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Insights into time 
fractional dynamics 
in the Belousov‑Zhabotinsky 
system through singular 
and non‑singular kernels
Shami A. M. Alsallami 1, M. Maneea 2, E. M. Khalil 3, S. Abdel‑Khalek 3 & Khalid K. Ali 4*

In the realm of nonlinear dynamics, the Belousov-Zhabotinsky reaction system has long held the 
fascination of researchers. The Belousov-Zhabotinsky system continues to be an active area of 
research, offering insights into the fundamental principles of nonlinear dynamics in complex systems. 
To deepen our understanding of this intricate system, we introduce a pioneering approach to tackle 
the time fractional Belousov-Zhabotinsky system, employing the Caputo and Atangana-Baleanu 
Caputo fractional derivatives with the double Laplace method. The solution we obtained is in the form 
of series which helps in investigating the accuracy of the proposed method. The primary advantage 
of the proposed technique lies in the low amount of calculations required and produce high degree of 
precision in the solutions. Furthermore, the existence and uniqueness of the solution are investigated 
thereby enhancing the overall credibility of our study. To visually represent our results, we present a 
series of 2D and 3D graphical representations that vividly illustrate the behavior of the model and the 
impact of changing the fractional order derivative and the time on the obtained solutions.

Fractional calculus, a branch of mathematical analysis that generalizes the concept of differentiation and inte-
gration to non-integer orders, has gained increasing prominence in various scientific disciplines over the past 
few decades. Initially introduced by Leibniz in the 17th century and developed by several mathematicians in 
subsequent centuries1,2. Fractional calculus is now recognized as a powerful tool for modeling and analyzing 
complex phenomena with memory and non-local behaviors, it finds extensive applications in a wide range of 
engineering and scientific domains, encompassing fields such as chemistry, physics, economics, biology, and 
finance3–7. There are many definitions of fractional calculus, including, the Riemann-Liouville ( RL ) definition 
focuses on historical memory and is suitable for analyzing processes with memory effects8. On the other hand, 
the Caputo definition incorporates initial conditions, making it particularly useful for modeling systems with 
specific starting conditions9,10, Riesz fractional derivative is often used in physics and engineering, especially 
in the context of fractional diffusion and wave equations11,12. Caputo-Fabrizio ( CF)derivative has been arising 
recently to overcome the singularity on the integral kernel13,14. The Atangana-Baleanu ( AB ) fractional deriva-
tive is a relatively recent development in fractional calculus, it is known for its capability to effectively capture 
memory effects and non-local behavior, making it suitable for various applications15, and many other definitions, 
each of which has its distinguishing characteristics. Solving nonlinear problems with fractional orders can pose 
greater challenges due to the involvement of integral operators. Nevertheless, various computational approaches 
have been devised and applied to explore both precise and numerical solutions for such fractional problems16–18. 
Fractional systems of partial differential equations(PDEs) have garnered significant attention because of their 
ability to effectively represent intricate phenomena that go beyond the descriptive capacity of traditional integer-
order models19,20, this is because, unlike ordinary derivatives, which describe the rate of change of a function at 
a specific point, fractional derivatives account for the past behavior of the function over a range of values. They 
are known to capture non-local and memory effects, which means they can take into account the entire history 
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of a function rather than just its current value. This property enables fractional derivatives to describe the real 
life applications.

In this study, we aim to investigate the time fractioal Belousov-Zhabotinsky system (TFBZS) in the form:

Constrained by the starting conditions:

Where θ is the fractional order derivative 0 < θ ≤ 1 . p(x, t) and w(x, t) are the concentration in chemical reac-
tion as a function of temporal oscillations and spatial traveling concentration waves. ζ1 and ζ2 represent the 
diffusing constants, in this study, we consider ζ1 = ζ2 = 1 , β , δ, γ and � are positive constants and �  = 1 . Due to 
the importance of this system, many researchers have dealt with this system, whether using fractional calculus 
or ordinary calculus, to obtain exact and approximate solutions, Ali Jaradat et al. present a numerical solution 
for the TFBZS using generalized Taylor series21. Akinyemi22 investigted the TFBZS using q-homotopy analysis 
transform method. Alaoui et al.23 provide an approximate solution for the proposed system using homotopy 
perturbation method with Yang transform. Karaagac et al.24applied the Picard-Lindelöf theorem to the proposed 
model under ABC fractional derivative. Veeresha25 presented a brief analysis for this chemical reaction under 
Caputo fractional derivative. Recently, El-Tantawy et al.26 presented an approximate solution for the TFBZS using 
residual power series merged with Laplace transform. Yasmin et al.27 investigated this system using homotopy 
perturbation with Elzaki transform.

In this study, we use the double Laplace method (DLM) merged with Adomian polynomials to enable us deal 
with nonlinear terms28–30 under two types of fractional derivatives, Caputo ( C ) and Atangana-Baleanu-Caputo 
( ABC ) fractional derivatives.

