we rewrite the problem (17) as

Initially, we formulate a homotopy for Eq. (31) as follows

After substituting θ = θ0 + pθ1 + p2v2 + p3θ3 + · · · into Eq. (33) and performing some simplification and rear-
rangement based on the powers of p, we have the following system of differential equations

.

.

.

By solving equations (34) through (36) and applying the appropriate initial conditions, we can determine the 
parameters θ0 , θ1 , and θ2 . It is essential to emphasize that, apart from Eq. (34), the remaining equations are solved 
assuming zero initial conditions. Combining the solutions from Eqs. (34)–(36), we can derive an approximate 
HPM solution for Eq. (31), expressed as follows:

This implies

where α̂ = 0.866025404 and α = 4.686149806 . It follows that (37) consist of t sin
(

α̂ t
)

 ,
cos

(

α̂ t
)

, t2 cos
(

α̂ t
)

, t sin
(

α̂ t
)

cos2(αt), cos3(αt), t sin
(

α̂ t
)

cos4(αt), cos5(αt), cos7(αt), cos9(αt) .
With this information, we propose that our trial solution for Eq. (31) within the LSHPM framework takes 

the following form

Replacing θ̃ for θ in Eq. (32), and applying the boundary conditions described in (32) through (38), we derive 
the following results

(31)d2

dt2
θ +

3

4
θ −

1

40
θ5 = 0,

(32)θ(0) = A,
dθ

dt
|t=0 = 0.

(33)H(θ , p) =
(

1− p
)

(

d2

dt2
θ +

3

4
θ

)

+ p

(

d2

dt2
θ +

3

4
θ −

1

40
θ

)5

= 0.

(34)p0 :
{

d2

dt2
θ0 +

3
4
θ0 = 0,

(35)p1 :
{

d2

dt2
θ1 +

3
4
θ1 −

1
40

θ50 = 0,

(36)p2 :
{

d2

dx2
θ2 + 0.75 θ2 − 0.1250000000 θ1θ

4
0 = 0,

θ = θ0 + θ1 + θ2.

(37)

θ = 0.01152903607 t sin
(

α̂ t
)

+ 1.053490429 cos
(

α̂ t
)

− 0.00006162350038 t2 cos
(

α̂ t
)

−

0.0001423133782 t sin
(

α̂ t
)

cos2(αt)− 0.004519692720 cos3(αt)−

0.00009487558549 t sin
(

α̂ t
)

cos4(αt)− 0.001802399444 cos5(αt)+

0.00002483198831 cos7(αt)+ 0.000004382115584 cos9(αt),

(38)
θ̃ = c0 cos

9(αt)+ c1 cos
7(αt)+ c2 cos

5(αt)+ c3t sin
(

α̂ t
)

cos4(αt)

+ c4 cos
3(αt)+ c5t sin

(

α̂ t
)

cos2(αt)+ c6 cos
(

α̂ t
)

+ c7 cos
2(αt)+ c8 sin

(

α̂ t
)

t.
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Substituting (39) in (38), we have

Replacing θ̃ for θ in Eq. (31),We establish the residual function as

The error associated with the squared residual function is calculated as

The optimal values for the variables represented as ci (with i ranging from 1 to 8) can be determined by calculat-
ing the partial derivatives ∂J

∂ci
 (provided in equation 41) using the software MAPLE 2016. Once these optimal 

values are identified, they can be substituted into the proposed solution as outlined in Eq. (38). Thus, we obtain:

where α̂ = 0.866025404 . The graphical representations of the HPM solution (37) and the LSHPM solution (41) 
are illustrated in Fig. 4, and the numerical results for both the above mentioned HPM solution are presented in 
the Table 2 below

Discussion of results of Example 4.2
The numerical solution for the problem described by Eqs. (31) and (32) was carried out using MATLAB’s 
bvp5c functionality, with reference to56. The calculated maximum error was determined to be approximately 
2.203× 10−14 . A comprehensive assessment of the outcomes outlined in Table 2 unmistakably demonstrates 
the superior performance of the LSHPM over AGM16 and the Homotopy Perturbation Method (HPM). LSHPM 
consistently yields uniform results across the entire domain, in stark contrast to AGM and HPM, which display 
diminishing convergence as one moves away from the initial point, as evident in the data from x = 1.2 to x = 3 
in Table 2.

