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Reversible data hiding in encrypted 
images with multi‑prediction 
and adaptive huffman encoding
Hua Ren 1,2*, Guang‑rong Bai 1,2, Tong‑tong Chen 1,2, Zhen Yue 3 & Ru‑yong Ren 4

With the rapid development of multimedia technology and the massive accumulation of user data, 
a huge amount of data is rapidly generated and shared over the network, while the problems of 
inappropriate data access and abuse persist. Reversible data hiding in encrypted images (RDHEI) is 
a privacy-preserving method that embeds protected data in an encrypted domain and accurately 
extracts the embedded data without affecting the original content. However, the amount of 
embedded data has been one of the major limitations in the performance and application of RDHEI. 
Currently, the main approaches to improve the capacity of RDHEI are either to increase the overall 
capacity or to reduce the length of the auxiliary information. In this paper, we propose a novel RDHEI 
scheme based on multi-prediction and adaptive Huffman encoding. To increase the overall capacity, 
we propose a multi-prediction, called MED+GAP predictor, to generate the label map data of non-
reference pixels prior to image encryption. Then, an adaptive Huffman coding is designed to compress 
the generated labels in order to reduce the embedding length of the auxiliary information used for 
the extraction and recovery. Experiments show that the proposed method with MED+GAP predictor 
and adaptive Huffman coding improves 0.052 bpp, 0.023 bpp, and 0.047 bpp on average over the 
other state-of-the-art methods on the BOSSBase, BOWS-2, and UCID datasets, respectively, while 
maintaining security and reversibility.

Nowadays, an increasing number of individuals are uploading their private images to cloud platforms because 
of the convenient access to shared resources provided by cloud storage devices. Although this approach reduces 
costs associated with storage and maintenance, there are still security and data management challenges that arise 
from the accumulation of user data. Data hiding is an effective technique for protecting privacy, as it involves 
embedding data in multimedia content in a subtly modified manner and extracting the embedded data without 
any errors. As a result, cloud managers do not need to allocate additional space for managing user data. In order 
to recover the carrier content losslessly when extracting the data, reversible data hiding (RDH) methods have 
been further developed. In recent decades, RDH methods such as difference expansion (DE)1, histogram shifting 
(HS)2, prediction error expansion (PEE)3 and pixel value ordering (PVO)4 have received increasing interest and 
have been widely applied in military communications, medical diagnosis and law forensics.

When the content of a multimedia carrier needs to be protected, the carrier can first be encrypted and then 
secret data can be embedded in the encrypted content, which is also known as reversible data hiding in encrypted 
images (RDHEI)5,6,14. It is an emerging research hotspot that allows reversible hiding in encrypted data and loss-
less recovery of the original plaintext carrier, involving three parties: the content-owner, the data-hider, and the 
receiver. The content-owner encrypts the original image while preserving some of the pixel redundancy of the 
carrier image, the data-hider embeds secret data based on the preserved redundancy, and the receiver holding 
the corresponding keys is able to accurately extract the secret data or recover the original image without loss. 
At present, the existing RDHEI schemes can be roughly divided into two main categories based on the order of 
image encryption and reserved embedding space: vacating room after encryption (VRAE) and reserving room 
before encryption (RRBE).

The VRAE technique is designed to embed secret data within an encrypted image. Figure 1 illustrates the 
framework. The data-hider vacates room from the encrypted image and embeds secret data into the vacated room 
based on a data hiding key. In theory, this process is challenging because encryption increases the entropy of the 
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carrier and reduces available redundancy space. However, VRAE-based RDHEI research has gained significant 
attention from various related studies7–19. In7, the original image was encrypted using a pseudorandom stream 
cipher, and one bit of the secret data was embedded by flipping the three least significant bits (LSBs) of all the 
pixels in a selected block. This work was the first to provide a theoretical validation of embedding secret data in 
the encrypted domain. However, since the smoothness of blocks is taken into account in the extraction phase, 
extraction errors can occur if inappropriate blocks are selected. Later, edge matching8 and full embedding9 mech-
anisms were proposed one after another. Unfortunately, all these mechanisms share a common problem: image 
decryption must be performed before the data can be extracted. To solve this issue, Zhang10 further compressed 
the LSBs of the encrypted image and embedded the secret data directly into the vacated LSBs to perform data 
extraction and image recovery operations separately. To increase the capacity, Liu and Pun11 proposed a redun-
dant space transfer scheme that introduced a special encryption operation to redundantly transfer the plaintext 
to the ciphertext. Subsequently, Qin et al.12 provided an improved version for different types of encrypted binary 
blocks to achieve embedding of secret data using sparse matrix coding. Yi and Zhou13 developed a parametric 
binary tree labelling method and applied it to the VRAE scheme, achieving average embedding rates of 1.9656 
bpp and 1.8808 bpp on the BOSSbass and BOW-2 datasets. Fu et al.14 used Huffman coding to compress the 
most significant bit (MSB) of the high bit plane of the embeddable block, embedding the auxiliary information, 
Huffman coding, and the secret data in the vacated space, and achieving a high embedding capacity. Wang 
et al.15 used an adaptive Huffman coding technique to compress the MSB bit planes. By preserving the auxiliary 
and encoded information, the carrier image can be recovered losslessly after data extraction. Zhou and Chen16 
proposed a novel VRAE-based algorithm that combines block classification and multi-layer processing to fully 
explore the redundant space.