The structure of this article is as follows: In section “Basic definitions”, we provide an overview of the essen-
tial concepts employed to solve the proposed equation, including fractional derivatives and integrals, as well 
as Adomian polynomials. In section “Framework of Double Laplace method”, we introduce the framework of 
the DLM in the sense of C and ABC fractional derivative as a method for finding an approximate solution. In 
section “Analysis of the existence and uniqueness of the solution”, we delve into discussions regarding the exist-
ence, and uniqueness of the solution. Section “Solution of the TFBZS using DLM” offers a concise explanation 
of the solution of the TFBZS using DLM. The outcomes derived in section “Solution of the TFBZS using DLM” 
are visually represented in section “Graphic representations”. Finally, the concluding remarks of this study are 
presented in section “Conclusion”.

Basic definitions
Fractional derivatives
As we mentioned earlier, there are many definitions of fractional differentiation, each of them has its own advan-
tages and disadvantages. It’s important to highlight that Caputo’s definition is applicable solely to functions that 
are differentiable. In 2016 Abdon Atangana and Dumitru Baleanu presented a new fractional derivative with 
non-local and no-singular kernel that depend on Mittag-Leffler function31. The studies conducted in recent years 
following these advancements clearly indicate that scientists have a significant opportunity to address a variety 
of issues using fractional derivatives.

In this research, our objective is to solve TFBZS using DLM in the sense of Caputo and ABC fractional 
derivative.

Definition 2.1  2: Caputo fractional derivative is defined as:

p−θ represents the RL fractional integral in the form:

Ŵ(.) is the known Gamma function.
The operator θ satisfy the following properties for E ,G ≥ −1:

(1)

∂θp

∂tθ
= ζ1

∂2p

∂x2
+ βδw+ p− p2 − δpw,

∂θw

∂tθ
= ζ2

∂2w

∂x2
+ γw− �pw.

p(x, 0) = p0(x, t),

w(x, 0) = w0(x, t).

(2)C
D

θ
t F(t) =



















p−θ
dp

dtp
F(t), p− 1 < θ < p,

dp

dtp
F(t), θ = p.

(3)θF(t) =
1

Ŵ(θ)

∫ t

0
(t − T)(θ−1) F(T) dT, t > 0.

(4)GEF(t) =G+EF(t).
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Caputo fractional derivative satisfy:

Definition 2.2  32: ABC fractional integral is in the form:

N (θ) represents the normalization function in which N (0) = N (1) = 1.

In this study, for simplicity, we will consider N (θ) = 1.

Definition 2.3  32: ABC fractional derivative is in the form:

Further details in different types of fractional derivatives in33–36.
Adomian polynomials
The Adomian decomposition technique has introduced the concept that the unknown linear function Q can be 
represented through a sequence of decompositions:

The elements Qj can be recursively calculated, and the nonlinear term F(Q) , which could include expressions 
like Q2,Q3, sinQ, exp(Q) , etc. can be represented using Adomian polynomials (AP) denoted as Aj within the 
structure:

The calculation of AP is used to handle different forms of nonlinearity. Adomian37 introduced a technique 
for computing AP , which has been formally validated. Other methods based on Taylor series have also been 
developed, as discussed in38,39. To compute the AP , Aj for the nonlinear term F(Q) , you can apply the follow-
ing general formula:

Expression (14) can be expanded as follows:

(5)GEF(t) =EGF(t).

(6)G tm =
Ŵ(m+ 1)

Ŵ(m+ 1+ G)
tm+G .

(7)C
D

θ
t

[

θF(t)

]

= F(t).

(8)θ
[

C
D

θ
t F(t)

]

= F(t)−
p−1
∑

n=0

Fn(0)
tn

n!
, t > 0.

(9)C
D

θ
t tm =

Ŵ(m+ 1)

Ŵ(m+ 1− θ)
tm−θ .

(10)ABC
a θt F(t) =

1− θ

N (θ)
F(t)+

θ

N (θ)Ŵ(θ)

∫ t

a
F(T)(t − T)θ−1 dT.

(11)ABC
D

θF(t) =
N (θ)

1− θ

∫ t

a
F ′(T)Eθ

(

−θ(t − T)θ

1− θ

)

dT.

(12)Q =
∞
∑

j=0

Qj.

(13)F(Q) =
∞
∑

j=0

Aj(Q0,Q1, . . . ,Qj).

(14)Aj =
1

j !
dj

dνj

[

F

( j
∑

ℓ=0

νℓQℓ

)]

ν=0

, j = 0, 1, 2, . . . .

