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Association between metabolites 
in tryptophan‑kynurenine 
pathway and inflammatory bowel 
disease: a two‑sample Mendelian 
randomization
Fangqian Yu 1, Yutong Du 1, Cong Li 1, Haiyan Zhang 1, Weiming Lai 2, Sheng Li 1, Zhenhao Ye 1, 
Wenbin Fu 1, Shumin Li 3, Xiang‑Guang Li 2* & Ding Luo 1*

Previous observational studies have suggested an association between tryptophan (TRP)–kynurenine 
(KYN) pathway and inflammatory bowel disease (IBD). However, whether there is a causal relationship 
among them remains unclear. Therefore, a two-sample Mendelian randomization (MR) study was 
conducted to explore the potential causal effects of crucial metabolites in TRP–KYN pathway on 
IBD and its subtypes. Using summary data from genome-wide association studies, a two-sample 
MR was employed to evaluate the genetic associations between TRP and KYN as exposures and IBD 
as an outcome. The inverse variance weighted method was used as the primary MR analysis, with 
MR-Egger, weighted mode, simple mode, and weighted median methods as complementary analyses. 
The odds ratios (OR) and 95% confidence intervals (CI) were determined for TRP–IBD (OR 0.739, 
95% CI [0.697; 0.783]), TRP–UC (OR 0.875, 95% CI [0.814; 0.942]), TRP–CD (OR 0.685, 95% CI [0.613; 
0.765]), KYN–IBD (OR 4.406, 95% CI [2.247; 8.641]), KYN–UC (OR 2.578, 95% CI [1.368; 4.858], and 
KYN–CD (OR 13.516, 95% CI [4.919; 37.134]). Collectively, the MR analysis demonstrated a significant 
protective association between TRP and IBD, whereas KYN was identified as a risk factor for IBD.

Inflammatory bowel disease (IBD) is a group of immune-mediated disorders that predominantly affect the gas-
trointestinal tract, including ulcerative colitis (UC) and Crohn’s disease (CD). These disorders are commonly 
associated with clinical manifestations such as abdominal pain, diarrhea, mucopurulent bloody stool, and other 
symptoms. In severe cases, IBD can result in malnutrition and intestinal perforation1. This chronic condition 
is currently incurable and necessitates lifelong medication. The global prevalence rate of IBD exceeds 0.3%2. 
The impact of IBD on patients’ quality of life is significant, and its high prevalence represents a substantial eco-
nomic and medical burden to society. Therefore, investigating the risk factors and pathogenesis is of paramount 
importance for IBD.

Tryptophan (TRP) is an important component of the human diet and plays a crucial role in inflammatory 
responses and gastrointestinal health3. TRP deficiency can lead to dysbiosis of the gut microbiota, resulting in 
gastrointestinal and even systemic inflammation3,4. In the human body, the major catabolic pathway of TRP is the 
kynurenine (KYN) pathway (KP), which accounts for 95% of total TRP degradation5. TRP can regulate intestinal 
inflammation6–8 and thus affect the occurrence of inflammatory bowel disease (IBD). Clinical studies have found 
that the serum TRP levels in IBD patients are significantly lower than those in normal control individuals, and 
there is a significant increase in the KYN/TRP ratio9. Furthermore, these levels are closely related to the degree 
of endoscopic inflammation and disease activity10,11. TRP deficiency and metabolic abnormalities may promote 
the development of IBD9. Previous studies have also indicated the crucial role of TRP–KYN metabolism dys-
regulation in the occurrence and progression of IBD12. In gene expression research, current studies have revealed 
the involvement of several gene loci associated with the TRP–KYN metabolic pathway in the susceptibility and 
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progression of inflammatory bowel disease (IBD). Through genome-wide association studies, polymorphisms in 
key gene loci, including IL23R13, NOD2/CARD1514, and ATG16L113, are significantly associated with the risk of 
developing IBD. These gene loci are functionally linked to the TRP–KYN metabolic pathway, and their encoded 
proteins play critical roles in immune response regulation, inflammation signaling pathways, and autophagy, 
among other processes15–18. The association between TRP–KYN metabolites and IBD, however, could be biased 
due to confounding variables19,20, and the genetic and causal relationships are still unclear. Additionally, most 
of the above studies are observational and may have potential detection errors and confounding factors, which 
may reverse causality.