Analysis of results
It is worth noting that we utilized software, specifically MAPLE 2016, to solve Example 4.1 and Example 4.2. The 
computational time for these examples was remarkably efficient, taking only 10 seconds for the former and 3166 
seconds for the latter. In Eqs. (29) and (41), we employed Riemann sums with 250 partitions to approximate 
the integrals.

(39)c0 =
π

3
− c1 − c2 − c4 − c6.

θ̃ = (
π

3
− c1 − c2 − c4 − c6) cos

9(αt)+ c1 cos
7(αt)+ c2 cos

5(αt)+ c3t sin
(

α̂, t
)

cos4(αt)

+ c4 cos
3(αt)+ c5t sin

(

α̂ t
)

cos2(αt)+ c6 cos
(

α̂ t
)

+ c7 cos
(

α̂ t
)

t2 + c8 sin
(

α̂ t
)

t.

(40)R̂(t, c1, c2, c3, c4, c5, c6, c7, c8) =
d2

dt2
θ̃ (t)+ 3/4 θ̃ (t)− 1/40

(

θ̃ (t)
)5

.

(41)J(c1, c2, c3, c4, c5, c6, c7, c8) =

∫ 3

0

R̂2(t, c1, c2, c3, c4, c5, c6, c7, c8) dt.

(42)

θ̃ (t) = 0.000002040196957
(

cos
(

α̂ t
))9

+ 0.00002558107881
(

cos
(

α̂ t
))7

−

0.001795429257
(

cos
(

α̂ t
))5

− 0.00009499027043 sin
(

α̂ t
)(

cos
(

α̂ t
))4

t−

0.004520492279
(

cos
(

α̂ t
))3

− 0.0001411065420 sin
(

α̂ t
)(

cos
(

α̂ t
))2

t+
(

1.053485851− 0.00006121848538 t2
)

cos
(

α̂ t
)

+ 0.01153294833 sin
(

α̂ t
)

t,

Table 2.   Comparison of HPM, LSHPM, AGM and bvp5c results when A = 0.25 , � =
π
3
.

t bvp5c AGM16 HPM LSHPM |AGM − bvp5c| |HPM − bvp5c| |LSHPM − bvp5c|

0 1.047197551196598 1.0471975 1.047197550939894 1.047197551196598 5.12× 10
−8 0 0

0.3 1.013424671727360 1.013424 1.013424669235789 1.013424683416030 6.71× 10
−7

2.23× 10
−9

1.17× 10
−8

0.6 0.913974676081452 0.91393499 0.913974568049639 0.913974673027138 3.97× 10
−5

1.08× 10
−7

3.08× 10
−9

0.9 0.754613093042295 0.75422333 0.754612307207641 0.754613068460900 3.89× 10
−4 7.86× 10

−7
2.47× 10

−8

1.2 0.545187482426038 0.54340399 0.545185016157168 0.545187481834252 1.78× 10
−3

2.47× 10
−6

6.15× 10
−10

1.5 0.299304758127733 0.29405221 0.299299962043787 0.299304750241314 5.25× 10
−3

4.79× 10
−6

7.94× 10
−9

1.8 0.033344937498370 0.02180802 0.033337895380757 0.033344898483015 1.15× 10
−2

7.04× 10
−6

3.91× 10
−8

2.1 − 0.234852897025061 − 0.25534761 − 0.234861718041070 − 0.234852915665731 2.05× 10
−2

8.82× 10
−6

1.87× 10
−8

2.4 − 0.487292693627270 − 0.51818573 − 0.487302480151352 − 0.487292697296632 3.09× 10
−2

9.79× 10
−6

3.72× 10
−9

2.7 − 0.707109264825293 − 0.74765086 − 0.707118292264257 − 0.707109310645214 4.05× 10
−2

9.03× 10
−6

4.59× 10
−8

3.0 − 0.879899013158141 − 0.92648305 − 0.879904794111942 − 0.879899025013068 4.66× 10
−2

5.78× 10
−6

1.19× 10
−8
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Validation
We have validated the three methods, HPM, LSHPM, and the numerical method using MATLAB’s builtin 
function bvp5c for both Examples as illustrated in Table 1 and Table 2. As shown in these tables, it is clear that 
HPM and LSHPM work better and are more accurate than AGM16 in this investigation. In “Analysis of results” 
section, we provide a detailed description of the initial conditions for both scenarios. As this study primarily 
aims to assess the influence of individual parameters on the system’s response, we employ LSHPM with a variety 
of initial conditions to examine the results. Next, we delve into the analysis of Case 1.