(15)

A0 = F(Q0),

A1 = Q1F
′(Q0),

A2 = Q2F
′(Q0)+

1

2!
Q2

1F
′′(Q0),

A3 = Q3F
′(Q0)+Q1 Q2F

′′(Q0)+
1

3!
Q3

1F
′′′(Q0),

:
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From the relations presented in (15), we notice that A0 depends only on Q0 , A1 depends only Q0 and Q1 , A2 
depends only on Q0,Q1 and Q2 , etc.

Framework of Double Laplace method
The double Laplace transform method serves as a valuable mathematical tool for addressing fractional nonlinear 
equations or systems of equations. This technique proves particularly effective when dealing with equations 
featuring Caputo, Caputo-Fabrizio, or Atangana-Baleanu-Caputo fractional derivatives. By applying the Laplace 
transform twice, it enables the conversion of intricate fractional differential equations into more accessible alge-
braic forms. This transformation simplifies the process of solving fractional differential equations. Moreover, it 
can be combined with methods like Adomian polynomials, see32,40 to effectively handle nonlinear terms within 
these equations. This approach significantly enhances our capability to analyze and solve real-world problems 
across various scientific and engineering domains.

Definition 3.1  32 The expression for the Double Laplace transform using Caputo fractional derivative when 
p− 1 < θ ≤ p can be described as follows:

Definition 3.2  32 The expression for the Double Laplace transform using Atangana-Baleanu-Caputo fractional 
derivatives when p− 1 < θ ≤ p can be described as follows:

for p = 1, 2, 3, . . ..

Analysis of the existence and uniqueness of the solution
In this section, we will establish the existence and the uniqueness of the TFBZS within the context of the ABC 
sense. To do so, let’s rewrite the couple sytem (1) in the following form:

Constrained by:

apply ABC fractional integral (Definition 2.2) to both sides of the system equations (20),

where K1 and K2 represent the right hand sides of the system, actually, they called the kernels K1(x, t, p) and 
K2(x, t,w) , for simplicity we will write K1(p) and K2(w).

Assume that p(x, t) and w(x, t) have an upper bound if the kernels K1(p) and K2(w) satisfy the Lipschitz 
condition, hence

The subsequent iterative formulas for p(x, t) and w(x, t) are formulated:

(16)LxLt

{

C
D

θ
x F(x, t)

}

= Sθ1 F(S1, S2)−
p−1
∑

j=0

Sθ−1−j
1 Lt

{

∂jF(0, t)

∂xj

}

,

(17)LxLt

{

C
D

θ
t F(x, t)

}

= Sθ2 F(S1, S2)−
p−1
∑

j=0

Sθ−1−j
2 Lx

{

∂jF(x, 0)

∂tj

}

.

(18)LxLt

{

ABC
D

θ
x F(x, t)

}

=
N (θ)

(1− θ)
(

Sθ1 +
θ

1−θ

)

{

Sθ1 F(S1, S2)−
p−1
∑

j=0

Sθ−1−j
1 Lt

∂jF(0, t)

∂xj

}

,

(19)LxLt

{

ABC
D

θ
t F(x, t)

}

=
N (θ)

(1− θ)
(

Sθ2 +
θ

1−θ

)

{

Sθ2 F(S1, S2)−
p−1
∑

j=0

Sθ−1−j
2 Lx

∂jF(x, 0)

∂tj

}

,

(20)
ABC

D
θ
t p = F(x, t, p,w),

ABC
D

θ
t w = G(x, t, p,w).

p(x, 0) = p0(x, t),

w(x, 0) = w0(x, t).

(21)
p(x, t)− p(x, 0) =

1− θ

N (θ)
K1(p)+

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 K1(p)dT,

w(x, t)− w(x, 0) =
1− θ

N (θ)
K2(w)+

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 K2(w) dT.

(22)
� K1(p)− K1(p1) �≤ ̺1 � p− p1 �,
� K2(w)− K2(w1) �≤ ̺2 � w− w1 � .
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The p and w recursive terms will be:

and

where the estimate solutions for p and w are:

and

Hence,

similarly,

Theorem 4.1  If the following inequalities are satisfied, then the proposed system (20) having a solution:

Proof  From the existence of equation (26) as a solution os the first equation of the proposed system, assume that:

then

By assuming that p(x, t) is bounded function, apply recursive method for Eq. (28), we get

(23)
pr+1 =

1− θ

N (θ)
K1(pr)+

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 K1(pr) dT,

wr+1 =
1− θ

N (θ)
K2(wr)+

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 K2(wr) dT.

(24)

V(x, t) = pr − pr−1

=
1− θ

N (θ)

(

K1(pr−1)− K1(pr−2)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K1(pr−1)− K1(pr−2)

)

dT,

(25)

W(x, t) = wr − wr−1

=
1− θ

N (θ)

(

K2(wr−1)− K2(wr−2)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K2(wr−1)− K2(wr−2)

)

dT,

(26)pr(x, t) =
r

∑

j=0

Vj(x, t),

(27)wr(x, t) =
r

∑

j=0

Wj(x, t).