Therefore, we employed the Mendelian randomization (MR), a method of causal inference using genetic 
variation, to exclude genetic and causal relationships between crucial metabolites in TRP–KYN pathway and 
IBD. By utilizing the invariance of individual genotypes and Mendelian laws of inheritance (random allocation 
of alleles during gamete formation), it can avoid interference from common confounding factors, such as the 
postnatal environment, socioeconomic status, and behavioral habits21.

Materials and methods
Study design
This study investigated the causal relationship between TRP–KYN metabolites as exposures and the outcome 
of IBD by adhering to the fundamental principles and core assumptions of MR. Three assumptions required for 
MR analysis were met: (1) the genetic instrumental variables (IVs) used in the study were strongly associated 
with TRP and KYN; (2) the genetic IVs were not associated with any confounding factors related to IBD; and (3) 
the genetic IVs influenced IBD only through their effect on TRP and KYN. This study utilized publicly available 
datasets that had already received ethical approval and informed consent; therefore, additional ethical approval 
or informed consent was unnecessary.

Data sources
We utilized the most up-to-date and comprehensive Genome-Wide Association Studies (GWAS) datasets cur-
rently available for investigating metabolites in TRP–KYN pathway and IBD. The GWAS summary statistics for 
IBD (including CD and UC) were obtained from The IEU GWAS database (https://​gwas.​mrcieu.​ac.​uk/​datas​ets/), 
while the data for metabolites in TRP–KYN pathway (only TRP and KYN were available) were obtained from the 
GWAS catalog (https://​www.​ebi.​ac.​uk/​gwas/). All of these datasets can be downloaded. To prevent bias, only indi-
viduals of European origin were included in this Mendelian randomization study. Tables S1 summarizes the study 
population, including the number of genetic variants (i.e., SNPs available, Ncase) used in the analysis (Table 1).

Selection of genetic IVs
We implemented strict quality control criteria to filter the SNPs from the GWAS summary data. SNPs signifi-
cantly associated with the risk factor at the genome-wide level (p value < 5 × 108) were identified based on prior 
GWAS standards24. Subsequently, SNPs demonstrating independent inheritance and minimal linkage disequi-
librium (LD) (r2 < 0.001, kb = 10,000) were selected. Ambiguous or palindromic SNPs were further excluded. To 
avoid the risk of weak instrumental bias, the F statistic (F = beta2/se2) was performed to evaluate the strength 
of the IV25,26. When F > 10, the association between the IV and exposures was deemed to be sufficiently robust, 
thereby safeguarding the results of the MR analysis against potential weak instrumental bias.

To measure the strength of the IVs, we calculated the F-statistic for each SNP, with those SNPs having an 
F-statistic < 10 being excluded as weak instruments. The MR-PRESSO test was further performed to detect and 
exclude any SNPs with potential pleiotropy27 and PhenoScanner (http://​www.​pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) 
was introduced to identify and remove SNPs with potential associations with confounding factors that might 
violate the independence assumption.

After several rounds of rigorous filtering, a set of eligible instrumental variables for the subsequent MR 
analysis were obtained.

Statistical analysis
To examine the relationship between exposures and outcome, multiple MR approaches were employed. The 
inverse variance weighted (IVW) method was the primary approach used, given its ability to produce unbiased 
estimates and avoid confounding factors in the absence of horizontal pleiotropy28. Moreover, the MR-Egger, 
weighted mode, simple mode, and weighted median methods were also used for supplementary and substitution 
analysis29. To ensure the quality and robustness of our research results, we conducted various analyses, including 

Table 1.   Characteristics of the study population.

Phenotype GWAS ID SNPs available Ncase Ncontrol Year published Population

IBD finn-b-K11_IBD_STRICT 16,380,455 3753 210,300 2021 European

UC finn-b-ULCERNAS 16,380,457 2207 210,300 2021 European

CD finn-b-K11_KELACROHN 16,380,466 940 217,852 2021 European

TRP22 – 15,430,214 8299 – 2022 European

KYN23 – 2,545,666 7824 – 2014 European

https://gwas.mrcieu.ac.uk/datasets/
https://www.ebi.ac.uk/gwas/
http://www.phenoscanner.medschl.cam.ac.uk/
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pleiotropy, heterogeneity, and sensitivity analyses. MR-Egger regression was used to assess the presence of hori-
zontal pleiotropy. Cochran’s Q-test statistic was used to examine heterogeneity among all SNPs in each database30. 
Finally, a leave-one-out sensitivity analysis was conducted to verify the stability of the results. The analyses were 
conducted using RStudio software version 4.2.2 and the packages ‘TwoSampleMR’ and ‘MRPRESSO’.