In contrast, RRBE research requires a pre-processing operation before image encryption to free the embed-
ding space, or more precisely, to create space in the plaintext domain20–32, as shown in Fig. 2. Ma et al.20 proposed 
the first RRBE solution to address capacity and visual quality issues in VRAE. Building on this, Malik et al.21 
developed a prediction error method to pre-process images to create the redundant space. Specific locations of 
embedded data were captured based on bitmap information and secret data was embedded the captured loca-
tions using MSB bit planes. To better exploit the correlation between adjacent pixels, Cao et al.22 considered a 
block-level sparse representation in the hiding of secret data. Yin et al.23 used pixel prediction and multi-MSB 
rearrangement to embed more secret data in the reserved space. Since the rearrangement involves a large amount 
of auxiliary information, this mechanism uses lossless arithmetic coding to compress the auxiliary information, 
and then embeds the compressed information together with the secret data into the reserved space. Yin et al.32 
used multi-MSB prediction and Huffman coding for the original image to perform a bit substitution operation 
on the embeddable pixels based on the auxiliary information. Non-reference pixels in the original image were 
predicted using a MED detector to generate their predicted values, and nine predefined Huffman codes 00,01,100,
101,1100,1101,1110,11110,11111 were used to encode the generated prediction values to yield the label map data.

However, there are two issues with the scheme32. One is that the label map data generated from different 
images is compressed using predefined nine variable-length encodings, which may not be the most optimal 
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Figure 1.   The VRAE framework.
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method. Alternatively, finding the most appropriate nine variable-length encoding mapping rules for different 
images could reduce the length of the binary label map, thereby improving the embeddability. The other is that 
the MED median edge detector only uses the three pixels surrounding the current pixel to make the prediction, 
without sufficiently considering the effect of the other neighbouring pixels, which can lead to larger prediction 
errors. A larger error can lead to a reduction in the number of embedding bits that can be carried by the pixel 
label. Therefore, replacing a single prediction with a more accurate prediction algorithm that improves the pre-
diction accuracy has the potential to further improve the embeddability. In view of this, the contributions of the 
proposed method are summarized as follows. 

(1)	 We propose a multi-prediction method to generate the predicted values. The original pixels are predicted 
using different predictors to fully exploit the influence of the other neighbouring pixels. This results in 
more embeddable bits of non-reference pixels, thereby creating more redundancy space.

(2)	 We design an adaptive Huffman encoding method to encode the generated prediction values. The predic-
tion values are adaptively encoded instead of using predefined encoding rules. The selection of different 
images can lead to different encoding rules. These encoding rules can adapt to the image characteristics 
and thus improve the embedding capacity.

(3)	 We conduct a wide range of experiments, including single-prediction/multi-prediction and non-adaptive /
adaptive encoding, to comprehensively analyze and verify the effectiveness of the proposed method. Experi-
mental results show that the proposed method improves 0.052 bpp, 0.023 bpp, and 0.047 bpp on average 
compared to other state-of-the-art methods on the BOSSBase, BOWS-2, and UCID datasets, while main-
taining security and reversibility.

Predictors
In this section, we elaborate three predictor strategies, including median edge detector (MED), gradient edge 
detection predictor (GED), and gradient adjusted predictor (GAP). Figure 3 shows the prediction of the target 
pixel X based on different predictors. The MED predictor is a pixel prediction method that predicts the target 
pixel based on three neighbors A, B and C, as shown in Fig. 1a. The principle is that if there is a vertical edge to 
the left of the target position, then the target pixel value should be close to B; if there is a horizontal edge above 
the target position, then the current pixel value should be close to A; if there is no edge, then the current pixel 
value should be close to B+ A− C , which is the median of the three pixels. The detailed MED prediction is 
formulated in the following Eq. (1).

The GED predictor is another pixel prediction method that uses five neigbbors to estimate the local gradient 
to predict the target pixel. Figure 3b shows the GED prediction, where the shaded pixels in Fig. 3b are used to 
predict the target pixel X. The GED prediction involves three main elements, namely the horizontal gradient, the 
vertical gradient and the threshold. By comparing the relationship between these three elements, it is decided 
which pixels will ultimately be involved in the prediction of the current pixel X. Assuming that the horizontal 
gradient is denoted as gh , the vertical gradient is denoted as gv , and the threshold is denoted as T1 , the detailed 
GED prediction process is formulated in the following Eq. (2).

Where the horizontal gradient is computed as gh = |LL− L| + |LT − T| and the vertical gradient is computed 
as gv = |LT − L| + |TT − T|.

(1)PX =






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





L, gv − gh > T1

T , gv − gh < −T1

3(L+ T)/8+ (LT + LL+ TT)/12, others

(a) MED predictor (b) GED predictor (c) GAP predictor

XLLL

LT T

TT RTT

RT

XLLL

LT T

TT

X

C B

A

Figure 3.   The prediction of the target pixel X based on different predictors. (a) MED predictor; (b) GED 
predictor; (c) GAP predictor.
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The GAP predictor takes into account seven neighbors for the prediction of the target pixel X. Figure 3c 
shows the GAP prediction, and the shaded pixels are used to participate in the prediction process. Assuming 
that the thresholds are denoted as T2 , T3 and T4 , the vertical gradient is denoted as gh and the horizontal gradient 
is denoted as gv , we can compute the predict pixel X according to Eq. (3) and Eq. (4).

The intermediate variable P is defined as follows:

Where the horizontal gradient is computed as gh = |L− LL| + |T − LT| + |T − RT| and the vertical gradient 
is computed as gv = |L− LT| + |T − TT| + |RT − RTT| . Based on the prediction accuracy, the thresholds are 
set to T2 = 80 , T3 = 32 and T4 = 837.