The results presented for case 1:

•	 For Fig.  5, we take K = 100Newton/meter2 , g = 9.8meter/sec2 , m1 = 5 Kg  m2 = 1 Kg  , L = 1meter , 
A = [ π

24
, π
12
, π

8
, π

6
, π

3
]meter . Figure 5 reveal that changes in amplitude have no discernible impact on the 

0 1 2 3 4 5 6 7 8 9 10

t

-1.5

-1

-0.5

0

0.5

1

1.5

LSHPM

HPM

Figure 4.   Graph of solutions of Example 4.2.
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Figure 5.   Case 1. Graph for LSHPM solutions with different inititial conditions A.
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period or frequency; nonetheless, they exert a significant influence on the system’s behavior. In oscillatory 
systems, the count and regularity of oscillations are fundamental attributes. It is feasible to scrutinize the 
motion of the system and ascertain the quantity of oscillations occurring within a defined time frame through 
the resolution of the equations of motion.

•	 For Fig. 6, we take the values as: K = [50, 100, 300]Newton/meter2 , g = 9.8meter/sec2 , m1 = 5 Kg m2 = 1 Kg , 
L = 1meter , A = π

6
, π

3
]meter . Figure 6 depicts that as the stiffness increases, there is a noticeable decrease 

in the duration of the oscillation’s period. Specifically, when the stiffness value is elevated from 50 to 300, 

0 1 2 3 4 5 6 7 8 9 10
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

v(
t)

K=50
K=100
K=300

Figure 6.   Case 1. Graph for LSHPM solutions with different values of K.
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Figure 7.   Case 1. Graph for LSHPM solutions with different values of m1.
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the period time diminishes from approximately two seconds to less than one second within a three-second 
interval.

•	 For Fig.  7, we take K = 100Newton/meter2 , g = 9.8meter/sec2 , m1 = [5, 10, 15] Kg , m2 = 1 Kg  , 
L = 1meter , A = π

6
, π

3
]meter . The findings in Fig. 7 suggest that an increase in mass results in an extended 

period of oscillation. This occurs because as the mass of the block increases, the system’s inertia also increases, 
leading to a reduction in frequency. This behavior closely resembles the observations in Fig. 6, where stiffness 
modifications produced analogous effects.

•	 For Fig. 7, we take K = 100Newton/meter2 , g = 9.8meter/sec2 , m1 = 5 Kg , m2 = 1 Kg , L = [1, 2, 3]meter , 
A = π

6
, π

3
]meter . Figure 8 provides insights into the influence of increasing the length parameter, denoted as 

L, on the period of oscillation. It is observed that augmenting the length results in a minor extension of the 
oscillation period. However, this particular parameter exerts a less pronounced effect on the system’s temporal 
response and frequency when compared to other variables. Additionally, Fig. 8 illustrates the consequences 
of altering amplitudes on the system’s temporal behavior. Any adjustments in amplitude manifest as changes 
in the slope of the curves, signifying an increase in angular velocity. Notably, these alterations in amplitude 
do not significantly impact the system’s oscillation period.

The results presented for case 2:

•	 For Fig. 9, we take � = π
3
 , A =[0.5, 1, 1.5]. Figure 9 depicts how various amplitudes impact the time response 

of the system. It is evident that alterations in amplitude result in a more or less abrupt shift in the slope of 
the lines, signifying an increase in angular velocity. As shown in Fig. 9, adjustments in amplitude do not 
significantly influence the system’s period time.

•	 For Fig. 10, we consider A = π
3
 , � =[0.5, 1, 1.5]. Figure 10 demonstrates the impact of varying � values on the 

system’s time response. Once again, a noticeable shift in time response is observed when significant changes 
occur in the parameter � , as depicted in Fig. 10.