(28)

� pr(x, t) � =� pr − pr−1 �

=�
1− θ

N (θ)

(

K1(pr−1)− K1(pr−2)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K1(pr−1)− K1(pr−2)

)

dT �

≤
1− θ

N (θ)
� K1(pr−1)− K1(pr−2) � +

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 � K1(pr−1)− K1(pr−2) � dT

≤
1− θ

N (θ)
̺1 � pr−1 − pr−2 � +

θ

N (θ)Ŵ(θ)
̺1

∫ t

0
(t − T)θ−1 � pr−1 − pr−2 � dT,

(29)
� wr(x, t) � =� wr − wr−1 �

≤
1− θ

N (θ)
̺2 � wr−1 − wr−2 � +

θ

N (θ)Ŵ(θ)
̺2

∫ t

0
(t − T)θ−1 � wr−1 − wr−2 � dT.

(30)

1− θ

N (θ)
̺1 +

θ

N (θ)Ŵ(θ)
̺1 tθ0 < 1,

1− θ

N (θ)
̺2 +

θ

N (θ)Ŵ(θ)
̺2 tθ0 < 1.

(31)p(x, t)− p(x, 0) = Ξr(x, t),

(32)
� Ξ(x, t) � =�

1− θ

N (θ)

(

K1(p)− K1(pr−1)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K1(p)− K1(pr−1)

)

�

≤
1− θ

N (θ)
̺1 � p− pr−1 � +

θ

N (θ)Ŵ(θ)
̺1t

θ � p− pr−1 � .
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Using relation (33) with the inequality (32), we obtain:

At t = t0 , Eq. (34) becomes:

Similarily, we can show that,

where Hr(x, t) = w(x, t)− w(x, 0) . To prove the uniqueness of the solution, consider that p(x, t) has two solu-
tions p(x, t) and q(x, t) , hence

Putting norm on both sides of Eq. (37),

Thus,

Hence, � p(x, t)− q(x, t) �= 0 when 
(

1−
1− θ

N (θ)
̺1 − θ

N (θ)Ŵ(θ)
̺1t

θ

)

> 0 , therefore p(x, t) = q(x, t).

The same conclusion can be drawn for w(x, t) . 	�  �

Solution of the TFBZS using DLM
In this section, the DLM is applied to the TFBZS to find approximate solutions, the system will be investigated 
under two types of initial conditions22.

Case I : For β = γ = 0 , Eq. (1) will be:

Under initial conditions:

The exact solution at θ = 1 is:

(33)� pr(x, t) �=
{

1− θ

N (θ)
̺1 +

θ

N (θ)Ŵ(θ)
̺1t

θ

}r

.

(34)� Ξr(x, t) �≤
{

1− θ

N (θ)
+

θ

N (θ)Ŵ(θ)
tθ
}r+1

̺r+1
1 .

(35)� Ξr(x, t) �≤
{

1− θ

N (θ)
+

θ

N (θ)Ŵ(θ)
tθ0

}r+1

̺r+1
1 .

(36)� Hr(x, t) �≤
{

1− θ

N (θ)
+

θ

N (θ)Ŵ(θ)
tθ0

}r+1

̺r+1
2 ,

(37)p(x, t)− q(x, t) =
1− θ

N (θ)

(

K1(p)− K1(q)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K1(p)− K1(q)

)

dT.

(38)

� p(x, t)− q(x, t) � =�
1− θ

N (θ)

(

K1(p)− K1(q)

)

+
θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1

(

K1(p)− K1(q)

)

dT �

≤
1− θ

N (θ)
� K1(p)− K1(q) � +

θ

N (θ)Ŵ(θ)

∫ t

0
(t − T)θ−1 � K1(p)− K1(q) � dT

≤
1− θ

N (θ)
̺1 � p(x, t)− q(x, t) � +

θ

N (θ)Ŵ(θ)
̺1t

θ � p(x, t)− q(x, t) � .

(39)� p(x, t)− q(x, t) �
(

1−
1− θ

N (θ)
̺1 −

θ

N (θ)Ŵ(θ)
̺1t

θ

)

≤ 0.

(40)

∂θp

∂tθ
=

∂2p

∂x2
+ p− p2 − δpw,

∂θw

∂tθ
=

∂2w

∂x2
− �pw.

p(x, 0) =
1

(

exp

(

√

�

6x

)

+ 1

)2
,

w(x, 0) =
(1− �) exp

(

√

�

6x

)(

exp

(

√

�

6x

)

+ 2

)

δ

(

exp

(

√

�

6x

)

+ 1

)2
.
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Using Caputo DLTM:
Apply the DL formula (17) into both sides of the system (40),

Then

and

where, Nj and Mj are the Adomian polynomials for the nonlinear terms p2 and pw respectively. Hence,

To find the unknown functions p and w , take inverse DL to both sides of Eq. (44), hence

Similarily,

p(x, t) =
exp

(

5�
3 t

)

(

exp

(

5�
6 t

)

+ exp

(

√

�

6x

))2
,

w(x, t) =
(1− �) exp

(

√

�

6x

)(

2 exp

(

5�
6 )t

)

+ exp

(

√

�

6x

))

δ

(

exp

(

5�
6 t

)

+ exp

(

√

�

6x

))2
.