Results
To investigate the causative influence of TRP on IBD risk, significant at the genome-wide level (p < 5 × 10−8) and 
independently inherited (r2 < 0.001, kb = 10,000) from the 15,430,214 SNPs, 173 SNPs were tentatively selected 
as IVs for IBD. Based on the findings from the PhenoScanner database, we excluded 28 SNPs associated with 
schizophrenia due to their potential impact on IBD occurrence31, such as rs12211045. Finally, a total of 145 SNPs 
were approved for MR analysis to assess the causal impact of TRP on IBD risk. Using the same methodology, 
we identified a total of 43 SNPs strongly associated with kynurenine (KYN) from a pool of 2,545,666 SNPs. 
Additionally, we excluded 6 SNPs associated with risk factors for IBD, including smoking (rs10774625, 
rs11065987, rs17630235, rs11066188), celiac disease (rs3184504, rs653178), and IBD (rs3184504, rs653178)32–34. 
Taking into account the differential effects of smoking on UC and CD33,35, we conducted MR analysis ultimately 
using 41 SNPs to assess the causal influence of KYN on UC risk, and 37 SNPs to investigate the causal effects of 
KYN on IBD and CD risk. All of the IVs had F-statistics > 10 (ranging from 29.76 to 39.70 for TRP and ranging 
from 29.58 to 111.13 for KYN). Supplementary Tables S1 contain comprehensive information regarding all the 
IVs.

Causal effects of TRP on IBD, UC, and CD
The Mendelian randomization analysis demonstrated a significant association between TRP and IBD outcomes 
(Fig. 1), indicating that TRP has a protective effect against IBD (odds ratio [OR]IVW = 0.739, 95% confidence 
interval (CI) [0.697–0.783]; P < 0.05), including CD ([OR]IVW = 0.685, 95% CI [0.613–0.765]; P < 0.05) and UC 
([OR]IVW = 0.875, 95% CI [0.814–0.942]; P < 0.05). These results were consistent across IVW, MR-Egger, weighted 
median, simple mode, and weighted mode methods. Table 2 shows the details of the MR analysis investigating 
the causal effects of genetically predicted TRP on IBD, UC, and CD.

Causal effects of KYN on IBD, UC, and CD
Figure 2 shows the results of estimating the causal effect of KYN on IBD, UC and CD. The MR results from the 
IVW showed a significant correlation between KYN and an increased risk of IBD ([OR]IVW = 4.406, 95% CI 
[2.247–8.641]; P < 0.05).There was a relationship between KYN and UC, with OR > 1 and P < 0.05 in the IVW, 
indicating that KYN is a risk factor for UC ([OR]IVW = 2.578, 95% CI [1.368–4.858]; P < 0.05).All MR methods 
showed a significant increase in the risk of CD with KYN ([OR]IVW = 13.516, 95% CI [4.919–37.134]; P < 0.05). 
Details of the MR analysis investigating the causal effects of genetically predicted KYN on IBD (including UC 
and CD) are provided in Table 3.

Figure 1.   Scatter plots of the genetic associations with TRP against IBD risk using different MR methods. (A) 
TRP (tryptophan) against IBD (inflammatory bowel disease) risk, (B) TRP (tryptophan) against UC (ulcerative 
colitis) risk, and (C) TRP (tryptophan) against CD (Crohn’s disease) risk. The slopes of each line represent the 
causal association for each method.
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Sensitivity analyses
To ensure the validity of the aforementioned results, we conducted additional analyses to assess pleiotropy, 
heterogeneity, and sensitivity. Assessment using the MR-Egger intercept and the MR–PRESSO global test showed 
no evidence of horizontal pleiotropy (all P > 0.05). As statistical heterogeneity was detected for KYN in IBD 
(p < 0.05), we employed the IVW approach in a random-effects model. Heterogeneity tests using MR-Egger 
and IVW methods for the remaining results did not reveal significant heterogeneity. Finally, our leave-one-out 
sensitivity analysis confirmed the robustness of our causal estimates of the effect of genetically predicted TRP on 
IBD. The results of the sensitivity analysis are presented in Table 4 and Supplementary Figs. S1–S6.