In upcoming endeavors, our approach will involve the utilization of LSHPM alongside the MATLAB built-in 
function bvp5c for the resolution of diverse mathematical models that encompass nonlinear ordinary, partial, 
and fractional differential equations.

Conclusion
In our investigation, we utilized three different approaches-MATLAB’s built-in function bvp5c, HPM, and 
LSHPM-to explore two distinct oscillating systems, comparing their results against numerical solutions. The 
comparative error analysis for both cases, as presented in Tables 1 and 2, highlights the effectiveness of these 
methods in dealing with oscillating systems. Notably, LSHPM demonstrated superior convergence rates and 
higher accuracy when compared to AGM and HPM, as clearly indicated in Tables 1 and 2.

The adaptability of these methods was demonstrated by modifying individual parameters, such as stiffness 
or length, showcasing LSHPM’s ability to deliver highly accurate results closely aligned with numerical values. 
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Figure 8.   Case 1. Graph for LSHPM solutions with different values of l.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1456  | https://doi.org/10.1038/s41598-024-51706-3

www.nature.com/scientificreports/

Furthermore, the exploration of various parameters revealed that stiffness significantly influenced the system’s 
period time, while mass and length had inverse effects. Importantly, variations in length were observed to have 
a relatively milder impact on the system’s temporal response and frequency when compared to changes in stiff-
ness and mass.

Data availibility
All data generated or analyzed during this study are included in this published article.
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Figure 9.   Case 2. Graph for different initial conditions A.
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Figure 10.   Case 2. Graph of solutions for different values of �.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1456  | https://doi.org/10.1038/s41598-024-51706-3

www.nature.com/scientificreports/

References
	 1.	 Lazutkin, G., Davydov, D., Varzhitskiy, L., Boyarov, K. & Volkova, T. Non-linear oscillations of mechanical systems with structure 

damping vibration protection devices. Procedia Eng. 176, 334–343 (2017).
	 2.	 Ibsen, L., Barari, A. & Kimiaeifar, A. Analysis of highly nonlinear oscillation systems using he’s max–min method and comparison 

ith homotopy analysis and energy balance methods. Sadhana 35, 433–448. https://​doi.​org/​10.​1007/​s12046-​010-​0024-y (2010).
	 3.	 Decuyper, J., De Troyer, T., Runacres, M., Tiels, K. & Schoukens, J. Nonlinear state-space modelling of the kinematics of an oscil-

lating circular cylinder in a fluid flow. Mech. Syst. Signal Process. 98, 209–230 (2018).
	 4.	 Yang, K., Joshua Yang, J., Huang, R. & Yang, Y. Nonlinearity in memristors for neuromorphic dynamic systems. Small Sci. 2, 

2100049 (2022).
	 5.	 Kumar, S., Chauhan, R., Momani, S. & Hadid, S. Numerical investigations on Covid-19 model through singular and non-singular 

fractional operators. Numer. Methods Part. Differ. Equ. 6, 66 (2020).
	 6.	 Kumar, S., Kumar, A., Samet, B. & Dutta, H. A study on fractional host-parasitoid population dynamical model to describe insect 

species. Numer. Methods Part. Differ. Equ. 37, 1673–1692 (2021).
	 7.	 Mohammadi, H., Kumar, S., Rezapour, S. & Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing 

loss due to mumps virus with optimal control. Chaos Solitons Fract. 144, 110668 (2021).
	 8.	 Qian, H. & Bishop, L. M. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: 

Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks. Int. J. Mol. Sci. 11, 3472–3500 (2010).
	 9.	 Eusebi Borzelli, G. L. & Carniel, S. A reconciling vision of the Adriatic–Ionian bimodal oscillating system. Sci. Rep. 13, 2334 (2023).
	10.	 Aydiner, E. Anomalous cyclic in the neutrino oscillations. Sci. Rep. 13, 12651 (2023).
	11.	 Hałgas, S. A spice-oriented method for finding multiple dc solutions in nonlinear circuits. Appl. Sci. 13, 2369 (2023).
	12.	 Sun, N., Wu, Y., Fang, Y. & Chen, H. Nonlinear antiswing control for crane systems with double-pendulum swing effects and 

uncertain parameters: Design and experiments. IEEE Trans. Autom. Sci. Eng. 15, 1413–1422 (2017).
	13.	 Seth, G. S., Bhattacharyya, A., Kumar, R. & Mishra, M. K. Modeling and numerical simulation of hydromagnetic natural convection 