The proposed method
Figure 4 illustrates the framework of the proposed method, from which we can identify three processes: pre-
processing and image encryption by the content-owner, data embedding by the data-hider, and data extraction 
and image decryption by the receiver. Prior to image encryption, the content-owner first uses the MED+GAP 
predictor to compute a label map of non-reference pixels in the original image, and then encodes the generated 
label map using adaptive Huffman coding and embeds it in the encrypted image. After obtaining the label map, 
the data-hider can embed the secret data into the encrypted non-reference pixels using adaptive multi-MSB 
replacement. Finally, data extraction and image recovery can be performed for a receiver with the data hiding 
key and the image encryption key, while the extracted data and the recovered image are error-free.

We then give a detailed description of label map generation, image encryption, adaptive Huffman coding, 
label map embedding, data embedding, and data extraction and image recovery.

Label map generation
In the label map generation process in the literature32, only three pixels around the current non-reference pixel 
are used to generate labels for non-reference pixels, but the influence of the other adjacent pixels is not fully 
considered. In contrast, GAP can achieve higher prediction accuracy after using seven adjacent pixels and three 
thresholds to predict the current non-reference pixel. However, when using GAP, only non-reference pixels with 
seven adjacent pixels can be predicted, which means that the reference pixels will change from the first row and 
column to the first two rows and columns. An increase in the number of reference pixels means a decrease in the 
number of non-reference pixels, which in turn reduces the embedding capacity. In this paper, we still consider 
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
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Figure 4.   The framework of the proposed method.
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only the first row and column as reference pixels, while pixels without enough adjacent pixels are predicted 
with MED and the rest of the pixels are predicted with GAP. This ensures the number of embeddable pixels and 
improves the accuracy of the prediction.

Figure 5 shows a schematic of the designed MED+GAP predictor. In the figure, red and blue refer to the 
MED predictor and the GAP predictor respectively. The dashed circles in Fig. 5a indicate the target pixels, 
while those in Fig. 5b indicate the predicted pixels. The other two dashed areas refer to the neighbors of the 
target pixels. As shown in Fig. 5, the first row and column of the entire image content are reference pixels, 
while all other pixels are non-reference pixels. The predictions of all non-reference pixels are made by using 
the MED+GAP predictor together. The MED predictor with low pixel involvement is used to predict pixels 
that are close to both reference pixel and right border of the image. On the other hand, GAP predictor with 
high pixel involvement is used to predict remaining non-reference pixels. This approach generates the pre-
dicted values for all non-reference pixels. In order to illustrate our prediction process, We will take target pixel 
125 (predicted by the MED predictor) and target pixel 186 (predicted by GAP predictor) as examples. For the 
target pixel 125, we can calculate the predicted value as P125 = B+ A− C = 13+ 37− 30 = 20 according 
to the MED predictor in Eq. (2). The result is shown in the dashed circle in Fig. 5b. For the target pixel 186, 
we first calculate gh = |L− LL| + |T − LT| + |T − RT| = |185− 79| + |179− 185| + |179− 183| = 77 and 
gv = |L− LT| + |T − TT| + |RT − RTT| = |185− 185| + |179− 66| + |183− 65| = 231 . Since the thresh-
old T2 = 80 , we can calculate the predicted value as P186 = L = 185 according to Eq. (3), as shown in Fig. 5b. 
Finally, the label map is calculated by sequentially comparing the binary bits between the original image and the 
predicted image, and this process has been shown in Fig. 6. The label ‘-1’ in Fig. 5c indicates that all reference 
pixels are not involved in the labeling.

For all non-reference pixels X(i, j), both X(i, j) and the corresponding predicted value PX(i, j) are transformed 
into a binary sequence of eight-bit length.

Where the k-th MSB bit of the 8-bit binary sequence of the current pixel X(i, j) is denoted as Xk(i, j) , and the 
parameters M and N are the row and column number of an image.

Figure 6 shows an example of pixel labelling. From Fig. 6, we can see that each bit of Xk(i, j) and PkX(i, j) is 
compared sequentially from MSB to LSB until one bit is different and the label value of the current pixel is equal 
to the length of its identical bits. If the label value is t ( t  = 8 ), the t + 1 bit can be embedded because the first 
t-MSB of the original pixel is equal to its predicted value, and the (t + 1)th MSB can be obtained by negating the 
value at the position corresponding to its predicted value. All non-reference pixels in the image can be scanned 
by the above method to obtain the label map of the original image.

Image encryption
In the whole image encryption process, we encrypt each pixel of the image using the stream cipher method. First, 
the key Ke is determined, then a pseudo-random matrix R of size M × N is generated by Ke . Next, the current 
pixel X(i, j) and its corresponding pseudo-random value R(i, j) are converted into an 8-bit binary sequence Xk(i, j) 
and Rk(i, j) ( 1 ≤ k ≤ 8 ) respectively, and they are encrypted by an exclusive operation in Eq. (6).

(5)Xk(i, j) =
X(i,j) mod 29−k

28−k , 1 ≤ k ≤ 8, 1 < i ≤ M, 1 < j ≤ N

(a) Original image (c) Label map
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Figure 5.   The proposed prediction process. (a) The original image; (b) The predicted image (c) The generated 
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where Xk
e (i, j) is the encrypted binary sequence. We convert the encrypted sequence to the decimal value accord-

ing to Eq. (7), and obtain the encrypted pixel Xe(i, j).