Table 2.   Mendelian randomization estimates for causal effects of TRP on IBD. IBD inflammatory bowel 
disease, UC ulcerative colitis, CD Crohn’s disease, TRY​ tryptophan.

Exposure Outcome Method OR 95% CI P value

TRP

IBD

IVW 0.739 0.697–0.783 1.19e−24

MR-Egger 0.471 0.295–0.753 2.09e−03

Weighted median 0.770 0.713–0.831 2.10e−11

Simple mode 0.771 0.625–0.952 1.72e−02

Weighted mode 0.771 0.635–0.938 1.04e−02

UC

IVW 0.875 0.814–0.942 3.95e−04

MR-Egger 0.586 0.323–1.063 8.13e−02

Weighted median 0.849 0.774–0.932 6.17e−04

Simple mode 0.814 0.644–1.028 8.68e−02

Weighted mode 0.814 0.636–1.041 1.04e−01

CD

IVW 0.685 0.613–0.765 2.56e−11

MR-Egger 0.962 0.390–2.373 9.34e−01

Weighted median 0.625 0.539–0.725 5.87e−10

Simple mode 0.619 0.421–0.912 1.67e−02

Weighted mode 0.619 0.420–0.913 1.71e−02

Figure 2.   Scatter plots of the genetic associations with KYN(Kynurenine) against IBD (inflammatory bowel 
disease) risk using different MR methods. (A) KYN (Kynurenine) against IBD risk, (B) KYN (Kynurenine) 
against UC (ulcerative colitis) risk, and (C) KYN (Kynurenine) against CD (Crohn’s disease) risk. The slopes of 
each line represent the causal association for each method.
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Discussion
This study provides a comprehensive analysis of the causal relationships between TRP–KYN pathway and IBD 
using summary GWAS data. Due to a lack of GWAS data for all metabolites in this pathway in public databases, 
we opted to focus our research on GWAS data specifically for the key metabolites in this pathway, namely TRP 
and KYN.

By performing MR analysis, we can circumvent cumbersome and confounder-prone steps to estimate causal 
relationships between exposure and outcome, providing genetic support for the physiological and pathological 
processes between TRP and IBD. Our MR analysis revealed that TRP is a protective factor for both UC and CD, 
while KYN is a risk factor for IBD. These findings were consistent across different Mendelian tools and statistical 
models, and no evidence of horizontal pleiotropy was detected in any of the analyses. Although there was some 
heterogeneity observed in one result, we utilized statistical methods to optimize our analysis, ensuring that our 
conclusions are reliable.

TRP is an essential amino acid in mammals and is a biosynthetic precursor of numerous microbial and 
host metabolites. It is mainly metabolized through the KYN, serotonin, and indole pathways36, with 95% of 
TRP being metabolized via the KYN pathway under the action of rate-limiting enzymes, such as indoleamine 
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO)5. IDO is a key enzyme in the metabolism of TRP, 
and IDO directs TRP toward KYN degradation. Additionally, increased IDO activity reduces the availability of 
TRP for other pathways37. IDO activity can also be stimulated by inflammatory cytokines, leading to increased 
consumption of TRP, especially in inflammatory states38.

In patients with IBD, there are significant alterations in the levels of TRP and KYN. Numerous clinical studies 
have shown that the expression of IDO, the concentration of KYN, and the KYN/TRP ratio are higher in the 
colonic and ileal lesions of IBD patients than in those of normal control individuals39. These indices are positively 
correlated with disease severity40. However, in nonlesion tissue of IBD patients, these indices are lower and similar 
to those of healthy control individuals41. In addition, the concentration of KYN in serum samples of IBD patients 
is also significantly increased42,43. Steroids, salicylates, and antitumor necrosis factor (TNF) biologics, such as 

Table 3.   Mendelian randomization estimates for causal effects of KYN on IBD. IBD inflammatory bowel 
disease, UC ulcerative colitis, CD Crohn’s disease, KYN kynurenine.