Casson fluid flow with nth-order chemical reaction and Newtonian heating in porous medium. J. Porous Media 22, 66 (2019).
	14.	 Kundu, S., Muruganandam, P., Ghosh, D. & Lakshmanan, M. Amplitude-mediated spiral chimera pattern in a nonlinear reac-

tion–diffusion system. Phys. Rev. E 103, 062209 (2021).
	15.	 Henriques, J., Portillo, J., Sheng, W., Gato, L. & Falcão, A. d. O. Dynamics and control of air turbines in oscillating-water-column 

wave energy converters: Analyses and case study. Renew. Sustain. Energy Rev. 112, 571–589 (2019).
	16.	 Samadi, H., Shams Mohammadi, N., Shamoushaki, M., Asadi, Z. & Domiri Ganji, D. An analytical investigation and comparison 

of oscillating systems with nonlinear behavior using agm and hpm. Alex. Eng. J.61, 8987–8996. https://​doi.​org/​10.​1016/j.​aej.​2022.​
02.​036 (2022).

	17.	 Ushijima, S., Nezu, I. & Okuyama, Y. Numerical prediction for transportation of non-uniform particles accumulated under oscil-
lating turbulent flows. In Matsuno, K., Ecer, A., Satofuka, N., Periaux, J. & Fox, P. (Eds.) Parallel Computational Fluid Dynamics 
2002 531–538 (North-Holland, 2003). https://​doi.​org/​10.​1016/​B978-​04445​0680-1/​50067-X.

	18.	 Xie, G., Lei, J., Deng, X., Wang, J. & Chen, H. Numerical investigation on two-phase oscillating flow and heat transfer enhancement 
for a cooling channel with ribs. Int. J. Therm. Sci. 187, 108191. https://​doi.​org/​10.​1016/j.​ijthe​rmals​ci.​2023.​108191 (2023).

	19.	 Sfahani, M., Barari, A., Omidvar, M., Ganji, S. & Domairry, G. Dynamic response of inextensible beams by improved energy bal-
ance method. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 225, 66–73 (2011).

	20.	 Ganji, S., Ganji, D. & Karimpour, S. He’s energy balance and he’s variational methods for nonlinear oscillations in engineering. 
Int. J. Mod. Phys. B 23, 461–471 (2009).

	21.	 Afzal, S., Qayyum, M. & Chambashi, G. Heat and mass transfer with entropy optimization in hybrid nanofluid using heat source 
and velocity slip: A Hamilton–Crosser approach. Sci. Rep. 13, 12392 (2023).

	22.	 Ganji, D. D. & Azimi, M. Application of max min approach and amplitude frequency formulation to nonlinear oscillation systems. 
UPB Sci. Bull. 74, 131–140 (2012).

	23.	 Qie, N., Houa, W.-F. & He, J.-H. The fastest insight into the large amplitude vibration of a string. Rep. Mech. Eng. 2, 1–5 (2021).
	24.	 Mohammadian, M. & Shariati, M. Application of ag method and its improvement to nonlinear damped oscillators. Sci. Iran. 27, 

203–214 (2020).
	25.	 El-Dib, Y. O. Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation. Math. Comput. 