Adaptive Huffman coding
Based on the generated label map, the embeddable bits for each non-reference pixel are known. However, the 
label map must be embedded into the embeddable bits of the non-reference pixels to ensure reversible embedding 
and extraction of the secret data. If the label map is embedded directly into the embeddable bits, the amount of 
space available for the embedding of the secret data is directly reduced. Therefore, this section considers lossless 
compression of the label map based on an adaptive Huffman encoding.

Huffman coding is a variable length encoding that constructs the shortest codeword based on the probabil-
ity of a character occurring and achieves lossless data compression. For a given character set and probability 
distribution, the encoding produces the shortest codeword sequence on average. Specifically, a binary tree is 
used to represent the correspondence between characters and encodings, where the leaf nodes of the tree are 
characters and the branches of the tree are encodings, one branch being 0 and the other 1. The encoding results 
are not unique because (1) the Huffman tree construction when two symbols have the same probability is not 
unique, and (2) the choice of branches 0 and 1 is not fixed during the encoding process; it is possible to specify 
the left branch as 0 or the right branch as 0. These two reasons lead to the possibility of different encoding results. 
However, characters with a high probability of occurrence are specified as shorter codewords, while those with 
a low probability are specified as longer codewords. In view of this, we design an adaptive method to encode 
the generated label map. The detailed algorithm for constructing the Huffman tree is described in Algorithm 1.

Algorithm 1.   Adaptive Huffman encoding

Input: Label map data

Output: dict, encodedData

1: [symbols, f reqs] = count (data) // Counting each symbol and the corresponding frequency

2: [num,nodes] = constructNode(symbols, f reqs) // Building nodes

3: for i= 1 : num−1 do

4: nodes= sort (nodes, f req) // Sorting nodes by f req in ascending order

5: newNode= constructNode(nodes [1] ,nodes [2]) // Forming a new node with the two smallest nodes

6: newNode.left= nodes [1] // Constructing parent-child node relationships

7: newNode.right= nodes [2]

8: nodes= [newNode,nodes(3 : end)] // Constructing a new nodes array

9: end for

10: dict = traverseTree(nodes(end)) // Traversing the tree to get the leaf symbols and codewords

11: encodedData= encode(data,dict)

The generated label map is converted into a binary sequence according to the mapping rules between the 
encoded label and the codeword, and the length of the binary sequence of the label map can be calculated by 
Eq. (8).

where numt is the number of label t in the label graph and codeLent is the length of the codeword correspond-
ing to label t.

Label map embedding
In this section, we take the Huffman encoding rules, the length of the binary sequence of the label map, and the 
binary sequence of the label map as auxiliary information. The data-hider needs to use this auxiliary information 
to locate the labels of non-reference pixels in the encrypted image and determine which bits can be embedded 
into non-reference pixels with different labels. Therefore, it is necessary to embed the auxiliary information in 
the encrypted image. Figure 7 illustrates the storage structure of this auxiliary information.

From Fig. 7 we know that the variable Lt ( 0 ≤ t ≤ 8 ) is the length of the codeword corresponding to label t, 
where each codeword stores 4 bits in length, Ct is the content of the codeword corresponding to label t, and Lt 

(6)Xk
e (i, j) = Xk(i, j)⊕ Rk(i, j), 1 ≤ k ≤ 8

(7)Xe(i, j) =
8
∑

k=1

Xk
e (i, j)× 28−k , 1 ≤ k ≤ 8

(8)Len =
8
∑

t=0

(numt × codeLent), 0 ≤ t ≤ 8
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and Ct together form the Huffman coding rules. The parameter Len is the length of the binary sequence of the 
label map, and we use 

⌈

log2M + log2N + 2
⌉

 bits to store Len. The last parameter B is the binary sequence of the 
label map. All the stored bit streams form the auxiliary information.

Since the label of the current pixel must be known in advance when extracting the auxiliary information, we 
store some auxiliary information in the first row and column of the reference pixels. The remaining auxiliary 
information and the replaced bits of the reference pixels are sequentially embedded in the encrypted image 
according to Eq. (9).

Where Xem(i, j) is the encrypted and embedded pixel at position (i, j), bs is the data to be embedded and t is the 
corresponding label value of the pixel.

Data embedding
To embed the hidden data, the embeddable bits of each non-reference pixel must be known. The data-hider 
extracts the auxiliary information stored in the first row and column to obtain the Huffman encoding rules, the 
length of the binary sequence of the label map and the labels of some non-reference pixels. The label t of the 
current pixel is known, so that t + 1 bits of auxiliary information can be extracted ( t  = 8 , if t = 8 then only 8 
bits can be extracted). Similarly, all auxiliary information can be extracted from the remaining non-reference 
pixels in a left-to-right, top-to-bottom order to obtain a complete label map.

Since the lengths of the embedded auxiliary information and reference pixels are known, it is easy to find the 
starting position for embedding the secret data. Before embedding the secret data, we encrypt it using the stream 
cipher method. Then, according to the label map, the encrypted secret data can be further embedded into the 
non-reference pixels of the encrypted image according to Eq. (9).

Let Lt be the length of the codeword corresponding to the label t, Nt be the number of the label t in the label 
map, Lm be the length of the label map converted into a binary sequence, then the total embedding capacity Ctotal , 
net embedding capacity Cnet , and embedding rate r are calculated as follows:

Data extraction and image recovery
Before extracting the secret data and recovering the original image, the receiver should extract the auxiliary 
information from the first row and column. Based on the extracted auxiliary information, the Huffman encod-
ing rules, the length of the binary sequence of the label map and the partial binary sequence of the label map 
are determined. The receiver can then sequentially extract the embedded data from the non-reference pixels 
according to the obtained label map.