Exposure Outcome Method OR 95% CI P value

KYN

IBD

IVW 4.406 2.247–8.641 1.58 e−05

MR-Egger 2.586 0.558–11.986 2.32 e−01

Weighted median 4.163 1.767–9.808 1.10 e−03

Simple mode 0.568 0.048–6.682 6.56 e−01

Weighted mode 0.599 0.037–9.559 7.19 e−01

UC

IVW 2.578 1.368–4.858 3.38 e−03

MR-Egger 1.190 0.270–5.237 8.18 e−01

Weighted median 3.156 1.249–7.976 1.50 e−02

Simple mode 3.156 0.427–23.315 2.66 e−01

Weighted mode 3.895 0.687–22.074 0.13 e−01

CD

IVW 13.516 4.919–37.134 4.42 e−07

MR-Egger 12.443 1.221–126.765 4.03 e−02

Weighted median 38.857 9.166–164.720 6.81 e−07

Simple mode 131.837 7.579–2293.046 1.90 e−03

Weighted mode 79.732 4.190–1517.157 6.11 e−03

Table 4.   Heterogeneity and pleiotropy analysis of TRP and KYN with IBD, UC and CD. IBD inflammatory 
bowel disease, UC ulcerative colitis, CD Crohn’s disease, TRY​ tryptophan, KYN kynurenine.

Exposure Outcome

MR-Egger IVW

Intercept

Pleiotropy Cochran’s Q Heterogeneity Cochran’s Q Heterogeneity

p value Statistic p value Statistic p value

TRP

IBD 0.051 0.060 16.817 1 20.406 1

UC 0.046 0.185 3.665 1 5.437 1

CD − 0.039 0.457 16.951 1 17.506 1

KYN

IBD 0.012 0.452 59.876 5.50e−3 60.861 5.93e−3

UC 0.014 0.264 36.081 0.603 37.361 0.589

CD 0.001 0.938 36.929 0.379 36.935 0.452
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infliximab, significantly reduce IDO expression and reverse the changes in KYN concentration and the KYN/
TRP ratio in the treatment of IBD12,19,40,41.

Previous studies have found that TRP and its metabolites regulate intestinal inflammation9 and may exert 
anti-inflammatory effects through mechanisms such as regulating cellular immune function6, regulating the 
homeostasis of the intestinal microbiota8, and maintaining the balance and stability of the intestinal mucosa7,44. 
For example, KYN and indole can activate the aryl hydrocarbon receptor (AhR) by binding to it in a series 
of processes known as the TRP-AhR pathway. The activated TRP-AhR pathway can induce the expression of 
downstream cytokines such as interleukin-22 (IL-22) and interleukin-17 (IL-17)45, regulate T-cell proliferation, 
and thereby regulate intestinal immunity46. The TRP-AhR pathway plays an important role in regulating intestinal 
inflammation12, and Card9, as a susceptibility gene for inflammatory bowel disease (IBD), is closely related to 
this pathway. Studies have found that the intestinal microbiota of Card9 gene knockout mice cannot metabolize 
TRP into AhR ligands, resulting in reduced production of IL-22 and increased susceptibility to colitis47. When 
Card9 gene knockout mice were inoculated with three strains of lactobacilli that can metabolize TRP or treated 
with an AhR agonist, intestinal inflammation in mice was reduced8. Researchers have fed wild-type and AhR 
gene knockout mice diets containing either no TRP or 0.5% TRP. They found that the TRP diet improved 
colitis symptoms and severity in wild-type mice but not in AhR gene knockout mice. The TRP diet reduced 
the expression of inflammatory cytokines in the wild-type group and increased the expression of IL-22 and 
Stat3 mRNA in the colon, which protected the integrity of the epithelium48. In a mouse colitis model induced 
by dextran sulfate sodium (DSS), mice that lacked a TRP diet showed significantly increased susceptibility to 
inflammation and decreased levels of antimicrobial peptides in the gut49, which could be improved by adding 
TRP. In a mouse model of DSS-induced colitis, mice in the TRP group had less weight loss, reduced frequency of 
bloody stools, and improved histological changes in colonic tissue compared to mice in the no-TRP diet group50. 
In a piglet model of DSS-induced colitis, adding extra TRP to their regular diet improved clinical symptoms of 
colitis, increased piglet weight, and reduced intestinal permeability, which was possibly related to the reduced 
expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, interferon (IFN)-γ) and 
apoptosis initiators (caspase-8, Bax)51. A reduction in AhR ligand production has also been observed in the 
microbiota of IBD individuals, and a TRP-rich diet can improve treatment by increasing AhR ligands52, which 
ensures normal gut metabolism46,53. These results suggest that supplementation with TRP can improve intestinal 
inflammation and regulate epithelial homeostasis. Thus, TRP may be an effective immunomodulator for the 
treatment of IBD.