Simul. 182, 555–565 (2021).
	26.	 Ullah, H. et al. Mhd boundary layer flow over a stretching sheet: A new stochastic method. Math. Probl. Eng. 2021, 1–26 (2021).
	27.	 Khan, I. et al. Falkner–Skan equation with heat transfer: A new stochastic numerical approach. Math. Probl. Eng. 2021, 1–17 (2021).
	28.	 Khan, R. A. et al. Heat transfer between two porous parallel plates of steady nano fludis with Brownian and thermophoretic effects: 

A new stochastic numerical approach. Int. Commun. Heat Mass Transf. 126, 105436 (2021).
	29.	 Khan, M. A., Ullah, S. & Kumar, S. A robust study on 2019-ncov outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 

1–20 (2021).
	30.	 Kumar, S., Kumar, R., Cattani, C. & Samet, B. Chaotic behaviour of fractional predator–prey dynamical system. Chaos Solitons 

Fract. 135, 109811 (2020).
	31.	 Kumar, S., Kumar, R., Osman, M. & Samet, B. A wavelet based numerical scheme for fractional order seir epidemic of measles by 

using genocchi polynomials. Numer. Methods Part. Differ. Equ. 37, 1250–1268 (2021).
	32.	 Ullah, H. et al. Neuro-computing for hall current and mhd effects on the flow of micro-polar nano-fluid between two parallel 

rotating plates. Arab. J. Sci. Eng. 47, 16371–16391 (2022).
	33.	 Ullah, H. et al. Intelligent computing of Levenberg–Marquard technique backpropagation neural networks for numerical treatment 

of squeezing nanofluid flow between two circular plates. Math. Probl. Eng. 6, 66 (2022).
	34.	 Bilal, H. et al. A Levenberg–Marquardt backpropagation method for unsteady squeezing flow of heat and mass transfer behaviour 

between parallel plates. Adv. Mech. Eng. 13, 16878140211040896 (2021).
	35.	 Shoaib, M. et al. Heat transfer impacts on Maxwell nanofluid flow over a vertical moving surface with mhd using stochastic 

numerical technique via artificial neural networks. Coatings 11, 1483 (2021).
	36.	 Jawad, M., Shah, Z., Khan, A., Islam, S. & Ullah, H. Three-dimensional magnetohydrodynamic nanofluid thin-film flow with heat 

and mass transfer over an inclined porous rotating disk. Adv. Mech. Eng. 11, 1687814019869757 (2019).
	37.	 Khan, A. et al. Darcy–Forchheimer flow of mhd cnts nanofluid radiative thermal behaviour and convective non uniform heat 

source/sink in the rotating frame with microstructure and inertial characteristics. AIP Adv. 8, 66 (2018).
	38.	 Fiza, M., Ullah, H. & Islam, S. Three-dimensional mhd rotating flow of viscoelastic nanofluid in porous medium between parallel 

plates. J. Porous Media 23, 66 (2020).
	39.	 Ullah, H., Islam, S. & Fiza, M. Analytical solution for three-dimensional problem of condensation film on inclined rotating disk 

by extended optimal homotopy asymptotic method. Iran. J. Sci. Technol. Trans. Mech. Eng. 40, 265–273 (2016).
	40.	 Ullah, H., Islam, S., Khan, I., Bin Shafie, S. & Fiza, M. Mhd boundary layer flow of an incompressible upper convected Maxwell 

fluid by optimal homotopy asymptotic method. Sci. Iran. 24, 202–210 (2017).
	41.	 Fiza, M., Islam, S., Ullah, H. & Ali, Z. Mhd thin film oldroyd-b fluid with heat and viscous dissipation over oscillating vertical 

belts. Heat Transf. Res. 50, 66 (2019).

https://doi.org/10.1007/s12046-010-0024-y
https://doi.org/10.1016/j.aej.2022.02.036
https://doi.org/10.1016/j.aej.2022.02.036
https://doi.org/10.1016/B978-044450680-1/50067-X
https://doi.org/10.1016/j.ijthermalsci.2023.108191


14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1456  | https://doi.org/10.1038/s41598-024-51706-3

www.nature.com/scientificreports/

	42.	 Fiza, M., Ullah, H., Islam, S., Nasir, S. & Khan, I. Analytical solution of heat transfer and unsteady flow of second-grade fluid past 
a porous, moving, and oscillating vertical belt. Heat Transf. Res. 50, 66 (2019).

	43.	 Akbar, A. et al. Intelligent computing paradigm for the Buongiorno model of nanofluid flow with partial slip and mhd effects over 
a rotating disk. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 103, e202200141 (2023).

	44.	 Akbar, A. et al. A design of neural networks to study mhd and heat transfer in two phase model of nano-fluid flow in the presence 
of thermal radiation. Waves Random Complex Media 66, 1–24 (2022).