(41)
LxLt

{

C
D

θ
t p

}

= LxLt

{

∂2p

∂x2
+ p− p2 − δpw

}

,

LxLt

{

C
D

θ
t w

}

= LxLt

{

∂2w

∂x2
− �pw

}

.

(42)

SθLxLt

{

p

}

− Sθ−1
Lxp(x, 0) = LxLt

{

∂2p

∂x2

}

+LxLt

{

p

}

−LxLt

{

Nj

}

− δLxLt

{

Mj

}

,

(43)SθLxLt

{

w

}

− Sθ−1
Lxw(x, 0) = LxLt

{

∂2w

∂x2

}

− �LxLt

{

Mj

}

.

(44)

LxLt

{

p

}

=
1

S
Lxp(x, 0)+

1

Sθ

[

LxLt

{

∂2p

∂x2

}

+LxLt

{

p

}

−LxLt

{

Nj

}

− δLxLt

{

Mj

}]

,

LxLt

{

w

}

=
1

S
Lxw(x, 0)+

1

Sθ

[

LxLt

{

∂2w

∂x2

}

− �LxLt

{

Mj

}]

.

(45)
p0 = p(x, 0) =

1
(

exp

(

√

�

6x

)

+ 1

)2
,

(46)

p1 = L
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x L
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t

1

Sθ
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LxLt

{
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∂x2

+ p0 −N0 − δM0

}]

=
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(
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√
�x√
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,

(47)
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t

1
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=
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√
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6

(
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√
�x√
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)
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(

e

√
�x√
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)4
,

:

(48)w0 = w(x, 0) =
(1− �) exp

(

√

�

6x

)(

exp

(

√

�

6x

)
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)

δ

(
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(

√

�
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+ 1
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,
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If we truncate the solution at two iterations, the form of the approximate series solution will ultimately be as 
follows:

Table 1 represents the exact and approximate values of the unknown functions p and w and the absolute error 
for case I under Caputo fractional derivative at θ = 1 , t = 0.01 , δ = 1 and � = 1.5 or varying x values.

Using Atangana-Baleanu-Caputo DLTM:
Apply formula (19) to the TFBZS (40),

Then

and,

Hence,

(49)

w1 = L
−1
x L

−1
t

1

Sθ

[

LxLt

{

∂2w0

∂x2
− �M0

}]

=
5(�− 1)�tθ e

√
�x√
6

3δŴ(θ + 1)

(

e

√
�x√
6 + 1

)3
,

(50)

w2 = L
−1
x L

−1
t

1

Sθ

[

LxLt

{

∂2w1

∂x2
− �M1

}]

=
25(�− 1)�2t2θ e

√
�x√
6

(

2e

√
�x√
6 − 1

)

18δŴ(2θ + 1)

(

e

√
�x√
6 + 1

)4
,

:

(51)

C
1 p(x, t) =

2
∑

j=0

pj,

C
1 w(x, t) =

2
∑

j=0

wj.

(52)
LxLt

{

ABC
D

θ
t p

}

= LxLt

{

∂2p

∂x2
+ p− p2 − δpw

}

,

LxLt

{

ABC
D

θ
t w

}

= LxLt

{

∂2w

∂x2
− �pw

}

.

(53)

Sθ

(1− θ)
(

Sθ + θ
1−θ

)LxLt

{

p

}

−
Sθ−1

(1− θ)
(

Sθ + θ
1−θ

)Lxp(x, 0) = LxLt

{

∂2p

∂x2

}

+LxLt

{

p

}

−LxLt

{

Nj

}

− δLxLt

{

Mj

}

,

(54)

Sθ

(1− θ)
(

Sθ + θ
1−θ

)LxLt

{

w

}

−
Sθ−1

(1− θ)
(

Sθ + θ
1−θ

)Lxw(x, 0) = LxLt

{

∂2w

∂x2

}

− �LxLt

{

Mj

}

.