If the receiver has only the data embedding key Kh , the encrypted secret data can be decrypted directly accord-
ing to the data embedding key Kh , and the decryption process is the same as the encryption process. However, 
without the encryption key Ke , the original image cannot be recovered.

If the receiver has only the encryption key Ke , the original image can be recovered without any loss. This is 
because the data hiding key only encrypts the embedded data and does not affect the image processing process. 
First, the received image is decrypted by Ke , and the decryption process is the same as the encryption process. 
Then the first t + 1 bits of each pixel, except the reference pixels, are different from the original pixel, because 

(9)Xem(i, j) =


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




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Xe(i, j) mod 27−t +
t
�
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8
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6
∑
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∑
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these pixels are embedded with extra t + 1 bits based on their label value t. The embedded bits of the non-
reference pixels can be recovered from the label map and the predicted values, because the first t-MSB of the 
original pixel is the same as its predicted value, while the (t + 1)th MSB of the original pixel can be obtained by 
negating the (t + 1)th MSB of its predicted value. Therefore, the predicted values of non-reference pixels can be 
obtained by simply using the same prediction method as in Section 3.1 and making predictions based on the 
first row and column of the recovered reference pixels. In combination with the label map, the original image 
can be recovered losslessly.

Assuming that the pixel to be recovered is X ′
ew(i, j) and the pixel recovery process is formulated in Eq. (13).

Where PX(i, j)tMSB is the decimal value of the high MSB bit of the predicted value, which can be calculated by

Only with both the data hiding key Kh and the image encryption key Ke can the receiver reversibly extract the 
secret data and recover the original image.

Experiments and Analysis
To verify the effectiveness of the proposed algorithm, we conduct a wide range of experimental tests on six grey-
scale images33, including Jetplane, Peppers, Airplane, Baboon, Man, and Lake (Note that six images are randomly 
selected for testing purposes, anyone can read the Copyright Information for these images at http://sipi.usc.
edu/database/copyright.php), as shown in Fig. 8. In addition, without loss of generality, we test the generaliz-
ability of the proposed method on three publicly available datasets BOSSBase34, BOWS-235, and UCID36, which 
contain 10,000 images, 10,000 images, and 1,338 images, respectively. In our experiments, since the prediction 
thresholds for GED and GAP have been experimentally proven in37, we set them as follows: T1 = 28 , T2 = 80 , 
T3 = 32 and T4 = 8 . The peak signal-to-noise ratio (PSNR) and structural similarity metric (SSIM) were used to 
evaluate the visual quality of the images. We evaluate the performance mainly in terms of security performance, 
compression performance and prediction performance. The security performance is assessed using classical 
statistical correlation analysis, the compression performance is assessed by describing the detailed encoding of 
the different test images, and the prediction performance is assessed based on a comparison of metrics between 
different prediction methods.

(13)X(i, j) =

{

PX(i, j)
tMSB +

(

PX(i, j)
t+1 ⊕ 1

)

× 27−t + X ′
ew(i, j) mod 27−t , 0 ≤ t ≤ 7

PX(i, j), t = 8

(14)PX(i, j)
tMSB =

t
∑

k=1

PX(i, j)
k × 28−k

Figure 8.   Test images. (a) Airplane; (b) Peppers; (c) Jetplane; (d) Baboon; (e) Man; (f) Lake.
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The security performance
In contrast to most common encryption methods based on image block encryption, we encrypt each pixel of 
the original image with a stream cipher, i.e., a pixel-based encryption, which provides a certain level of encryp-
tion security. To confirm the security of the proposed method, we will analyze it in terms of statistical features.

Taking the image Lena as an example, Fig. 9 shows the experimental results of each stage of the proposed 
method. From Fig. 9b we can see that the encryption process corrupts the pixel distribution of the original image, 
making it difficult for an attacker to detect valid plaintext from the encrypted image with the naked eye. To ensure 
that the data hider can reversibly embed the secret data, we embed the compressed label map into the encrypted 
image to obtain the encrypted image with label map, which can be seen in Fig. 9c. It can be seen that there is no 
significant difference between Fig. 9b and c, which means that the embedding of the label map has little effect 
on the security of the encrypted image. Figure 9d shows the result of the final marked encrypted image. It is 
easy to see that the proposed method is able to achieve a net embedding rate of ER = 2.7718 bit per pixel (bpp) 
while still ensuring the embedding of the label map. Based on the PSNR and SSIM values of the recovered results 
shown in Fig. 9e, it can be concluded that the proposed method achieves full reversibility.

Histogram analysis is a statistical method used to analyze the distribution of pixel frequencies in an image. 
It can be used to assess the security of an encryption algorithm by comparing the frequency histograms of an 
image before and after encryption. Generally, the histogram of an encrypted image should exhibit more uni-
formity and randomness compared to that of the original image. In our statistical analysis experiments, we have 
chosen Jetplane and Baboon as examples to test the histogram results at different stages. Figure 10 shows the 
histograms of the original image, encrypted image, and marked encrypted image. From Fig. 10, it is evident that 
for the original image, pixel distribution is more concentrated due to important features present in it. However, 
for the histogram of the encrypted image, pixel distribution becomes more uniform and lacks any useful statisti-
cal features. The uniform distribution in encrypted images indicates that pixels are modified randomly during 
encryption process, resulting in slight fluctuations in gray-level values ranging from 0-255. After embedding 
label maps and secret data into encrypted images, there is a significant increase in individual pixels; however, 
overall pixel distribution remains largely unchanged. Since encrypted pixels are modified based on Huffman 
codewords corresponding to labels, histogram distributions of marked encrypted images are not completely 
uniform like those obtained through pseudo-random key modification for original pixels. In the first and last 
columns of Fig. 10, it can be clearly seen that there is a noticeable difference in pixel distribution between original 
images and marked encrypted images. This difference indicates enhanced security for marked encrypted images.