	45.	 Ullah, H. et al. Numerical treatment of squeezed mhd jeffrey fluid flow with Cattaneo Chrisstov heat flux in a rotating frame using 
Levnberg–Marquard method. Alex. Eng. J. 66, 1031–1050 (2023).

	46.	 Ullah, H. et al. Levenberg–Marquardt backpropagation for numerical treatment of micropolar flow in a porous channel with mass 
injection. Complexity 2021, 1–12 (2021).

	47.	 Khan, I. et al. Fractional analysis of mhd boundary layer flow over a stretching sheet in porous medium: A new stochastic method. 
J. Funct. Spaces 2021, 19 (2021).

	48.	 Sayevand, K. & Jafari, H. On systems of nonlinear equations: Some modified iteration formulas by the homotopy perturbation 
method with accelerated fourth-and fifth-order convergence. Appl. Math. Model. 40, 1467–1476 (2016).

	49.	 Shafiei, N., Kazemi, M., Safi, M. & Ghadiri, M. Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int. 
J. Eng. Sci. 106, 77–94 (2016).

	50.	 Nourazar, S. & Nazari-Golshan, A. A new modification to homotopy perturbation method combined with Fourier transform for 
solving nonlinear Cauchy reaction diffusion equation. Indian J. Phys. 89, 61–71 (2015).

	51.	 Qayyum, M. & Oscar, I. Least square homotopy perturbation method for ordinary differential equations. J. Math. 2021, 1–16 
(2021).

	52.	 Qayyum, M. et al. Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method. Sci. Rep. 12, 
18406 (2022).

	53.	 Fathollahi, R., Alizadeh, A., Kamaribidkorpeh, P., Abed, M. A. & Pasha, P. Analyzing the effect of radiation on the unsteady 2d 
mhd al2o3-water flow through parallel squeezing sheets by agm and hpm. Alex. Eng. J. 69, 207–219. https://​doi.​org/​10.​1016/j.​aej.​
2022.​11.​035 (2023).

	54.	 Kierzenka, J. & Shampine, L. F. A bvp solver that controls residual and error. J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008).
	55.	 Vedavathi, N., Dharmaiah, G., Noeiaghdam, S. & Fernandez-Gamiz, U. A chemical engineering application on hyperbolic tangent 

flow examination about sphere with Brownian motion and thermo phoresis effects using bvp5c. Case Stud. Therm. Eng. 40, 102491. 
https://​doi.​org/​10.​1016/j.​csite.​2022.​102491 (2022).

	56.	 Anwar Beg, O., Zohra, F., Uddin, M., Ismail, A. & Sathasivam, S. Energy conservation of nanofluids from a biomagnetic needle in 
the presence of Stefan Blowing: Lie symmetry and numerical simulation. Case Stud. Therm. Eng. 24, 100861. https://​doi.​org/​10.​
1016/j.​csite.​2021.​100861 (2021).

Acknowledgements
The authors are thankful to the Heads of their institutions for providing excellent research environment.

Author contributions
Conceptualization: M.R.; Formal analysis: H.A.; Investigation: A.S.; Methodology: M.R.; Software: M.R.; Re-
Graphical representation and Adding analysis of data: H.A. and A.S.; Writing—original draft: M.R.; Writing—
review editing: H.A. and A.S.; Re-modelling design: A.S.; Re-Validation: A.S.; M.K.; Prepared Rebuttal, Proof-
read. Furthermore, all the authors equally contributed to the writing and proofreading of the paper. All authors 
reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1016/j.aej.2022.11.035
https://doi.org/10.1016/j.aej.2022.11.035
https://doi.org/10.1016/j.csite.2022.102491
https://doi.org/10.1016/j.csite.2021.100861
https://doi.org/10.1016/j.csite.2021.100861
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Critical analysis for nonlinear oscillations by least square HPM
	Methodology
	LSHPM
	bvp5c

	Oscillating systems
	Implementation of LSHPM
	Discussion of results of Example 4.1
	Discussion of results of Example 4.2

	Analysis of results
	Validation

	Conclusion
	References
	Acknowledgements