Table 1.   Precise and estimated solutions for the TFBZS at θ = 1 , t = 0.01 , δ = 1 and � = 1.5.

x

p(x, t) w(x, t)

Precise solution Estimated solution Abs. error Precise solution Estimated solution Abs. error

− 10 0.986823 0.986823 4.03097 E− 9 0.0065884 0.0065884 2.01549 E− 9

− 6 0.908468 0.908468 1.68005 E− 8 0.0457662 0.0457662 8.40027 E− 9

− 2 0.538036 0.538036 5.15251 E− 8 0.230982 0.230982 2.57626 E− 8

2 0.0736613 0.0736613 2.86303 E− 8 0.463169 0.463169 1.43151 E− 8

6 0.0023034 0.0023034 4.64909 E− 9 0.498848 0.498848 2.32455 E− 9

10 0.0000459 0.0000459 1.13672 E− 10 0.499977 0.499977 5.68359 E− 11
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Taking inverse DL to both sides of equation (55) to obtain the recursive values of p and w.

Similarily,

The final form of the estimated series solution with two iterations will ultimately be as follows:

Table 2 represents the Precise and estimated solutions for the unknown functions p and w of the TFBZS and 
the absolute error for case I under ABC fractional derivative at θ = 1 , t = 0.01 , δ = 1 and � = 1.5 for various 
values of x.

(55)

LxLt

{

p

}

=
1

S
Lxp(x, 0)+

(

1− θ +
θ

Sθ

)[

LxLt

{

∂2p

∂x2

}

+LxLt

{

p

}

−LxLt

{

Nj

}

− δLxLt

{

Mj

}]

,

LxLt

{

w

}

=
1

S
Lxw(x, 0)+

(

1− θ +
θ

Sθ

)[

LxLt

{

∂2w

∂x2

}

− �LxLt

{

Mj

}]

.

(56)
p0 = p(x, 0) =

1
(

exp

(

√

�

6x

)

+ 1

)2
,

(57)

p1 = L
−1
x L

−1
t

(

1− θ +
θ

Sθ

)[

LxLt

{

∂2p0
∂x2

+ p0 −N0 − δM0

}]

=
5�e

√
�x√
6

(

−θ + θ tθ

Ŵ(θ+1) + 1
)

3

(

e

√
�x√
6 + 1

)3
,

(58)

p2 = L
−1
x L

−1
t

(

1− θ +
θ
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=
25�2e

√
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6

(

2e

√
�x√
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(
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(
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)
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)

18Ŵ(θ + 1)Ŵ(2θ + 1)

(

e

√
�x√
6 + 1

)4
,

:

(59)w0 = w(x, 0) =
(1− �) exp

(

√

�

6x

)(

exp

(

√

�

6x

)

+ 2

)

δ

(
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(

√

�

6x

)

+ 1

)2
,

(60)

w1 = L
−1
x L

−1
t

(

1− θ +
θ

Sθ
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LxLt

{

∂2w0

∂x2
− �M0

}]

=
5(�− 1)�e

√
�x√
6

(

−θ + θ tθ

Ŵ(θ+1) + 1
)

3δ

(

e

√
�x√
6 + 1

)3
,

(61)

w2 = L
−1
x L

−1
t

(

1− θ +
θ

Sθ
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LxLt

{

∂2w1

∂x2
− �M1

}]

=
1

3δŴ(α + 1)Ŵ(2α + 1)

(

e

√
�x√
6 + 1

)5

[

5e

√
�x√
6

(

e

√

2
3

√
�x + 2e

√
�x√
6 − 1

)

(�− 1)�2
(

Ŵ(α + 1)
(

(α − 1)2Ŵ(2α + 1)+ α2t2α
)

− 2(α − 1)αŴ(2α + 1)tα
)

]

,

:

(62)ABCp(x, t) =
2

∑

j=0

pj,
ABCw(x, t) =

2
∑

j=0

wj.
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Case II : For γ = � , and β = 1 , Eq. (1) will be:

Under initial conditions conditions:

The exact solution at θ = 1 is:

Using Caputo DLTM:
Apply the DL formula (17) into both sides of the system (63), and follow the same procedure discussed in 

Case I, we obtain the following solutions:

Similarily,

(63)

∂θp

∂tθ
=

∂2p

∂x2
+ δw+ p− p2 − δpw,

∂θw

∂tθ
=

∂2w

∂x2
+ �w− �pw.

p(x, 0) =
1

4

(

tanh

(
√

�

24
x

)

− 1

)2

,

w(x, 0) =
(�− 1)

4δ

(

tanh

(
√

�

24
x

)

− 1

)2

.

p(x, t) =
1

4

(

tanh

(
√

�

24
x −

1

12
(5�)t

)

− 1

)2

,

w(x, t) =
(�− 1)

4δ

(

tanh

(
√

�

24
x −

1

12
(5�)t

)

− 1

)2

.