Current research indicates that KYN has a protective effect on intestinal inflammation through the AhR 
pathway53,54, which contradicts our research findings that suggest that KYN may be a potential risk factor for 
IBD. Some researchers have suggested that the activation of the KYN pathway during an inflammatory state is 
part of a physiological negative feedback compensation mechanism aimed at counteracting disease symptoms19,55. 
In summary, the potential mechanisms underlying the relationships among TRP, KYN, and IBD are complex 
and require further investigation. Based on current research, changes in TRP and KYN levels may make the 
KYN/TRP ratio a potential surrogate marker for disease activity in IBD patients, which could aid in predicting 
treatment response or relapse and better monitoring of the disease54.

Targeted therapy and modulation of the TRP–KYN pathway have primarily been the focus of cancer 
research56. Regulating key enzymes of TRP metabolism, such as IDO and TDO, can have therapeutic effects 
on diseases. In colorectal cancer cells, overexpression of IDO inhibits the infiltration of immune cells (CD3+ T, 
CD8+ T, CD3+ CD8+ T, and CD57+ NK cells), leading to immune escape, distant metastasis, consumption 
of local TRP, and the production of pro-apoptotic factors, significantly promoting disease progression and 
shortening overall survival of patients57–59. The IDO inhibitor 1-L-methyltryptophan (1-L-MT) reduces the 
transcription and proliferation of human colorectal cancer cells, induces mitochondrial damage, and causes 
cancer cell apoptosis60. When combined with chemotherapy and targeted drugs, 1-L-MT improves the overall 
survival rate of cancer patients61. Our research has revealed a clear causal relationship between TRP and KYN 
and IBD. We believe that further investigation of the mechanism between TRP–KYN metabolism and IBD may 
have great potential for targeted therapy of IBD.

Given the above, our study has several strengths. First, we used a large-scale GWAS dataset for MR analysis, 
allowing us to conduct robust MR analyses with a population of individuals of European ancestry, thus 
minimizing the impact of population stratification bias. Second, we used independent and strong genetic variants 
as instrumental variables (IVs) to mitigate the effects of linkage disequilibrium (LD) and weak instrument bias. 
Third, we used multiple MR methods, providing robust support for exploring the causal effects of TRP and 
KYN on IBD.

However, our study also has several limitations. First, although we used a GWAS dataset, we were unable to 
analyze different stages of IBD (e.g., active disease vs. remission) due to a lack of relative studies. Further MR 
analyses are needed to estimate the causal relationship between TRP and KYN and IBD at different stages.

Second, although our results suggest that TRP plays a protective role for IBD outcomes and KYN is a risk 
factor for IBD, the results of MR analyses are only based on genetic evidence. Additionally, definitive causal 
relationships require further mechanistic studies and randomized controlled trials. Third, although the 
populations we studied were all European, they were not from the same country, which may introduce some bias. 
Additionally, due to genetic, environmental, and dietary differences between Eastern and Western populations, 
these results need to be validated in other ethnic groups. Recent epidemiological surveys have shown that non-
European populations are becoming new victims of IBD1,62. In Asia, the incidence of IBD has increased rapidly 
in the past 20 years63. We performed MR analysis using IBD13 and tryptophan22 data from East and South Asian 
populations. However, due to the lack of large sample sizes and high-quality GWAS data in Asian populations, 
we did not obtain any significant conclusions. Thus, the support of future large-scale GWAS data is needed to 
conduct relevant MR studies involving other ethnic groups. Fourth, although we matched all selected SNPs 



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:201  | https://doi.org/10.1038/s41598-023-50990-9

www.nature.com/scientificreports/

with the PhenoScanner database to avoid potential confounding factors and related horizontal pleiotropy, this 
measure cannot completely eliminate the influence of horizontal pleiotropy because the exact biological functions 
of many genetic variants are still unknown.

Conclusions
This MR study provides new genetic evidence for the causal relationship between key metabolites in TRP–KYN 
pathway (including TRP and KYN) and the risk of IBD (including UC and CD). We recommend giving due 
attention to TRP supplementation in IBD patients and propose that disease evaluation and assessment in 
these patients can be conducted by monitoring the KYN/TRP ratio. Further experiments or population-based 
observational studies are needed to elucidate the potential mechanisms underlying the relationships among 
TRP, KYN, and IBD and to explore the possibility of targeted therapy for IBD based on the TRP–KYN metabolic 
pathway.

Data availability
We used publicly available databases, and all data mentioned in the manuscript can be found on the website 
provided in the article.
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