The compression performance
In this section, we focus on analyzing the compression process of the proposed adaptive Huffman coding using 
MED+GAP prediction. Tables 1 and 2 show the details of the Huffman compression process based on MED+GAP 
for the images Lena, Jetplane and Baboon. The value -1 represents the label value of the reference pixel that is 
not involved in the encoding, while the other 0-8 different types of label values represent non-reference pixels 
used to embed the secret data; rows 2 and 3 show the number of corresponding label values and the result of the 
probability distribution; row 4 shows the capacity that can be embedded in each label value; row 5 calculates the 
total capacity; rows 6 and 7 show the codeword and codeword length of the corresponding label values; and row 
8 calculates the length of the binary sequence using adaptive Huffman encoding.

As shown in Tables 1 and 2, once the label values for non-reference pixels have been established, the total 
capacity of an image is established accordingly. In order to reversibly embed secret data, it is necessary to loss-
lessly compress 0-8 different types of label values, so the choice of a suitable compression method becomes 
crucial. Based on the data in rows 1 and 2, we can know the probability distribution of the 0-8 different label 
values, which provides sufficient conditions for the subsequent adaptive Huffman coding. We can construct the 
Huffman tree by assigning longer codewords to low probability labels and shorter codewords to high probability 
labels, as shown in line 6. Based on adaptive Huffman coding, the optimal codewords and code lengths can be 
assigned to different labels of the image. After encoding, the labels of different images are adaptively encoded, 
and the total capacity minus the length of the label map is taken as the maximum net capacity that secret data 
can be embedded.

In addition, Table 3 shows the Huffman codewords for six different standard test images. It is evident that 
for nine labels of different images, the Huffman tree of the proposed algorithm adaptively allocates the optimal 

Figure 9.   The experiment results of the proposed method. (a) Original image; (b) Encrypted image; (c) 
Encrypted image with label map; (d) Marked encrypted image with net embeddimg rate ER = 2.7718 ; (e) 
Recovered image with PSNR = ∞, SSIM = 1.
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Figure 10.   Histograms of three different images for three phases. (a–c) The histograms of original image, 
encrypted image and marked encrypted image for Jetplane; (d–f) The histograms of original image, encrypted 
image and marked encrypted image for Baboon.

Table 1.   Huffman compression process with MED+GAP for sized 512× 512 Jetplane.

Label t − 1 0 1 2 3 4 5 6 7 8

Number 1023 4998 10104 10010 24925 34307 45338 46503 36816 48120

Frequency – 1.9141% 3.8695% 3.8335% 9.5454% 13.1384% 17.3628% 17.8090% 14.0992% 18.4282%

Capacity – 1 2 3 4 5 6 7 8 8

Total capacity 4998× 1+ 10104× 2+ 10010× 3+ 24925× 4+ 34307× 5+ 45338× 6+ 46503× 7+ 36816× 8+ 48120× 8 = 1603508

Codeword – 01110 0110 01111 010 100 110 111 101 00

Codeword length – 5 4 5 3 3 3 3 3 2

Label map length 4998× 5+ 10104× 4+ 10010× 5+ 24925× 3+ 34307× 3+ 45338× 3+ 46503× 3+ 36816× 3+ 48120× 2 = 775363

Table 2.   Huffman compression process with MED+GAP for sized 512× 512 Baboon.

Label t − 1 0 1 2 3 4 5 6 7 8

Number 1023 35666 21130 41142 48478 45444 31802 18292 9451 9716

Frequency – 13.6588% 8.0920% 15.7559% 18.5653% 17.4034% 12.1790% 7.0052% 3.6194% 3.7209%

Capacity – 1 2 3 4 5 6 7 8 8

Total capacity 35666× 1+ 21130× 2+ 41142× 3+ 48478× 4+ 45444× 5+ 31802× 6+ 18292× 7+ 9451× 8+ 9716× 8 = 1094676

Codeword – 100 010 110 00 111 011 1010 10110 10111

Codeword length – 3 3 3 2 3 3 4 5 5

Label map length 35666× 3+ 21130× 3+ 41142× 3+ 48478× 2+ 45444× 3+ 31802× 3+ 18292× 4+ 9451× 5+ 9716× 5 = 791511
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codeword to the corresponding label value. With such encoding rules, it is possible to maximize the compression 
of the label values for different images, and thus to guarantee the amount of secret data that can be embedded.