(64)

p0 = p(x, 0),

p1 = −
5�tθ

(
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(√

�x

2
√
6

)

− 1
)

sech2
(√

�x

2
√
6

)

24Ŵ(θ + 1)
,

(65)

p2 =
1

5308416Ŵ(θ + 1)3Ŵ(3θ + 1)Ŵ(4θ + 1)

(

25�3t3θ sech15
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�x

2
√
6

)

(
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(√
�x

√
6

)

− sinh

(√
�x

√
6

))(

3 sinh

(√
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√
6

)
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(√
�x

√
6

)

− 7

)
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2
√
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(

1

2

√

3

2

√
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)

− sinh

(

1

2

√

3

2

√
�x
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(

�
2 − 2�− 3

)
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(√
�x

√
6

)

+ (�− 1)2

(

− sinh

(√
�x

√
6
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− 4)

)

,

:

Table 2.   Precise and estimated solutions for the TFBZS at θ = 1 , t = 0.01 , δ = 1 and � = 1.5.

x

p(x, t) w(x, t)

Precise solution Estimated solution Abs. error Precise solution Estimated solution Abs. error

− 10 0.986823 0.986823 4.03097 E−9 0.0065884 0.0065885 9.90365 E−8

− 6 0.908468 0.908468 1.68005 E−8 0.0457662 0.0457666 4.11951 E−7

− 2 0.538036 0.538036 5.15251 E−8 0.230982 0.230981 1.26664 E−6

2 0.0736613 0.0736613 2.86303 E−8 0.463169 0.463170 7.03231 E−7

6 0.0023034 0.0023034 4.64909 E−9 0.498848 0.498848 1.13322 E−7

10 0.0000459 0.0000459 1.13672 E−10 0.499977 0.499977 2.76832 E−9
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Finally, the approximate two iterations series solution of case II under Caputo fractional derivative will be in 
the form:

Table 3 represents the exact, approximate and the absolute error results from solving the TFBZS (case II) at θ = 1 , 
t = 0.01 , δ = 2 and � = 2 for varying x-values.

Using Atangana-Baleanu-Caputo DLTM:
Apply the DL formula (19) into both sides of the system (63), and perform the same steps presented in Case 

I to obtain the following results:

(66)

w0 = w(x, 0),

w1 = −
5(�− 1)�tθ

(

tanh
(√
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2
√
6

)
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)

sech2
(√

�x

2
√
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)
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(

3 sinh

(√
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√
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)

+ 17 cosh

(√
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√
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(√
�x

2
√
6

)

− 1

)

,

:

(67)

C
2 p(x, t) =

2
∑

j=0

pj,

C
2 w(x, t) =

2
∑

j=0

wj.

(68)

p0 = p(x, 0),

p1 =
1

24
(−5)�

(

−θ +
θ tθ

Ŵ(θ + 1)
+ 1

)

(

tanh

(√
�x

2
√
6

)

− 1

)

sech2

(√
�x

2
√
6

)

,

Table 3.   Exact and approximate solutions of the TFBZS (case II) at θ = 1 , t = 0.01 , δ = 2 and � = 2.

x

p(x, t) w(x, t)

Exact Approx. Abs. error Exact Approx. Abs. error

− 10 0.993913 0.993914 8.43019 E−7 0.496957 0.496958 1.01806 E−6

− 6 0.941163 0.941170 7.17341 E−6 0.470582 0.470590 8.93003 E−6

− 2 0.582767 0.582778 1.09066 E−5 0.291384 0.291410 2.67739 E−5

2 0.0588943 0.0588787 1.56091 E−5 0.0294472 0.029448 7.98941 E−7

6 0.0009514 0.0009509 4.78581 E−7 0.0004757 0.0004757 2.19483 E−9

10 9.929 E−6 9.924 E−6 5.35382 E−9 4.964 E−6 4.964 E−6 2.94228 E−11
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Similarily,

The final approximate two iterations series solution using ABC fractional derivative for DLM for Case II will be:

Table 4 represents the precise, approximate and the absolute error results from solving the TFBZS (case II) using 
ABC fractional derivative at θ = 1 , t = 0.01 , δ = 3 and � = 2 for various x values.

Considering the results we obtained from solving the two cases of initial conditions with different defini-
tions, we notice that the Caputo results are very close to that results for Atangana-Baleanu-Caputo when the 
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fractional order derivative θ = 1 . Therefore, Table 5 illustrates a comparison for the results we obtained for the 
two cases when θ < 1.

Graphic representations
Graphic representations offer a visual context that enhances the comprehension of data and results. They provide 
an immediate and intuitive understanding of the relationships, and patterns present in the data, making it easier 
for researchers and readers to grasp the significance of the findings.