The prediction performance
In this subsection, we present the main factors that affect the net embedding capacity in an easy to understand 
formula. This explains why we try to take different prediction methods into account. Assuming a total embed-
ding capacity denoted by Ctotal , a net embedding capacity by Cnet , a label map length by Clabel , and an extra bit 
length by Cextra , the net embedding capacity can be expressed as:

According to Eq. (15), there are three possible ways to increase the net embedding capacity: 1) to increase the 
total embedding capacity Ctotal ; 2) to decrease the length of the label map Cextra ; and 3) to decrease the length of 
the extra bit Cextra . The features for a given image content are determined by its own structure, so a viable way to 
increase the overall embedding capacity Ctotal is to fully exploit the determined features and to choose the suitable 
prediction method to generate the label map. This can be verified from the calculation of the overall embedding 
capacity in Tables 1, 2, 3. Shortening the length of the label map Clabel refers to making the length of the encoded 
label map as short as possible by choosing a feasible encoding, which is described in detail in the adaptive Huff-
man encoding process in the previous subsection. The reduction of the extra bit length Cextra has little effect on 
the net embedding capacity Cnet , since the extra bit length mainly stores information about the length of the 
nine codewords and the length of the label map. We will verify this elaboration in the next experiments. Based 
on the above discussion, a reasonable prediction is essential for the improvement of the net embedding capacity.

The total embedding capacity for different predictions is shown in Table 4. From columns 2 and 3 in Table 4, 
it can be seen that when MED is used for prediction, the total embedding capacity obtained is constant regard-
less of whether adaptive or non-adaptive encoding is used. This means that the total embedding capacity is 
not directly related to the selection of the encoding method. From columns 3-5 in Table 4, it can be seen that 
selecting different prediction methods has a direct effect on the total embedding capacity when the encoding 
method is fixed. Furthermore, the MED+GAP prediction method achieves the best embedding performance 
for the same test image. Thus, we can conclude that an appropriate prediction method is important to improve 
the total embedding capacity.

The length of the label map for the different predictions is given in Table 5. As a comparison with columns 2, 
3 in Table 4, we can see from columns 2, 3 in Table 5 that although the encoding method cannot change the total 
embedding capacity, it directly affects the length of the labelled data. In other words, the selection of encoding 
method affects the net embedding capacity. For the same test image, a shorter label map length means that more 
secret data can be embedded. Based on this fact, we can know that the label map length generated by the GAP-
based prediction method is shorter overall. This means that more pixels involved in the prediction can produce 
prediction values that are closer to the current value.

The length of the extra bit under different predictions is given in Table 6. As can be seen from Table 6, the 
overall length of the extra bit is negligible compared to the length of the label map, and therefore its impact on 
the overall embedding performance is almost negligible. Finally, the net embedding capacity and embedding 

(15)Cnet = Ctotal − Clabel − Cextra

Table 3.   Huffman codewords of six standard test images.

Images Huffman codewords

Airplane 00,01,100,101,110,1111,11101,111000,1111001

Peppers 00,01,100,101,1101,1110,1111,11000,11001

Jetplane 00,010,100,101,110,111,0110,01110,01111

Baboon 00,010,011,100,110,111,1010,10110,10111

Man 00,01,100,101,1101,1110,1111,11000,11001

Lake 01,000,100,110,111,0010,0011,1010,1011

Table 4.   The total embedding capacity for different predictions. Bold values represent the improvements or 
the optimal performance compared with the related methods.

Images Non-adaptive Adaptive Adaptive Adaptive Adaptive Adaptive

MED MED GED GAP MED+GED MED+GAP

Airplane 1659203 1659203 1647953 1622706 1654453 1632560

Peppers 1351227 1351227 1417491 1397340 1422673 1405283

Jetplane 1587880 1587880 1572320 1594417 1577988 1603508

Baboon 1074384 1074384 1077438 1088812 1081171 1094676

Man 5584907 5584907 5616418 5680845 5627776 5697691

Lake 1282281 1282281 1323103 1311452 1327841 1318496
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rate for different predictions are shown in Table 7. It can be seen that the MED+GAP prediction yields better 
embedding performance except for Airplane and Peppers. From the analysis of the experimental data at dif-
ferent stages in Tables 4, 5, 6, 7, we can conclude that the selection of the prediction method is crucial for the 
improvement of the net embedding capacity.

Comparison analysis
Here, the various metrics are compared separately and the impact of the prediction mechanism and the adaptive 
encoding method on the embedding rate is analyzed. Through the comparative discussion and analysis, we will 
also provide a step-by-step rationale as to why MED+GAP is ultimately selected as the final prediction solution.

First, Fig. 11 shows the results of the embedding rate for the non-adaptive and the adaptive encoding based on 
the MED prediction. Note that for the same image, the maximum embedding rate is only calculated with respect 
to the selected prediction method, so the maximum embedding rate is fixed when the same prediction method 
is used to generate the label map. The calculation of the maximum embedding rate can be found in Tables 1, 2, 
3. According to the results in Fig. 11, the adaptive encoding is able to achieve a higher embedding rate than the 
non-adaptive encoding. The reason for this is clear from Eq. (16): for a given maximum embedding rate, the 
shorter the length of the label map, the higher the embedding rate, since the extra bit length has little effect on 
the embedding rate. Therefore, the reason why adaptive encoding is better than non-adaptive encoding is that 
adaptive encoding can better adapt to the characteristics of the label map and maximize the compression of the 
label map data, thus increasing the net embedding capacity, that is, the embedding capacity of the secret data, 
to a certain extent.

Secondly, Fig. 12 shows the results of the embedding rates obtained using MED, GED and GAP predictions 
based on the adaptive Huffman encoding. From Fig. 12, we can see that the embedding rates obtained using 

Table 5.   The length of label map for different predictions. Bold values represent the improvements or the 
optimal performance compared with the related methods.