Two and three dimensions graphs for the obtained solutions are presented to visualize the behavior of the 
TFBZS using two different cases of initial conditions each case was dealt with in two definitions of fractional 
calculus C and ABC . Figure 1 represents the two-dimensional visualization at different fractional order parameter 
values θ with fixed time t = 0.5 , and at θ = 1 for several steps of time, this in for the first case of initial conditions 
using DL Caputo. Figure 2 shows the three-dimensional approximate and exact representation for case I using 
C , the graphs shows great coincides between exact and estimated solution which reflect the efficiency of the used 
method. Figure 3 clarify the 2D solution of the TFBZS (case I) using ABC DLM for the two unknown functions 
p and w at different values of θ with fixed time and at several stages of time with fixed θ = 1 . Figure 4 shows the 
approximate solution in three-dimensions of the TFBZS at δ = 1 and � = 1.5 . The graphs using C and ABC also 
very close to each other, this means that either using C DLM or ABC DLM, we obtain high solution accuracy. 
Figure 5 shows the estimated solution of using DLM using C for case II of initial conditions. Figure 6 represents 
the exact and approximate solution in three-dimensions for case II, its clear that, the estimated solution is nearly 
the exact solution at the same values of parameters. Figures 7 and 8 represent the obtained solution in two- and 
three-dimensions using ABC DLM for case II of initial conditions. All the represented graphs show coincides 
between the estimated and exact solution which ensures the validity of the DLM for solution.

Conclusion
In this study, we obtain an approximate series solution for the TFBZS using DLM under varying initial conditions. 
Each initial condition was examined using both Caputo and Atangana-Baleanu Caputo fractional derivatives. The 
results obtained showcased an impressive level of accuracy, with errors consistently maintained at a remarkably 
low magnitude. Furthermore, we conducted a thorough investigation into the existence and uniqueness aspects 
of the solution, establishing a robust foundation for the validity of our approach. In order to understand the 
behavior of the solution, we present two and three dimensional graphs to show the impact of the time and the 

Table 4.   Precise and estimated solutions for the TFBZS (case II) at θ = 1 , t = 0.01 , δ = 2 and � = 2.

x

p(x, t) w(x, t)

Exact Approx. Abs. error Exact Approx. Abs. error

− 10 0.993913 0.993914 8.43019 E−7 0.496957 0.496958 1.01806 E−6

− 6 0.941163 0.941170 7.17341 E−6 0.470582 0.470590 8.93003 E−6

− 2 0.582767 0.582778 1.09066 E−5 0.291384 0.291410 2.67739 E−5

2 0.0588943 0.0588787 1.56091 E−5 0.0294472 0.029448 7.98941 E−7

6 0.0009514 0.0009509 4.78581 E−7 0.0004757 0.0004757 2.19483 E−9

10 9.929 E−6 9.924 E−6 5.35382 E−9 4.964 E−6 4.964 E−6 2.94228 E−11

Table 5.   A comparison between the results obtained in the two cases at θ = 0.8 , t = 0.01 , δ = 2 and � = 3.

Cases x

Caputo
Atangana-Baleanu-
Caputo

p w p w

Case I

− 10 0.998413 0.001586 0.998725 0.001377

− 6 0.973652 0.026347 0.979061 0.022411

− 2 0.663884 0.336116 0.755336 0.240004

2 0.042636 0.957363 0.098920 0.906818

6 0.000229 0.999771 0.000656 0.999435

10 8.250 E−7 0.999999 2.395 E-6 0.999998

Case II

− 10 0.998418 0.998424 0.999242 0.999968

− 6 0.973725 0.973830 0.987167 0.999130

− 2 0.664172 0.664982 0.785978 0.891803

2 0.042397 0.042652 0.072723 0.100651

6 0.000227 0.000229 0.000419 0.000656

10 8.171 E−7 8.250 E−7 1.517 E−6 2.395 E−6
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fractional derivative of the solution. The graphs of approximate and exact solution demonstrate a close resem-
blance, indicating the accuracy of the obtained solutions.

For the future directions, we envision expanding the application of the DLM to other complex fractional 
systems with higher-order fractional derivatives that analyze a real world applications. This can involve exploring 
the applicability of the method in multi-dimensional fractional systems.

Use of AI tools declaration
The authors confirm that they did not utilize any Artificial Intelligence (AI) tools in the development of this 
article.

Figure 1.   The estimated solution of the TFBZS (Case I) under C fractional derivative presented in Eq. (51) at 
δ = 1 and � = 1.5.

Figure 2.   The approximate and exact solutions of the TFBZS (Case I) under C fractional derivative presented in 
Eq. (51) at δ = 1 and � = 1.5.
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Figure 3.   The estimated solution of the TFBZS (Case I) under ABC fractional derivative presented in Eq. (62) 
at δ = 1 and � = 1.5.

Figure 4.   The approximate solution of the TFBZS (Case I) under ABC fractional derivative presented in Eq. 
(62) at δ = 1 and � = 1.5.
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Figure 5.   The estimated solution of the TFBZS (Case II) under C fractional derivative presented in Eq. (67) at 
δ = 2 and � = 2.

Figure 6.   The exact and approximate solution of the TFBZS (Case II) under C fractional derivative presented in 
Eq. (67) at δ = 2 and � = 2.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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