Images Non-adaptive Adaptive Adaptive Adaptive Adaptive Adaptive

MED MED GED GAP MED+GED MED+GAP

Airplane 682803 657136 739443 738189 742242 742604

Peppers 777928 777928 777515 770083 780552 774688

Jetplane 793441 778244 779687 770738 782870 775363

Baboon 794941 786599 787152 786938 790205 791511

Man 3121506 3121506 3142971 3106928 3148960 3115866

Lake 787518 786014 793507 785631 796624 790342

Table 6.   The length of extra bit for different predictions.

Images Non-adaptive Adaptive Adaptive Adaptive Adaptive Adaptive

MED MED GED GAP MED+GED MED+GAP

Airplane 52 95 90 90 90 90

Peppers 52 88 88 88 88 88

Jetplane 52 87 87 87 87 87

Baboon 52 87 87 87 87 87

Man 54 90 90 90 90 90

Lake 52 87 86 86 86 86

Table 7.   The net embedding capacity and embedding rate for different predictions. Bold values represent the 
improvements or the optimal performance compared with the related methods.

Images Non-adaptive Adaptive Adaptive Adaptive Adaptive Adaptive

MED MED GED GAP MED+GED MED+GAP

Airplane {976348,3.7245} {1001972,3.8222} {908420,3.4653} {884427,3.3738} {912121,3.4795} {889866,3.3946}

Peppers {573247,2.1868} {573211,2.1866} {639888,2.441} {627169,2.3925} {642033,2.4492} {630507,2.4052}

Jetplane {794387,3.0303} {809549,3.0882} {792546,3.0233} {823592,3.1418} {795031,3.0328} {828058,3.1588}

Baboon {279391,1.0658} {287698,1.0975} {290199,1.107} {301787,1.1512} {290879,1.1096} {303078,1.1562}

Man {2463347, 2.3492} {2463311, 2.3492} {2473357, 2.3588} {2573827, 2.4546} {2478726, 2.3639} {2581735, 2.4621}

Lake {494711,1.8872} {496180,1.8928} {529510,2.0199} {525735,2.0055} {531131,2.0261} {528068,2.0144}
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MED, GED and GAP predictions are slightly different. With the exception of the image Airplane, the embedding 
rates obtained using the GAP prediction have a better overall performance. This is mainly because GAP uses 
more neighboring pixels for the prediction of the current pixel. More neighboring pixels means that more local 
features of the current pixel are captured, making the obtained prediction closer to the current pixel. Based on 
the results in Fig. 12, we believe that better embedding rates can be achieved by using GAP prediction.

So far, the optimal embedding performance can be achieved by the combination of adaptive Huffman encod-
ing and GAP prediction. To further analyze the influence of the prediction, the embedding rate results for the 
GAP and MED+GAP predictions based on adaptive encoding are presented. The results are shown in Fig. 13. 
We can see that the embedding rate of the MED+GAP prediction mechanism is superior to that of the GAP 
prediction. This indicates that more accurate label map data can be generated by using MED to predict the 
boundaries of non-reference pixels in combination with GAP to predict the remaining non-reference pixels. 
Therefore, the proposed method selects adaptive Huffman coding and MED+GAP prediction to improve the 
embedding capacity.

Finally, we use three public datasets, BOSSBase, BOWS-2, and UCID, to compare the net embedding rate for 
the proposed MED+GAP method with recent related state-of-the-art methods28,31,32. Table 8 shows the compari-
son of the net embedding rates for the three cases. It includes the best embedding rate, the worst embedding rate, 
and the average embedding rate for different datasets. It can be seen that for the best case scenario, compared 
with other methods the proposed method provides an increment of 0.959 bpp for BOSSBase dataset, 0.768 bpp 
for BOWS-2 dataset, and 0.317 bpp , for UCID dataset respectively. Even in the worst case scenario there is still 
an improvement of 0.055 bpp for BOSSBase dataset, 0.048 bpp for BOWS-2 dataset, and 0.069 bpp for UCID 
dataset respectively. This indicates that our proposed method can enhance both upper and lower bounds of 
embedding rates across different datasets. Furthermore, on average our method improves embedding rates by 
0.052 bpp and 0.023 bpp on BOSSBase (with a dataset size of 10,000 images) and BOWS-2 (with a dataset size 
of 10,000 images) respectively; while it achieves an average improvement of 0.047 bpp on UCID (with a dataset 
size of1 ,338 images). These experimental results demonstrate that our proposed method consistently enhances 
overall performance in terms of embedding rates.
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Figure 11.   The embedding rate for the non-adaptive and the adaptive encodings based on the MED prediction.
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Conclusions and future work
In this paper, a novel RDHEI algorithm based on multi-prediction and adaptive Huffman encoding is imple-
mented. The multi-MSBs of non-reference pixels are predicted by median edge detector (MED) and gradient 
adjusted predictor (GAP). After obtaining the pixel prediction, the same bits of the original and predicted pixels 
are labelled with adaptive Huffman coding from the highest to the lowest bits. The image is encrypted using a 
stream cipher method, and secret data is embedded in the free space by multi-MSB substitution. Experimental 
results demonstrate that this method with MED+GAP prediction and adaptive Huffman coding improves 0.052 
bpp, 0.023 bpp, and 0.047 bpp on average over other state-of-the-art methods on the BOSSBase, BOWS-2, and 
UCID datasets, respectively, while maintaining security and reversibility. Although our method aims to enhance 
embedding performance by utilizing multi-prediction and adaptive Huffman encoding, it also results in increased 
time consumption for reserved space due to the introduction of more complex encoding and prediction tech-
niques. This places a greater burden on content owners. Our future work will concentrate on improving time 
efficiency and further enhancing embedding capacity.
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